Empirical Analysis of Claims Development Trapezoids following Benford’s Law

Jochen Heberle, Tobias Gummersbach

Article ID: 420
Vol 1, Issue 2, 2018, Article identifier:

VIEWS - 93 (Abstract) 113 (PDF)


In this paper we make an empirical analysis of a wide range of claims development
trapezoids following Benford’s law. In particular we determine Benfors’s law for
different characteristic factors depending on claims development triangles/trapezoids.
These characteristic factors are the cumulative claims payments, the incremental
claims payments and the individual development factors. For each characteristic factor hypothesis testing is done for verifying/rejecting Benford’s law.

Full Text:



Arnold, T. A. & Emerson, J. W. (2011): Nonparametric Goodness-of-Fit Tests for

Discrete Null Distributions. The R Journal, 3(2): 34–39 (cit. on p. 8).

Benford, F. (1938): The Law of Anomalous Numbers. Proceedings of the American

Philosophical Society, 78(4): 551–572 (cit. on pp. 1, 5).

Berger, A. & Hill, T. P. (2011): A basic theory of Benford’s Law. Probability Surveys,

: 1–126 (cit. on p. 6).

Diaconis, P. (1977): The Distribution of Leading Digits and Uniform Distribution

Mod 1. The Annals of Probability, 5(1): 72–81 (cit. on p. 6).

Diekmann, A. & Jann, B. (2010): Benford’s Law and Fraud Detection: Facts and

Legends. German Economic Review, 11(3): 397–401 (cit. on p. 2).

Durtschi, C.; Hillison, W. & Pacini, C. (2004): The Effective Use of Benford’s Law

to Assist in Detecting Fraud in Accounting Data. Journal of Forensic Accounting,

(1): 17–34 (cit. on p. 2).

England, P. D. & Verrall, R. J. (2001): A flexible framework for stochastic claims

reserving. Proceedings of the Casualty Actuarial Society. Vol. 88. 1: 1–38 (cit. on

p. 2).

England, P. D. & Verrall, R. J. (1999): Analytic and bootstrap estimates of prediction

errors in claims reserving. Insurance: Mathematics and Economics, 25(3): 281–293

(cit. on p. 2).

Gleser, L. J. (1985): Exact Power of Goodness-of-Fit Tests of Kolmogorov Type

for Discontinuous Distributions. Journal of the American Statistical Association,

(392): 954–958 (cit. on p. 8).

Govindarajulu, Z. (2007): Nonparametric Inference. World Scientific (cit. on p. 2).

Heberle, J.; Huergo, L. & Merz, M. (2010): Bootstrapping the Chain-Ladder-Method

of Several Correlated Run-Off Portfolios. Zeitschrift für die gesamte Versicherungswissenschaft,

(5): 541–564 (cit. on p. 2).

Mack, T. (1993): Distribution-free calculation of the standard error of chain ladder

reserve estimates. ASTIN Bulletin, 23(2): 213–225 (cit. on p. 2).

Merz, M. & Wüthrich, M. V. (2007): Prediction error of the expected claims development

result in the chain ladder method. Bulletin of Swiss Association of Actuaries,

: 117–137 (cit. on p. 2).

Pinheiro, P. J. R.; Andrade e Silva, J. M. & de Lourdes Centeno, M. (2003): Bootstrap

Methodology in Claim Reserving. Journal of Risk and Insurance, 70(4): 701–714

(cit. on p. 2).

R Development Core Team (2014): R: A Language and Environment for Statistical

Computing. R Foundation for Statistical Computing (cit. on p. 8).

DOI: http://dx.doi.org/10.24294/fsj.v1i2.420


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License

This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.