Autoregressive moving average approaches for estimating continuous non-negative time series

Gisele de Oliveira Maia, Ana Julia Alves Camara

Article ID: 9272
Vol 7, Issue 2, 2024

VIEWS - 0 (Abstract) 0 (PDF)

Abstract


This study performs a comparative analysis of autoregressive moving average models for non-negative time series within a financial context, aiming to identify the model that offers the best fit and forecasting accuracy. The analysis is applied to two financial datasets: the stock trading volume of Banco Bradesco and the insurance volume of Porto Seguro. Four models are fitted in the process: Autoregressive Moving Average (ARMA), Rayleigh Autoregressive Moving Average (RARMA), Generalized Autoregressive Moving Average (GARMA), and Generalized Linear Autoregressive Moving Average (GLARMA). Model performance is evaluated through fit comparison metrics and forecasting accuracy measures to determine the most effective model.

Keywords


non-negative time series; stock volume; GARMA; GLARMA

Full Text:

PDF


References


1. Box GE, Jenkins GM. Time series analysis: forecasting and control. Holden-Day; 1976.

2. Choudhury A, Jones J. Crop yield prediction using time series models. Journal of Economics and Economic Education Research. 2014; 15(3): 53–67.

3. Tang H. Stock prices prediction based on ARMA model. In: Proceedings of the 2021 International Conference on Computer, Blockchain and Financial Development (CBFD); 23–25 April 2021; Nanjing, China. doi: 10.1109/CBFD52659.2021.00046

4. Ibrahim A, Kashef R, Corrigan L. Predicting market movement direction for bitcoin: A comparison of time series modeling methods. Computers & Electrical Engineering. 2021; 89: 106905. doi: 10.1016/j.compeleceng.2020.106905

5. Bayer FM, Bayer DM, Marinoni A, Gamba P. A novel Rayleigh dynamical model for remote sensing data interpretation. IEEE Transactions on Geoscience and Remote Sensing. 2020; 58(7): 4989–4999. doi: 10.1109/TGRS.2020.2971345

6. de Araújo FJM, Guerra RR, Peña-Ramírez FA. Quantile-based dynamic modeling of asymmetric data: a novel Burr XII approach for positive continuous random variables. International Journal of Data Science and Analytics. 2024; 1–20. doi: 10.1007/s41060-024-00533-w

7. Zeger SL, Qaqish B. Markov regression models for time series: a quasi-likelihood approach. Biometrics. 1988; 1019–1031. doi: 10.2307/2531732

8. Benjamin MA, Rigby RA, Stasinopoulos DM. Generalized autoregressive moving average models. Journal of the American Statistical association. 2003; 98(461): 214–223. doi: 10.1198/016214503388619238

9. Alcoforado RG, Egídio dos Reis AD, Bernardino W, Santos JAC. Modelling Risk for Commodities in Brazil: An Application for Live Cattle Spot and Futures Prices. Commodities. 2023; 2(4): 398–416. doi: 10.3390/commodities2040023

10. Zheng T, Xiao H, Chen R. Generalized ARMA models with martingale difference errors. Journal of Econometrics. 2015; 189(2): 492–506. doi: 10.1016/j.jeconom.2015.03.040

11. Albarracin OYE, Alencar AP, Ho LL. Generalized autoregressive and moving average models: multicollinearity, interpretation and a new modified model. Journal of Statistical Computation and Simulation. 2019; 89(10): 1819–1840. doi: 10.1080/00949655.2019.1599892

12. Davis RA, Dunsmuir WT, Streett SB. Observation-driven models for Poisson counts. Biometrika. 2003; 90(4): 777–790. doi: 10.1093/biomet/90.4.777

13. Maia G. GLARMA model for temporal data analysis: Extensions for positive continuous data and a bootstrap proposal for inference on model parameters [PhD thesis]. Federal University of Minas Gerais; 2024

14. Davis RA, Fokianos K, Holan SH, et al. Count time series: A methodological review. Journal of the American Statistical Association. 2021; 116(535): 1533–1547. doi: 10.1080/01621459.2021.1904957

15. Akaike H. Information theory and an extension of the maximum likelihood principle. In: Petrov B, Csaki F (Eds.) Proceedings of the 2nd International Symposium on Information Theory. Akademiai Kiado; 1973. pp. 267–281

16. Box GE, Jenkins GM, Reinsel GC, Ljung GM. Time series analysis: forecasting and control. John Wiley & Sons; 2015.

17. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2024. Available online: https://www.R-project.org/ (accessed on 20 August 2024).

18. Prass TS, Pumi G, Taufemback CG, Carlos JH. Positive time series regression models: theoretical and computational aspects. Computational Statistics. 2024; 1–31. doi: 10.1007/s00180-024-01531-z

19. Agosto A, Cavaliere G, Kristensen D, Rahbek A. Modeling corporate defaults: Poisson autoregressions with exogenous covariates (PARX). Journal of Empirical Finance. 2016; 38: 640–663. doi: 10.1016/j.jempfin.2016.02.007

20. Maia G, Barreto-Souza W, de Souza Bastos F, Ombao H. Semiparametric time series models driven by latent factor. International Journal of Forecasting. 2021; 37(4): 1463–1479. doi: 10.1016/j.ijforecast.2020.12.007

21. Mendes FG, Barreto-Souza W, Ndreca S. Gamma-Driven Markov Processes and Extensions with Application to Realized Volatility. Journal of Business & Economic Statistics. 2024; 1–13. doi: 10.1080/07350015.2024.2321375

22. Finance Y. Stock Market Live, Quotes, Business & Finance News, 2024. Available online: https://finance.yahoo.com/most-active (accessed on 1 February 2024).

23. Investing.com. Site de investimentos, Bolsas de Valores, Finanças e Economia, 2023. Available online: https://br.investing.com/currencies/usd-brl-historical-data (accessed on 10 November 2023).

24. Stone RF, Loose LH, Melo MS, Bayer FM. The Chen Autoregressive Moving Average Model for Modeling Asymmetric Positive Continuous Time Series. Symmetry. 2023; 15(9): 1675. doi: 10.3390/sym15091675




DOI: https://doi.org/10.24294/fsj9272

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Gisele de Oliveira Maia, Ana Julia Alves Camara

License URL: https://creativecommons.org/licenses/by/4.0/