Autoregressive moving average approaches for estimating continuous non-negative time series
Vol 7, Issue 2, 2024
VIEWS - 0 (Abstract) 0 (PDF)
Abstract
Keywords
Full Text:
PDFReferences
1. Box GE, Jenkins GM. Time series analysis: forecasting and control. Holden-Day; 1976.
2. Choudhury A, Jones J. Crop yield prediction using time series models. Journal of Economics and Economic Education Research. 2014; 15(3): 53–67.
3. Tang H. Stock prices prediction based on ARMA model. In: Proceedings of the 2021 International Conference on Computer, Blockchain and Financial Development (CBFD); 23–25 April 2021; Nanjing, China. doi: 10.1109/CBFD52659.2021.00046
4. Ibrahim A, Kashef R, Corrigan L. Predicting market movement direction for bitcoin: A comparison of time series modeling methods. Computers & Electrical Engineering. 2021; 89: 106905. doi: 10.1016/j.compeleceng.2020.106905
5. Bayer FM, Bayer DM, Marinoni A, Gamba P. A novel Rayleigh dynamical model for remote sensing data interpretation. IEEE Transactions on Geoscience and Remote Sensing. 2020; 58(7): 4989–4999. doi: 10.1109/TGRS.2020.2971345
6. de Araújo FJM, Guerra RR, Peña-Ramírez FA. Quantile-based dynamic modeling of asymmetric data: a novel Burr XII approach for positive continuous random variables. International Journal of Data Science and Analytics. 2024; 1–20. doi: 10.1007/s41060-024-00533-w
7. Zeger SL, Qaqish B. Markov regression models for time series: a quasi-likelihood approach. Biometrics. 1988; 1019–1031. doi: 10.2307/2531732
8. Benjamin MA, Rigby RA, Stasinopoulos DM. Generalized autoregressive moving average models. Journal of the American Statistical association. 2003; 98(461): 214–223. doi: 10.1198/016214503388619238
9. Alcoforado RG, Egídio dos Reis AD, Bernardino W, Santos JAC. Modelling Risk for Commodities in Brazil: An Application for Live Cattle Spot and Futures Prices. Commodities. 2023; 2(4): 398–416. doi: 10.3390/commodities2040023
10. Zheng T, Xiao H, Chen R. Generalized ARMA models with martingale difference errors. Journal of Econometrics. 2015; 189(2): 492–506. doi: 10.1016/j.jeconom.2015.03.040
11. Albarracin OYE, Alencar AP, Ho LL. Generalized autoregressive and moving average models: multicollinearity, interpretation and a new modified model. Journal of Statistical Computation and Simulation. 2019; 89(10): 1819–1840. doi: 10.1080/00949655.2019.1599892
12. Davis RA, Dunsmuir WT, Streett SB. Observation-driven models for Poisson counts. Biometrika. 2003; 90(4): 777–790. doi: 10.1093/biomet/90.4.777
13. Maia G. GLARMA model for temporal data analysis: Extensions for positive continuous data and a bootstrap proposal for inference on model parameters [PhD thesis]. Federal University of Minas Gerais; 2024
14. Davis RA, Fokianos K, Holan SH, et al. Count time series: A methodological review. Journal of the American Statistical Association. 2021; 116(535): 1533–1547. doi: 10.1080/01621459.2021.1904957
15. Akaike H. Information theory and an extension of the maximum likelihood principle. In: Petrov B, Csaki F (Eds.) Proceedings of the 2nd International Symposium on Information Theory. Akademiai Kiado; 1973. pp. 267–281
16. Box GE, Jenkins GM, Reinsel GC, Ljung GM. Time series analysis: forecasting and control. John Wiley & Sons; 2015.
17. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2024. Available online: https://www.R-project.org/ (accessed on 20 August 2024).
18. Prass TS, Pumi G, Taufemback CG, Carlos JH. Positive time series regression models: theoretical and computational aspects. Computational Statistics. 2024; 1–31. doi: 10.1007/s00180-024-01531-z
19. Agosto A, Cavaliere G, Kristensen D, Rahbek A. Modeling corporate defaults: Poisson autoregressions with exogenous covariates (PARX). Journal of Empirical Finance. 2016; 38: 640–663. doi: 10.1016/j.jempfin.2016.02.007
20. Maia G, Barreto-Souza W, de Souza Bastos F, Ombao H. Semiparametric time series models driven by latent factor. International Journal of Forecasting. 2021; 37(4): 1463–1479. doi: 10.1016/j.ijforecast.2020.12.007
21. Mendes FG, Barreto-Souza W, Ndreca S. Gamma-Driven Markov Processes and Extensions with Application to Realized Volatility. Journal of Business & Economic Statistics. 2024; 1–13. doi: 10.1080/07350015.2024.2321375
22. Finance Y. Stock Market Live, Quotes, Business & Finance News, 2024. Available online: https://finance.yahoo.com/most-active (accessed on 1 February 2024).
23. Investing.com. Site de investimentos, Bolsas de Valores, Finanças e Economia, 2023. Available online: https://br.investing.com/currencies/usd-brl-historical-data (accessed on 10 November 2023).
24. Stone RF, Loose LH, Melo MS, Bayer FM. The Chen Autoregressive Moving Average Model for Modeling Asymmetric Positive Continuous Time Series. Symmetry. 2023; 15(9): 1675. doi: 10.3390/sym15091675
DOI: https://doi.org/10.24294/fsj9272
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Gisele de Oliveira Maia, Ana Julia Alves Camara
License URL: https://creativecommons.org/licenses/by/4.0/