Innovative frontiers: Post-quantum perspectives in healthcare and medical imaging

David Josef Herzog, Nitsa Judith Herzog

Article ID: 3852
Vol 6, Issue 1, 2023

VIEWS - 1334 (Abstract)

Abstract


The growth of computer power is crucial for the development of contemporary information technologies. Artificial intelligence is a powerful instrument for every aspect of contemporary science, the economy, and society as a whole. Further growth in computing potential opens new prospects for biomedicine and healthcare. The promising works on quantum computing make it possible to increase computing power exponentially. While conventional computing relies on the formula with 2n bits, the simplified vision of quantum computer power is 2N, where N is a number of logical qubits. With thousandfold or more improvements in computing performance, there will be realistic options for quick protein, genes and other organic molecules 3D fold discoveries, empowering pharmaceutics and biomedical research. Personalized blockchain-based healthcare will become a reality. Medical imaging and instant healthcare data analysis will significantly speed up diagnostics and treatment control. Biomedical digital twin usage will give useful tools to any healthcare practitioner, with options for intraoperative AR and VR micro-manipulations. Nanoscale intrabody bots will be instantly customized and AI-controlled. The smart environment will be enriched with multiple sensors and actuators, giving real control of the air, water, food, and physical health factors. All these possibilities are quickly achievable only in the case of realistic quantum computing options. Even with the ability to reach this stage, there will be questions for the stability of post-quantum society: privacy, ethical issues, and quantum computing control uncertainty. General solutions to these queries will give clues for post-quantum healthcare.

Keywords


quantum computing; qubit; post-quantum healthcare; medical imaging; biomedical digital twin; big data; AI

Full Text:

PDF


References


1. Shalf J. The future of computing beyond Moore’s Law. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2020; 378(2166): 20190061. doi: 10.1098/rsta.2019.0061

2. Wang Y, Zhao Y. Arbitrary spatial trajectory reconstruction based on a single inertial sensor. IEEE Sensors Journal 2023; 23(9): 10009–10022. doi: 10.1109/jsen.2023.3257867

3. Leiserson CE, Thompson NC, Emer JS, et al. There’s plenty of room at the top: What will drive computer performance after Moore’s law? Science 2020; 368(6495). doi: 10.1126/science.aam9744

4. Choi S, Yang J, Wang G. Emerging memristive artificial synapses and neurons for energy‐efficient neuromorphic computing. Advanced Materials 2020; 32(51). doi: 10.1002/adma.202004659

5. Al-Dujaili MJ, Al-dulaimi MA. Fifth-generation telecommunications technologies: Features, architecture, challenges and solutions. Wireless Personal Communications 2022; 128(1): 447–469. doi: 10.1007/s11277-022-09962-x

6. Wang Y, Zhao Y. Handwriting recognition under natural writing habits based on a low-cost inertial sensor. IEEE Sensors Journal 2024; 24(1): 995–1005. doi: 10.1109/jsen.2023.3331011

7. Zhang J, Tao D. Empowering things with intelligence: A survey of the progress, challenges, and opportunities in artificial intelligence of things. IEEE Internet of Things Journal 2021; 8(10): 7789–7817. doi: 10.1109/jiot.2020.3039359

8. Benioff P. The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by turing machines. Journal of Statistical Physics 1980; 22(5): 563–591. doi: 10.1007/bf01011339

9. Chalmers DJ. The singularity: A philosophical analysis. In: Science Fiction and Philosophy: From Time Travel to Superintelligence. John Wiley & Sons, Inc.; 2016. pp. 171–224. doi: 10.1002/9781118922590.ch16

10. Fuller A, Fan Z, Day C, et al. Digital twin: Enabling technologies, challenges and open research. IEEE Access 2020; 8: 108952–108971. doi: 10.1109/access.2020.2998358

11. Rashidi P, Mihailidis A. A survey on ambient-assisted living tools for older adults. IEEE Journal of Biomedical and Health Informatics 2013; 17(3): 579–590. doi: 10.1109/jbhi.2012.2234129

12. Preskill J. Quantum computing in the NISQ era and beyond. Quantum 2018; 2: 79. doi: 10.22331/q-2018-08-06-79

13. Holevo AS. Bounds for the quantity of information transmitted by a quantum communication channel. Problemy Peredachi Informatsii 1973; 9(3): 3–11.

14. Shor PW. Quantum computing. Documenta Mathematica 1998; 1(1000): 467–486.

15. Feynman RP. Simulating physics with computers. International Journal of Theoretical Physics 1982; 21(6–7): 467–488. doi: 10.1007/bf02650179

16. Deutsch D. Quantum theory, the Church–Turing principle and the universal quantum computer. Proceedings of the Royal Society of London A Mathematical and Physical Sciences 1985; 400(1818): 97–117. doi: 10.1098/rspa.1985.0070

17. Deutsch D, Jozsa R. Rapid solution of problems by quantum computation. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences 1992; 439(1907): 553–558. doi: 10.1098/rspa.1992.0167

18. Gurevich Y. Logic in computer science column. Bulletin of the EATCS 1989; 38: 93–100.

19. De Broglie L. The wave nature of the electron. Nobel Lecture 1929; 12: 244–256.

20. Heisenberg W. The Physical Principles of the Quantum Theory. Courier Corporation; 1949.

21. Joo J, Knight PL, O’Brien JL, et al. One-way quantum computation with four-dimensional photonic qudits. Physical Review A 2007; 76(5). doi: 10.1103/physreva.76.052326

22. Bennett CH, Bernstein E, Brassard G, et al. Strengths and weaknesses of quantum computing. SIAM Journal on Computing 1997; 26(5): 1510–1523. doi: 10.1137/s0097539796300933

23. Grover LK. A fast quantum mechanical algorithm for database search. In: Proceedings of the twenty-eighth annual ACM symposium on Theory of computing; 22–24 May 1996; Philadelphia Pennsylvania, USA. pp. 212–219. doi: 10.1145/237814.237866

24. Preskill J. Quantum information. In: Preskill J (editor). Quantum Shannon Theory. Cambridge University Press; 2016.

25. Fredkin E, Toffoli T. Conservative logic. International Journal of Theoretical Physics 1982; 21(3–4): 219–253. doi: 10.1007/bf01857727

26. DiVincenzo DP, Aliferis P. Effective fault-tolerant quantum computation with slow measurements. Physical Review Letters 2007; 98(2). doi: 10.1103/physrevlett.98.020501

27. Stoneham AM, Harker AH, Morley GW. Could one make a diamond-based quantum computer? Journal of Physics: Condensed Matter 2009; 21(36): 364222. doi: 10.1088/0953-8984/21/36/364222

28. Kreger-Stickles L, Oskin M. Microcoded architectures for ion-tap quantum computers. ACM SIGARCH Computer Architecture News 2008; 36(3): 165–176. doi: 10.1145/1394608.1382136

29. Solenov D, Brieler J, Scherrer JF. The potential of quantum computing and machine learning to advance clinical research and change the practice of medicine. Missouri Medicine 2018; 115(5): 463.

30. Flöther FF. The state of quantum computing applications in health and medicine. Research Directions: Quantum Technologies 2023; e10: 1–10. doi: 10.1017/qut.2023.4

31. Landman J, Mathur N, Li YY, et al. Quantum methods for neural networks and application to medical image classification. Quantum 2022; 6: 881. doi: 10.22331/q-2022-12-22-881

32. Jun K. A highly accurate quantum optimization algorithm for CT image reconstruction based on sinogram patterns. Scientific Reports 2023; 13(1). doi: 10.1038/s41598-023-41700-6

33. Wegner KD, Hildebrandt N. Quantum dots: Bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chemical Society Reviews 2015; 44(14): 4792–4834. doi: 10.1039/c4cs00532e

34. Dixon T. The grey zone of cyber-biological security. International Affairs 2021; 97(3): 685–702. doi: 10.1093/ia/iiab041

35. Wierzbiński M, Falcó-Roget J, Crimi A. Community detection in brain connectomes with hybrid quantum computing. Scientific Reports 2023; 13(1). doi: 10.1038/s41598-023-30579-y

36. Marchetti L, Nifosì R, Martelli PL, et al. Quantum computing algorithms: Getting closer to critical problems in computational biology. Briefings in Bioinformatics 2022; 23(6). doi: 10.1093/bib/bbac437

37. Outeiral C, Strahm M, Shi J, et al. The prospects of quantum computing in computational molecular biology. WIREs Computational Molecular Science 2020; 11(1). doi: 10.1002/wcms.1481

38. Kamel Boulos MN, Zhang P. Digital twins: From personalised medicine to precision public health. Journal of Personalized Medicine 2021; 11(8): 745. doi: 10.3390/jpm11080745

39. Hashizume M. Perspective for future medicine: Multidisciplinary computational anatomy-based medicine with artificial intelligence. Cyborg and Bionic Systems 2021; 2021. doi: 10.34133/2021/9160478

40. Wahl B, Cossy-Gantner A, Germann S, et al. Artificial intelligence (AI) and global health: How can AI contribute to health in resource-poor settings? BMJ Global Health 2018; 3(4): e000798. doi: 10.1136/bmjgh-2018-000798

41. Ye Z, Yang J, Zhong N, et al. Tackling environmental challenges in pollution controls using artificial intelligence: A review. Science of The Total Environment 2020; 699: 134279. doi: 10.1016/j.scitotenv.2019.134279

42. Freedman MH. P/NP, and the quantum field computer. Proceedings of the National Academy of Sciences 1998; 95(1): 98–101. doi: 10.1073/pnas.95.1.98

43. Miyadera T. Quantum Kolmogorov complexity and information-disturbance theorem. Entropy 2011; 13(4): 778–789. doi: 10.3390/e13040778

44. Bernstein DJ, Lange T. Post-quantum cryptography. Nature 2017; 549(7671): 188–194. doi: 10.1038/nature23461

45. Malina L, Dzurenda P, Ricci S, et al. Post-quantum era privacy protection for intelligent infrastructures. IEEE Access 2021; 9: 36038–36077. doi: 10.1109/access.2021.3062201




DOI: https://doi.org/10.24294/irr.v6i1.3852

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.