Thermal imaging for cancer detection
Vol 6, Issue 2, 2023
VIEWS - 405 (Abstract) 297 (PDF)
Abstract
Keywords
Full Text:
PDFReferences
1. Mambou SJ, Maresova P, Krejcar O, et al. Breast cancer detection using infrared thermal imaging and a deep learning model. Sensors 2018; 18(9): 2799. doi: 10.3390/s18092799
2. Roslidar R, Rahman A, Muharar R, et al. A review on recent progress in thermal imaging and deep learning approaches for breast cancer detection. IEEE Access 2020; 8: 116176–116194. doi: 10.1109/ACCESS.2020.3004056
3. Hakim A, Awale RN. Thermal imaging—An emerging modality for breast cancer detection: A comprehensive review. Journal of Medical Systems 2020; 44: 136. doi: 10.1007/s10916-020-01581-y
4. Arora N, Martins D, Ruggerio D, et al. Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer. The American Journal of Surgery 2008; 196(4): 523–526. doi: 10.1016/j.amjsurg.2008.06.015
5. Kandlikar SG, Perez-Raya I, Raghupathi PA, et al. Infrared imaging technology for breast cancer detection—Current status, protocols and new directions. International Journal of Heat and Mass Transfer 2017; 108: 2303–2320. doi: 10.1016/j.ijheatmasstransfer.2017.01.086
6. Wahab AA, Mohamad Salim MI, Yunus J, Ramlee MH. Comparative evaluation of medical thermal image enhancement techniques for breast cancer detection. Journal of Engineering & Technological Sciences 2018; 50(1): 40–52. doi: 10.5614/j.eng.technol.sci.2018.50.1.3
7. Qi H, Diakides NA. Thermal infrared imaging in early breast cancer detection—A survey of recent research. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439); 17–21 September 2003; Cancun, Mexico. Volume 2, pp. 1109–1112.
8. Hoffer OA, Ben-David MA, Katz E, et al. Thermal imaging as a tool for evaluating tumor treatment efficacy. Journal of Biomedical Optics 2018; 23(5): 058001–058001. doi: 10.1117/1.JBO.23.5.058001
9. EtehadTavakol M, Chandran V, Ng EYK, Kafieh R. Breast cancer detection from thermal images using bispectral invariant features. International Journal of Thermal Sciences 2013; 69: 21–36. doi: 10.1016/j.ijthermalsci.2013.03.001
10. Kontos M, Wilson R, Fentiman I. Digital infrared thermal imaging (DITI) of breast lesions: Sensitivity and specificity of detection of primary breast cancers. Clinical Radiology 2011; 66(6): 536–539. doi: 10.1016/j.crad.2011.01.009
11. Godoy SE, Hayat M, Ramirez D, et al. Detection theory for accurate and non-invasive skin cancer diagnosis using dynamic thermal imaging. Biomedical Optics Express 2017; 8(4): 2301–2323. doi: 10.1364/BOE.8.002301
12. Chakraborty M, Mukhopadhyay S, Dasgupta A, et al. A new paradigm of oral cancer detection using digital infrared thermal imaging. In: Tourassi GD, Armato III SG (editors). Medical Imaging 2016: Computer-Aided Diagnosis, Proceedings of SPIE Medical Imaging 2016; 28–29 February 2016; San Diego, CA, USA. Volume 9785, pp. 899–905.
13. Han F, Shi G, Liang C, et al. A simple and efficient method for breast cancer diagnosis based on infrared thermal imaging. Cell Biochemistry and Biophysics 2015; 71: 491–498. doi: 10.1007/s12013-014-0229-5
14. Bonmarin M, Le Gal FA. Thermal imaging in dermatology. In: Hamblin MR, Avci P, Gupta GK (editors). Imaging in Dermatology. Academic Press; 2016. pp. 437–454.
15. Mishra S, Prakash A, Roy SK, et al. Breast cancer detection using thermal images and deep learning. In: Proceedings of the 2020 7th International Conference on Computing for Sustainable Global Development (INDIACom); 12–14 March 2020; New Delhi, India. pp. 211–216.
16. Tsietso D, Yahya A, Samikannu R. A Review on thermal imaging-based breast cancer detection using deep learning. Mobile Information Systems 2022; 2022: 8952849. doi: 10.1155/2022/8952849
17. Dey N, Ashour AS, Althoupety AS. Thermal imaging in medical science. Recent Advances in Applied Thermal Imaging for Industrial Applications 2017: 87–117. doi: 10.4018/978-1-5225-2423-6.ch004
18. Çetingül MP, Alani RM, Herman C. Quantitative evaluation of skin lesions using transient thermal imaging. In: Proceedings of the 2010 14th International Heat Transfer Conference; 8–13 August 2010; Washington, DC, USA. Volume 1, pp. 31–39.
19. Acharya UR, Ng EYK, Tan JH, Sree SV. Thermography based breast cancer detection using texture features and support vector machine. Journal of Medical Systems 2012; 36: 1503–1510. doi: 10.1007/s10916-010-9611-z
20. Soliman OO, Sweilam NH, Shawky DM. Automatic breast cancer detection using digital thermal images. In: Proceedings of the 2018 9th Cairo International Biomedical Engineering Conference (CIBEC); 20–22 December 2018; Cairo, Egypt. pp. 110–113.
21. Herman C, Cetingul MP. Quantitative visualization and detection of skin cancer using dynamic thermal imaging. Journal of Visualized Experiments 2011; 5(51): e2679. doi: 10.3791/2679
22. Guo B, Li J, Zmuda H, Sheplak M. Multifrequency microwave-induced thermal acoustic imaging for breast cancer detection. IEEE Transactions on Biomedical Engineering 2007; 54(11): 2000–2010. doi: 10.1109/TBME.2007.895108
23. Arathy K, Ansari S, Malini KA. High reliability thermistor probes for early detection of breast cancer using skin contact thermometry with thermal imaging. Materials Express 2020; 10(5): 620–628. doi: 10.1166/mex.2020.1682
24. Tanrıverdi V, Gençer NG. Induced current thermal imaging in breast cancer detection. In: Proceedings of the 2021 29th Signal Processing and Communications Applications Conference (SIU); 9–11 June 2021; Istanbul, Turkey. pp. 1–4.
25. Rajinikanth V, Kadry S, Taniar D, et al. Breast-cancer detection using thermal images with marine-predators-algorithm selected features. In: Proceedings of the 2021 Seventh International Conference on Bio Signals, Images, And Instrumentation (ICBSII); 25–27 March 2021; Chennai, India. pp. 1–6.
26. Hoffer OA, Ben-David MA, Katz E, et al. A portable thermal imaging device as a feedback system for breast cancer treatment. In: Proceedings of the Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XVIII; 27 January–1 February 2018; San Francisco, CA, USA. Volume 10488, pp. 113–132.
27. Roslidar R, Saddami K, Arnia F, et al. A study of fine-tuning CNN models based on thermal imaging for breast cancer classification. In: Proceedings of the 2019 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom); 22–24 August 2019; Banda Aceh, Indonesia. pp. 77–81.
28. Anbar M. Clinical thermal imaging today. IEEE Engineering in Medicine and Biology Magazine 1998; 17(4): 25–33. doi: 10.1109/51.687960
29. Chakraborty M, Mukhopadhyay S, Dasgupta A, et al. A new approach of oral cancer detection using bilateral texture features in digital infrared thermal images. In: Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 16–20 August 2016; Orlando, FL, USA. pp. 1377–1380.
30. Bhowmik A, Repaka R, Mulaveesala R, Mishra SC. Suitability of frequency modulated thermal wave imaging for skin cancer detection—A theoretical prediction. Journal of Thermal Biology 2015; 51: 65–82. doi: 10.1016/j.jtherbio.2015.03.007
31. Umadevi V, Raghavan SV, Jaipurkar S. Framework for estimating tumour parameters using thermal imaging. Indian Journal of Medical Research 2011; 134(5): 725–731. doi: 10.4103/0971-5916.91012
32. Kateb B, Yamamoto V, Yu C, et al. Infrared thermal imaging: A review of the literature and case report. NeuroImage 2009; 47: T154–T162. doi: 10.1016/j.neuroimage.2009.03.043
33. Kuruganti PT, Qi H. Asymmetry analysis in breast cancer detection using thermal infrared images. In: Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society] [Engineering in Medicine and Biology]; 23–26 October 2002; Houston, TX, USA. pp. 1155–1156.
34. Mammoottil MJ, Kulangara LJ, Cherian AS, et al. Detection of breast cancer from five-view thermal images using convolutional neural networks. Journal of Healthcare Engineering 2022; 2022: 4295221. doi: 10.1155/2022/4295221
35. Rassiwala M, Mathur P, Mathur R, et al. Evaluation of digital infra-red thermal imaging as an adjunctive screening method for breast carcinoma: A pilot study. International Journal of Surgery 2014; 12(12): 1439–1443. doi: 10.1016/j.ijsu.2014.10.010
36. Mallidi S, Luke GP, Emelianov S. Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance. Trends in Biotechnology 2011; 29(5): 213–221. doi: 10.1016/j.tibtech.2011.01.006
37. Min S, Heo J, Kong Y, et al. Thermal infrared image analysis for breast cancer detection. KSII Transactions on Internet & Information Systems 2017; 11(2): 1134–1147. doi: 10.3837/tiis.2017.02.029
38. Haripriya AB, Sunitha KA, Mahima B. Development of low-cost thermal imaging system as a preliminary screening instrument. Procedia Computer Science 2020; 172: 283–288. doi: 10.1016/j.procs.2020.05.045
39. Sánchez-Cauce R, Pérez-Martín J, Luque M. Multi-input convolutional neural network for breast cancer detection using thermal images and clinical data. Computer Methods and Programs in Biomedicine 2021; 204: 106045. doi: 10.1016/j.cmpb.2021.106045
40. Bagavathiappan S, Saravanan T, Philip J, et al. Infrared thermal imaging for detection of peripheral vascular disorders. Journal of Medical Physics 2009; 34(1): 43–47. doi: 10.4103/0971-6203.48720
41. Sruthi S, Sasikala M. A low cost thermal imaging system for medical diagnostic applications. In: Proceedings of the 2015 International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials (ICSTM); 6–8 May 2015; Avadi, India. pp. 621–623.
42. Mambou S, Krejcar O, Maresova P, et al. Novel four stages classification of breast cancer using infrared thermal imaging and a deep learning model. In: Rojas I, Valenzuela O, Rojas F, Ortuño F (editors). Bioinformatics and Biomedical Engineering, Proceedings of the Bioinformatics and Biomedical Engineering: 7th International Work-Conference; 8–10 May 2019; Granada, Spain. Springer; 2019. pp. 63–74.
43. Aggarwal AK, Pandey M. Machine learning approach for breast cancer detection using thermal imaging. In: Proceedings of the 2022 Second International Conference on Next Generation Intelligent Systems (ICNGIS); 29–31 July 2022; Kottayam, India. pp. 1–5.
44. Ghayoumi Zadeh H, Haddadnia J, Hashemian M, Hassanpour K. Diagnosis of breast cancer using a combination of genetic algorithm and artificial neural network in medical infrared thermal imaging. Iranian Journal of Medical Physics 2012; 9(4): 265–274. doi: 10.22038/IJMP.2013.470
45. Dong F, Tao C, Wu J, et al. Detection of cervical lymph node metastasis from oral cavity cancer using a non-radiating, noninvasive digital infrared thermal imaging system. Scientific Reports 2018; 8(1): 7219. doi: 10.1038/s41598-018-24195-4
46. Darabi N, Rezai A, Hamidpour SSF. Breast cancer detection using RSFS-based feature selection algorithms in thermal images. Biomedical Engineering: Applications, Basis and Communications 2021; 33(3): 2150020. doi: 10.4015/S1016237221500204
47. Ring EF. Quantitative thermal imaging. Clinical Physics and Physiological Measurement 1990; 11(4A): 87. doi: 10.1088/0143-0815/11/4A/310
48. Köşüş N, Köşüş A, Duran M, et al. Comparison of standard mammography with digital mammography and digital infrared thermal imaging for breast cancer screening. Journal of the Turkish German Gynecological Association 2010; 11(3): 152–157. doi: 10.5152/jtgga.2010.24
49. Weum S, Lott A, de Weerd L. Detection of perforators using smartphone thermal imaging. Plastic and Reconstructive Surgery 2016; 138(5): 938e–940e. doi: 10.1097/PRS.0000000000002718
50. Karthiga R, Narasimhan K. Medical imaging technique using curvelet transform and machine learning for the automated diagnosis of breast cancer from thermal image. Pattern Analysis and Applications 2021; 24(3): 981–991. doi: 10.1007/s10044-021-00963-3
51. Qi H, Kuruganti PT, Liu Z. Early detection of breast cancer using thermal texture maps. In: Proceedings of the IEEE International Symposium on Biomedical Imaging; 7–10 July 2002; Washington, DC, USA. pp. 309–312.
52. Yongqing W, Zongqing G, Shuonan W, Ping H. The temperature measurement technology of infrared thermal imaging and its applications review. In: Proceedings of the 2017 13th IEEE International Conference on Electronic Measurement & Instruments (ICEMI); 20–22 October 2017; Yangzhou, China. pp. 401–406.
53. Ring EFJ. The historical development of thermometry and thermal imaging in medicine. Journal of Medical Engineering & Technology 2006; 30(4): 192–198. doi: 10.1080/03091900600711332
54. Bagavathiappan S, Saravanan T, Philip J, et al. Investigation of peripheral vascular disorders using thermal imaging. The British Journal of Diabetes & Vascular Disease 2008; 8(2): 102–104. doi: 10.1177/14746514080080020901
55. Al Husaini MAS, Habaebi MH, Gunawan TS, et al. Thermal-based early breast cancer detection using inception V3, inception V4 and modified inception MV4. Neural Computing and Applications 2022; 34: 333–348. doi: 10.1007/s00521-021-06372-1
56. Dutta T, Sil J, Chottopadhyay P. Condition monitoring of electrical equipment using thermal image processing. In: Proceedings of the 2016 IEEE First International Conference on Control, Measurement and Instrumentation (CMI); 8–10 January 2016; Kolkata, India. pp. 311–315.
57. Geetha P, UmaMaheswari S. Heat transfer capacity in millimeter size breast cancer cells analysis through thermal imaging and FDNCNN for primary stage identification. Biomedical Signal Processing and Control 2023; 80: 104361. doi: 10.1016/j.bspc.2022.104361
58. Levy A, Dayan A, Ben-David M, Gannot I. A new thermography-based approach to early detection of cancer utilizing magnetic nanoparticles theory simulation and in vitro validation. Nanomedicine: Nanotechnology, Biology and Medicine 2010; 6(6): 786–796. doi: 10.1016/j.nano.2010.06.007
59. Rautela K, Kumar D, Kumar V. An interpretable network to thermal images for breast cancer detection. In: Proceedings of the 2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME); 16–18 November 2022; Maldives. pp. 1–5.
60. Wilson AN, Gupta KA, Koduru BH, et al. Recent advances in thermal imaging and its applications using machine learning: A review. IEEE Sensors Journal 2023; 23(4): 3395–3407. doi: 10.1109/JSEN.2023.3234335
61. Kaczmarek M, Nowakowski A. Active IR-thermal imaging in medicine. Journal of Nondestructive Evaluation 2016; 35: 19. doi: 10.1007/s10921-016-0335-y
62. Ring EF, Ammer K. Infrared thermal imaging in medicine. Physiological Measurement 2012; 33(3): R33. doi: 10.1088/0967-3334/33/3/R33
63. Jadin MS, Ghazali KH. Gas leakage detection using thermal imaging technique. In: Proceedings of the 2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation; 26–28 March 2014; Cambridge, UK. pp. 302–306.
64. Tiwari D, Dixit M, Gupta K. Deep multi-view breast cancer detection: A multi-view concatenated infrared thermal images based breast cancer detection system using deep transfer learning. Traitement du Signal 2021; 38(6): 1699–1711. doi: 10.18280/ts.380613
65. Vardasca R, Magalhaes C, Mendes J. Biomedical applications of infrared thermal imaging: Current state of machine learning classification. Proceedings 2019; 27(1): 46. doi: 10.3390/proceedings2019027046
66. Yang H, Xie S, Lin Q, et al. A new infrared thermal imaging and its preliminary investigation of breast disease assessment. In: Proceedings of the 2007 IEEE/ICME International Conference on Complex Medical Engineering. pp. 1071–1074.
67. Rahmatinia S, Fahimi B. Magneto-thermal modeling of biological tissues: A step toward breast cancer detection. IEEE Transactions on Magnetics 2017; 53(6): 1–4. doi: 10.1109/TMAG.2017.2671780
68. Yadav SS, Jadhav SM. Thermal infrared imaging based breast cancer diagnosis using machine learning techniques. Multimedia Tools and Applications 2022; 81: 13139–13157. doi: 10.1007/s11042-020-09600-3
69. Bonmarin M, Le Gal FA. Lock-in thermal imaging for the early-stage detection of cutaneous melanoma: A feasibility study. Computers in Biology and Medicine 2014; 47: 36–43. doi: 10.1016/j.compbiomed.2014.01.008
70. Li Y, Fahimi B. Thermal analysis of multiple-antenna-excited breast model for breast cancer detection. In: Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 16–20 August 2016; Orlando, FL, USA. pp. 1058–1061.
71. Shrivastava R, Kakileti ST, Manjunath G. Thermal radiomics for improving the interpretability of breast cancer detection from thermal images. In: Kakileti ST, Gabrani M, Manjunath G, et al. (editors). Artificial Intelligence over Infrared Images for Medical Applications and Medical Image Assisted Biomarker Discovery. Proceedings of MICCAI Workshop on Medical Image Assisted Blomarkers’ Discovery; 18–22 September 2022; Singapore. Springer; 2022. pp. 3–9.
72. Sadeghi-Goughari M, Mojra A, Sadeghi S. Parameter estimation of brain tumors using intraoperative thermal imaging based on artificial tactile sensing in conjunction with artificial neural network. Journal of Physics D: Applied Physics 2016; 49(7): 075404. doi: 10.1088/0022-3727/49/7/075404
73. Saednia K, Tabbarah S, Lagree A, et al. Quantitative thermal imaging biomarkers to detect acute skin toxicity from breast radiation therapy using supervised machine learning. International Journal of Radiation Oncology* Biology* Physics 2020; 106(5): 1071–1083. doi: 10.1016/j.ijrobp.2019.12.032
74. Chatterjee S, Biswas S, Majee A, et al. Breast cancer detection from thermal images using a Grunwald-Letnikov-aided Dragonfly algorithm-based deep feature selection method. Computers in Biology and Medicine 2022; 141: 105027. doi: 10.1016/j.compbiomed.2021.105027
75. Zeng J, Lin L, Deng F. Infrared thermal imaging as a nonradiation method for detecting thermal expression characteristics in normal female breasts in China. Infrared Physics & Technology 2020; 104: 103125. doi: 10.1016/j.infrared.2019.103125
76. Sarigoz T, Ertan T, Topuz O, et al. Role of digital infrared thermal imaging in the diagnosis of breast mass: A pilot study: Diagnosis of breast mass by thermography. Infrared Physics & Technology 2018; 91: 214–219. doi: 10.1016/j.infrared.2018.04.019
77. Herry CL, Frize M. Digital processing techniques for the assessment of pain with infrared thermal imaging. In: Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society] [Engineering in Medicine and Biology]; 23–26 October 2002; Houston, TX, USA. Volume 2, pp. 1157–1158.
78. Sadeghi-Goughari M, Mojra A. Intraoperative thermal imaging of brain tumors using a haptic-thermal robot with application in minimally invasive neurosurgery. Applied Thermal Engineering 2015; 91: 600–610. doi: 10.1016/j.applthermaleng.2015.08.032
79. Macedo M, Santana M, dos Santos WP, et al. Breast cancer diagnosis using thermal image analysis: A data-driven approach based on swarm intelligence and supervised learning for optimized feature selection. Applied Soft Computing 2021; 109: 107533. doi: 10.1016/j.asoc.2021.107533
80. Prabha S. Thermal imaging techniques for breast screening—A survey. Current Medical Imaging 2020; 16(7): 855–862. doi: 10.2174/1573405615666191115145038
81. Igali D, Mukhmetov O, Zhao Y, et al. An experimental framework for validation of thermal modeling for breast cancer detection. In: IOP Conference Series: Materials Science and Engineering, Proceedings of the 2018 2nd International Conference on Advanced Technologies in Design, Mechanical and Aeronautical Engineering (ATDMAE 2018); 1–3 July 2018; Dalian, China. IOP Publishing; 2018. Volume 408, p. 012031.
82. Zarei M, Rezai A, Falahieh Hamidpour SS. Breast cancer segmentation based on modified Gaussian mean shift algorithm for infrared thermal images. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 2021; 9(6): 574–580. doi: 10.1080/21681163.2021.1897884
83. Carlak HF, Gencer NG, Besikci C. Theoretical assessment of electro-thermal imaging: A new technique for medical diagnosis. Infrared Physics & Technology 2016; 76: 227–234. doi: 10.1016/j.infrared.2016.03.001
84. Hamidpour SSF, Firouzmand M, Navid M, et al. Extraction of vessel structure in thermal images to help early breast cancer detection. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 2019; 8(1): 103–108. doi: 10.1080/21681163.2019.1598895
85. Gomathi P, Muniraj C, Periasamy PS. Digital infrared thermal imaging system based breast cancer diagnosis using 4D U-Net segmentation. Biomedical Signal Processing and Control 2023; 85: 104792. doi: 10.1016/j.bspc.2023.104792
86. Marques RS, Conci A, Perez MG, et al. An approach for automatic segmentation of thermal imaging in Computer Aided Diagnosis. IEEE Latin America Transactions 2016; 14(4): 1856–1865. doi: 10.1109/TLA.2016.7483526
87. Abdel-Nasser M, Moreno A, Puig D. Breast cancer detection in thermal infrared images using representation learning and texture analysis methods. Electronics 2019; 8(1): 100. doi: 10.3390/electronics8010100
88. Hoffer O, Rabin T, Nir RR, et al. Automated thermal imaging monitors the local response to cervical cancer brachytherapy. Journal of Biophotonics 2023; 16(1): e202200214. doi: 10.1002/jbio.202200214
89. Lozano III A, Hassanipour F. Infrared imaging for breast cancer detection: An objective review of foundational studies and its proper role in breast cancer screening. Infrared Physics & Technology 2019; 97: 244–257. doi: 10.1016/j.infrared.2018.12.017
90. Mahoro E, Akhloufi MA. Applying deep learning for breast cancer detection in radiology. Current Oncology 2022; 29(11): 8767–8793. doi: 10.3390/curroncol29110690
91. Khafaga DS, Alhussan AA, El-kenawy ESM, et al. Meta-heuristics for feature selection and classification in diagnostic breast cancer. Computers, Materials and Continua 2022; 73(1): 749–765. doi: 10.32604/cmc.2022.029605
92. Dey S, Roychoudhury R, Malakar S, Sarkar R. Screening of breast cancer from thermogram images by edge detection aided deep transfer learning model. Multimedia Tools and Applications 2022; 81(7): 9331–9349. doi: 10.1007/s11042-021-11477-9
93. Abhisheka B, Biswas SK, Purkayastha B. A comprehensive review on breast cancer detection, classification and segmentation using deep learning. Archives of Computational Methods in Engineering 2023; 30: 5023–5052 . doi: 10.1007/s11831-023-09968-z
94. Zhou Y, Herman C. Optimization of skin cooling by computational modeling for early thermographic detection of breast cancer. International Journal of Heat and Mass Transfer 2018; 126: 864–876. doi: 10.1016/j.ijheatmasstransfer.2018.05.129
DOI: https://doi.org/10.24294/irr.v6i2.2638
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.