Trends and developments in cardiac magnetic resonance imaging
Vol 3, Issue 1, 2020
VIEWS - 709 (Abstract) 557 (PDF)
Abstract
Background: Through the development of robust techniques and their comprehensive validation, cardiac magnetic resonance imaging (CMR) has developed a wide range of indications in its almost 25 years of clinical use. The recording of cardiac volumes and systolic ventricular function as well as the characterization of focal myocardial scars are now part of standard CMR imaging. Recently, the introduction of accelerated image acquisition technologies, the new imaging methods of myocardial T1 and T2 mapping and 4-D flow measurements, and the new post-processing technique of myocardial feature tracking have gained relevance. Method: This overview is based on a comprehensive literature search in the PubMed database on new CMR techniques and their clinical application. Results and conclusion: This article provides an overview of the latest technical developments in the field of CMR and their possible applications based on the most important clinical questions.
Keywords
Full Text:
PDFReferences
1. Busse A, Rajagopal R, Yücel S, et al. Cardiac MRI—update 2020. Der Radiologe 2020; 60(1): 33–40. doi: 10.1007/s00117-020- 00687-1.
2. von Knobelsdorff-Brenkenhoff F, Schulz-Menger J. Role of cardiovascular magnetic resonance in the guidelines of the European Society of Cardiology. Journal of Cardiovascular Magnetic Resonance 2015; 18(1): 1–18.
3. Yang ACY, Kretzler M, Sudarski S, et al. Sparse reconstruction techniques in MRI: Methods, applications, and challenges to clinical adoption. Investigative Radiology 2016; 51(6): 349–364.
4. Otazo R, Kim D, Axel L, et al. Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI. Magnetic Resonance in Medicine 2010; 64(3): 767–776.
5. Usman M, Atkinson D, Odille F, et al. Motion corrected compressed sensing for free-breathing dynamic cardiac MRI. Magnetic Resonance in Medicine 2013; 70(2): 504–516.
6. Kim D, Dyvorne HA, Otazo R, et al. Accelerated phase-contrast cine MRI using k-t SPARSE-SENSE. Magnetic Resonance in Medicine 2012; 67(4): 1054–1064.
7. Iyer SK, Tasdizen T, Burgon N, et al. Compressed sensing for rapid late gadolinium enhanced imaging of the left atrium: A preliminary study. Magnetic Resonance Imaging 2016; 34(7): 846–854.
8. Mehta BB, Chen X, Bilchick KC, et al. Accelerated and navigator-gated look-locker imaging for cardiac T1 estimation (ANGIE): Development and application to T1 mapping of the right ventricle. Magnetic Resonance in Medicine 2015; 73(1): 150–160.
9. Feng L, Axel L, Chandarana H, et al. XD-GRASP: Golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing. Magnetic Resonance in Medicine 2016; 75(2): 775–788.
10. Kramer CM, Barkhausen J, Bucciarelli-Ducci C, et al. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. Journal of Cardiovascular Magnetic Resonance 2020; 22(1): 1–18.
11. Becker MAJ, Cornel JH, Van de Ven PM, et al. The prognostic value of late gadolinium-enhanced cardiac magnetic resonance imaging in nonischemic dilated cardiomyopathy: A review and meta-analysis. JACC: Cardiovascular Imaging 2018; 11(9): 1274–1284.
12. Messroghli DR, Moon JC, Ferreira VM, et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: A consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). Journal of Cardiovascular Magnetic Resonance 2017; 19(1): 1–24.
13. Messroghli DR, Radjenovic A, Kozerke S, et al. Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magnetic Resonance in Medicine 2004; 52(1): 141–146.
14. Piechnik SK, Ferreira VM, Dall’Armellina E, et al. Shortened Modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. Journal of Cardiovascular Magnetic Resonance 2010; 12(1): 1–11.
15. Haaf P, Garg P, Messroghli DR, et al. Cardiac T1 mapping and extracellular volume (ECV) in clinical practice: A comprehensive review. Journal of Cardiovascular Magnetic Resonance 2017; 18(1): 1–12.
16. Schulz-Menger J, Bluemke DA, Bremerich J, et al. Standardized image interpretation and post-processing in cardiovascular magnetic resonance—2020 update. Journal of Cardiovascular Magnetic Resonance 2020; 22(1): 1–22. doi: 10.1186/s12968-020-00610-6.
17. Martinez-Naharro A, Kotecha T, Norrington K, et al. Native T1 and extracellular volume in transthyretin amyloidosis. JACC: Cardiovascular Imaging 2019; 12(5): 810–819.
18. Sado DM, Flett AS, Banypersad SM, et al. Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart 2012; 98(19): 1436–1441
19. McAlindon E, Pufulete M, Lawton C, et al. Quantification of infarct size and myocardium at risk: Evaluation of different techniques and its implications. European Heart Journal-Cardiovascular Imaging 2015; 16(7): 738–746.
20. McAlindon EJ, Pufulete M, Harris JM, et al. Measurement of myocardium at risk with cardiovascular MR: Comparison of techniques for edema imaging. Radiology 2015; 275(1): 61–70.
21. Giri S, Shah S, Xue H, et al. Myocardial T2 mapping with respiratory navigator and automatic nonrigid motion correction. Magnetic Resonance in Medicine 2012; 68(5): 1570–1578.
22. von Knobelsdorff-Brenkenhoff F, Prothmann M, Dieringer MA, et al. Myocardial T1 and T2 mapping at 3 T: Reference values, influencing factors and implications. Journal of Cardiovascular Magnetic Resonance 2013; 15(1): 53.
23. Nayak KS, Nielsen JF, Bernstein MA, et al. Cardiovascular magnetic resonance phase contrast imaging. Journal of Cardiovascular Magnetic Resonance 2015; 17(1): 1–26.
24. Dyverfeldt P, Bissell M, Barker AJ, et al. 4D flow cardiovascular magnetic resonance consensus statement. Journal of Cardiovascular Magnetic Resonance; 2015 17(1): 1–19.
25. Ha H, Kim GB, Kweon J, et al. Hemodynamic measurement using four-dimensional phase-contrast MRI: Quantification of hemodynamic parameters and clinical applications. Korean Journal of Radiology 2016; 17(4): 445–462.
26. Hope MD, Sedlic T, Dyverfeldt P. Cardiothoracic magnetic resonance flow imaging. Journal of Thoracic Imaging, 2013, 28(4): 217-230.
27. Guzzardi DG, Barker AJ, Van Ooij P, et al. Valve-related hemodynamics mediate human bicuspid aortopathy: Insights from wall shear stress mapping. Journal of the American College of Cardiology 2015; 66(8): 892–900.
28. Reiter G, Reiter U, Kovacs G, et al. Blood flow vortices along the main pulmonary artery measured with MR imaging for diagnosis of pulmonary hypertension. Radiology 2015; 275(1): 71–79.
29. Ibanez B, James S, Agewall S, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). European Heart Journal 2018; 39(2): 119–177.
30. Salerno M. Feature tracking by CMR: A “double feature”? JACC: Cardiovascular Imaging 2018; 11(2 Part 1): 206–208.
31. Claus P, Omar AMS, Pedrizzetti G, et al. Tissue tracking technology for assessing cardiac mechanics: Principles, normal values, and clinical applications. JACC: Cardiovascular Imaging 2015; 8(12): 1444–1460.
32. Taylor RJ, Moody WE, Umar F, et al. Myocardial strain measurement with feature-tracking cardiovascular magnetic resonance: Normal values. European Heart Journal—Cardiovascular Imaging 2015; 16(8): 871–881.
33. Zghaib T, Ghasabeh MA, Assis FR, et al. Regional strain by cardiac magnetic resonance imaging improves detection of right ventricular scar compared with late gadolinium enhancement on a multimodality scar evaluation in patients with arrhythmogenic right ventricular cardiomyopathy. Circulation: Cardiovascular Imaging 2018; 11(9): e007546.
34. Tello K, Dalmer A, Vanderpool R, et al. Cardiac magnetic resonance imaging-based right ventricular strain analysis for assessment of coupling and diastolic function in pulmonary hypertension. JACC: Cardiovascular Imaging 2019; 12(11 Part 1): 2155–2164.
35. Augusto JB, Nordin S, Vijapurapu R, et al. Myocardial edema, myocyte injury, and disease severity in Fabry disease. Circulation: Cardiovascular Imaging 2020; 13(3): e010171.
36. Gillmore JD, Maurer MS, Falk RH, et al. Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation 2016; 133(24): 2404–2412.
37. Dorbala S, Ando Y, Bokhari S, et al. ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: part 1 of 2—Evidence base and standardized methods of imaging. Journal of Nuclear Cardiology 2019; 26(6): 2065–2123.
38. Martinez-Naharro A, Treibel T A, Abdel-Gadir A, et al. Magnetic resonance in transthyretin cardiac amyloidosis. Journal of the American College of Cardiology 2017; 70(4): 466–477.
39. Ferreira VM, Schulz-Menger J, Holmvang G, et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: Expert recommendations. Journal of the American College of Cardiology; 2018; 72(24): 3158–3176.
40. White JA, Hansen R, Abdelhaleem A, et al. Natural history of myocardial injury and chamber remodeling in acute myocarditis: A 12-month prospective cohort study using cardiovascular magnetic resonance imaging. Circulation: Cardiovascular Imaging 2019; 12(7): e008614. doi: 10.1161/CIRCIMAGING.118.008614.
41. Aquaro GD, Ghebru Habtemicael Y, Camastra G, et al. Prognostic value of repeating cardiac magnetic resonance in patients with acute myocarditis. Journal of the American College of Cardiology 2019; 74(20): 2439–2448.
42. Mayr A, Kitterer D, Latus J, et al. Evaluation of myocardial involvement in patients with connective tissue disorders: A multi-parametric cardiovascular magnetic resonance study. Journal of Cardiovascular Magnetic Resonance 2017; 18(1): 1–13.
43. Huang L, Zhao P, Tang D, et al. Cardiac involvement in patients recovered from COVID-2019 identified using magnetic resonance imaging. Cardiovascular Imaging 2020; 13(11): 2330–2339.
44. Inciardi R M, Lupi L, Zaccone G, et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiology 2020; 5(7): 819–824.
45. Puntmann VO, Carerj ML, Wieters I, et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiology 2020; 5(11): 1308. doi: 10.1001/jamacardio.2020.3557.
46. Knuuti J, Wijns W, Saraste A, et al. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes: The task force for the diagnosis and management of chronic coronary syndromes of the European society of cardiology (ESC). European Heart Journal 2020; 41(3): 407–477.
47. Greenwood JP, Maredia N, Younger JF, et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): A prospective trial. The Lancet 2012; 379(9814): 453–460.
48. Greenwood JP, Ripley DP, Berry C, et al. Effect of care guided by cardiovascular magnetic resonance, myocardial perfusion scintigraphy, or NICE guidelines on subsequent unnecessary angiography rates: The CE-MARC 2 randomized clinical trial. Jama 2016; 316(10): 1051–1060.
49. Nagel E, Greenwood JP, McCann GP, et al. Magnetic resonance perfusion or fractional flow reserve in coronary disease. New England Journal of Medicine 2019; 380(25): 2418–2428.
50. Kwong RY, Ge Y, Steel K, et al. Cardiac magnetic resonance stress perfusion imaging for evaluation of patients with chest pain. Journal of the American College of Cardiology 2019; 74(14): 1741–1755.
51. Collet JP, Thiele H, Barbato E, et al. 2020 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. European Heart Journal 2021; 42(14): 1289–1367. doi: 10.1093/eurheartj/ehaa575.
52. Kammerlander AA, Wiesinger M, Duca F, et al. Diagnostic and prognostic utility of cardiac magnetic resonance imaging in aortic regurgitation. JACC: Cardiovascular Imaging 2019; 12(8 Part 1): 1474–1483.
53. Cochran CD, Yu S, Gakenheimer-Smith L, et al. Identifying risk factors for massive right ventricular dilation in patients with repaired tetralogy of Fallot. The American Journal of Cardiology 2020; 125(6): 970–976.
54. Baumgartner H, De Backer J, Babu-Narayan SV, et al. 2020 ESC guidelines for the management of adult congenital heart disease. European Heart Journal 2021; 42(6): 563–645. doi: 10.1093/eurheartj/ehaa554.
55. Reiter U, Reiter G, Fuchsjäger M. MR phase-contrast imaging in pulmonary hypertension. The British Journal of Radiology 2016; 89(1063): 20150995.
DOI: https://doi.org/10.24294/irr.v3i1.1727
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.