Isolation Detection and Characterization of Syringolin A produced from the Probiotic Strain Bacillus Cereus Isolated from Donkey Milk
Vol 3, Issue 1, 2020
(Abstract)
Abstract
Syringolin A is a non-ribosomal virulence factor secreted by few Pseudomonas strains. Syringolin A is an well known irreversible proteasome inhibitor and antitumor compound. The present study is focused on the extraction of Syringolin A through a non-tedious and economical process. Syringolin A is extracted from culture supernatants by the immiscible organic layer by mixing of dichloromethane or chloroform (trichloromethane). Syringolin A was identified by the characteristic peak at 350 nm by UV spectra. The compound was further characterized by Thin Layer Chromatography (TLC) with the retention value, Rf was found to be in the range of 0.78-0.83 run using a combination of solvent systems water and methanol. The molecular weight of the compound was found to be 492.2614 g mol-1 identified and analyzed by UHPLC–QTOF-MS analysis. Due to its significant pharmacological importance in proliferative diseases, further studies on production and optimization of these compounds are necessary.
Full Text:
PDFReferences
1. References
2. Walls, T., Power, D., & Tagg, J. (2003). Bacteriocin-like inhibitory substance (BLIS) production by the normal flora of the nasopharynx: potential to protect against otitis media? Journal of Medical Microbiology, 52(9), 829–833. https://doi.org/10.1099/jmm.0.05259-0.
3. Schellenberg, B., Ramel, C., & Dudler, R. (2010). Pseudomonas syringae Virulence Factor Syringolin A Counteracts Stomatal Immunity by Proteasome Inhibition, 23(10), 1287–1293. https://doi.org/10.1094
4. Kelly, N. A., Reuben, B. G., Rhoades, J., & Roller, S. (2000). Solvent extraction of bacteriocins from model solutions and fermentation broths. Journal of Chemical Technology and Biotechnology, 75(9), 777-784.
5. Burianek, L. L., & Yousef, A. E. (2000). Solvent extraction of bacteriocins from liquid cultures. Lett Appl Microbiol, 31(3), 193-197.
6. Pangsomboon, K., Kaewnopparat, S., Pitakpornpreecha, T., & Srichana, T. (2006). Antibacterial activity of a bacteriocin from Lactobacillus paracasei HL32 against Porphyromonas gingivalis. Arch Oral Biol, 51(9), 784-793. doi: 10.1016/j.archoralbio.2006.03.008
7. El-Adawy, T. A. (2001). Optimum production, stability, partial purification and inhibitory spectrum of antimicrobial compounds produced by Pediococcus pentosaceus DI. Nahrung, 45(2), 118-124. doi: 10.1002/1521-3803(20010401)45:2<118::AID-FOOD118>3.0.CO;2-0
8. Tabbene, O., Ben Slimene, I., Bouabdallah, F., Mangoni, M. L., Urdaci, M. C., & Limam, F. (2009). Production of anti-methicillin-resistant Staphylococcus activity from Bacillus subtilis sp. strain B38 newly isolated from soil. Appl Biochem Biotechnol, 157(3), 407-419. doi: 10.1007/s12010-008-8277-1
9. Baggerman, G., Boonen, K., Verleyen, P., De Loof, A., & Schoofs, L. (2005). Peptidomic analysis of the larval Drosophila melanogaster central nervous system by two-dimensional capillary liquid chromatography quadrupole time-of-flight mass spectrometry. J Mass Spectrom, 40(2), 250-260. doi: 10.1002/jms.744
10. Wu, L., Hao, H., & Wang, G. (2012). LC/MS-based tools and strategies for qualitative and quantitative analysis of herbal components in complex matrixes. Curr Drug Metab, 13(9), 1251-1265.
11. Ren, L., Bi, K., Gong, P., Cheng, W., Song, Z., Fang, L., & Chen, X. (2008). Characterization of the in vivo and in vitro metabolic profile of PAC-1 using liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci, 876(1), 47-53. doi: 10.1016/j.jchromb.2008.10.006
12. Ashokkumar S, Krishna RS, Pavithra V, Hemalatha V, Ingale P. Production and antibacterial activity of bacteriocin by Lactobacillus paracasei isolated from donkey milk. Int J Curr Sci 2011; 1: 109-115.
13. Rashmi. D, Srinivas Sistla , Sharmila.T. Study of Antagonistic Properties of Bacteria from Cow’s Milk by RealTime Surface Plasma Resonance Biosensor (BIAcore). Journal of Pharmaceutical, Chemical and Biological Sciences, 2018; 5(4): 365-370.
14. Barja, J. L., Lemos, M. L., & Toranzo, A. E. (1989). Purification and characterization of an antibacterial substance produced by a marine Alteromonas species. Antimicrob Agents Chemother, 33(10), 1674-1679.
15. Teixeira, M. L., Dalla Rosa, A., & Brandelli, A. (2013). Characterization of an antimicrobial peptide produced by Bacillus subtilis subsp. spizezinii showing inhibitory activity towards Haemophilus parasuis. Microbiology, 159(5), 980-988.
16. Wladyka, B., Wielebska, K., Wloka, M., Bochenska, O., Dubin, G., Dubin, A., & Mak, P. (2013). Isolation, biochemical characterization, and cloning of a bacteriocin from the poultry-associated Staphylococcus aureus strain CH-91. Appl Microbiol Biotechnol, 97(16), 7229-7239. doi: 10.1007/s00253-012-4578-y
17. Laue, B. E., Jiang, Y., Chhabra, S. R., Jacob, S., Stewart, G. S., Hardman, A., . . . Williams, P. (2000). The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl) homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase. Microbiology, 146(10), 2469-2480.
18. McClean, K. H., Winson, M. K., Fish, L., Taylor, A., Chhabra, S. R., Camara, M., . . . Bycroft, B. W. (1997). Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology, 143(12), 3703-3711.
19. Guiochon, G., & Siouffi, A. (1978). Study of the Performances of Thin Layer Chromatography II. Band Broadening and Plate Height Equation. Journal of Chromatographic Science, 16(10), 470-481.
20. Sánchez, L., Hedström, M., Delgado, M., & Delgado, O. (2010). Production, purification and characterization of serraticin A, a novel cold‐active antimicrobial produced by Serratia proteamaculans 136. J Appl Microbiol, 109(3), 936-945.
21. Molognoni, L., Daguer, H., de Sá Ploêncio, L. A., & De Dea Lindner, J. (2018). A multi-purpose tool for food inspection: Simultaneous determination of various classes of preservatives and biogenic amines in meat and fish products by LC-MS. Talanta, 178, 1053–1066. https://doi.org/10.1016/J.TALANTA.2017.08.081
22. 12. Rashmi. D, Srinivas Sistla , Sharmila.T. (2018). STUDY OF ANTAGONISTIC PROPERTIES OF BACTERIA FROM FERMENTED PULSES BY REAL-TIME SURFACE PLASMA RESONANCE BIOSENSOR (BIAcore), Asian Journal of Pharmaceutical Science & Technology 8(1), 10–15.
DOI: https://doi.org/10.24294/jacs.v1i2.626
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.