On the use of principal components analysis in index construction

Daniel Broby, William Smyth

Article ID: 10858
Vol 8, Issue 1, 2025


Abstract


This paper introduces a novel application of principal component analysis (PCA) in constructing equity indices. While PCA is well-established in other fields, its use in financial index design remains underexplored. The proposed method addresses entropy concerns in nonlinear return time series. PCA is employed to determine equity weights, using factor loadings to guide its construction. This results in a factor model index (FMI) that identifies sub-sectors and assigns data-driven weights. The FMI framework is flexible, allowing adaptation to different asset sub-groups and facilitating synthetic replication of risk factors.


Keywords


principal component analysis; index construction; correlation matrix

Full Text:

PDF


References


1. Pearson K. LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1901; 2(11): 559-572. doi: 10.1080/14786440109462720

2. Bucherie A, Hultquist C, Adamo S, et al. A comparison of social vulnerability indices specific to flooding in Ecuador: principal component analysis (PCA) and expert knowledge. International Journal of Disaster Risk Reduction. 2022; 73: 102897. doi: 10.1016/j.ijdrr.2022.102897

3. Hammoumi D, Al-Aizari HS, Alaraidh IA, et al. Seasonal Variations and Assessment of Surface Water Quality Using Water Quality Index (WQI) and Principal Component Analysis (PCA): A Case Study. Sustainability. 2024; 16(13): 5644. doi: 10.3390/su16135644

4. Dai PF, Xiong X, Zhou WX. A global economic policy uncertainty index from principal component analysis. Finance Research Letters. 2021; 40: 101686. doi: 10.1016/j.frl.2020.101686

5. Zheng C, Rahman MA, Hossain S, et al. Construction of a composite fintech index to measure financial inclusion for developing countries. Applied Economics. 2024; 56(52): 6498-6515. doi: 10.1080/00036846.2024.2313600

6. Ghazali N, Ali ZM. Principal Component Analysis Approach in Klang River Water Quality Index Modelling. Environment and Ecology Research. 2023; 11(1): 165-182. doi: 10.13189/eer.2023.110112

7. Xiao LP, Liu Y. Role of Principal Component Analysis (PCA) in the Evaluation of Competitiveness of Small Firms. Advanced Materials Research. 2014; 926-930: 3954-3957. doi: 10.4028/www.scientific.net/amr.926-930.3954

8. Malevergne Y, Sornette D. Self-consistent asset pricing models. Physica A: Statistical Mechanics and its Applications. 2007; 382(1): 149-171. doi: 10.1016/j.physa.2007.02.076

9. Daniel K, Grinblatt M, Titman S, et al. Measuring Mutual Fund Performance with Characteristic‐Based Benchmarks. The Journal of Finance. 1997; 52(3): 1035-1058. doi: 10.1111/j.1540-6261.1997.tb02724.x

10. Broby D, McKenzie A, Bautheac O. Factor Model Index for Commodity Investment. The Journal of Index Investing. 2021; 12(3): 33-52. doi: 10.3905/jii.2021.1.110

11. Meade N, Salkin GR. Index Funds—Construction and Performance Measurement. Journal of the Operational Research Society. 1989; 40(10): 871-879. doi: 10.1057/jors.1989.155

12. MSCI. MSCI Global Investable Market Indexes Methodology. MSCI; 2018.

13. Bartlett MS. A Note on the Statistical Estimation of Supply and Demand Relations from Time Series. Econometrica. 1948; 16(4): 323. doi: 10.2307/1909273

14. Broby D. A guide to equity index construction, 2 ed. Risk Books; 2024.

15. Polson NG, Tew BV. Bayesian Portfolio Selection: An Empirical Analysis of the S&P 500 Index 1970-1996. Journal of Business & Economic Statistics. 2000; 18(2): 164. doi: 10.2307/1392554

16. Amenc N, Goltz F, Lodh A. Choose Your Betas: Benchmarking AlternativeEquity Index Strategies. The Journal of Portfolio Management. 2012; 39(1): 88-111. doi: 10.3905/jpm.2012.39.1.088

17. Bailey JV. Are Manager Unvierses Acceptable Performance Benchmarks? The Journal of Portfolio Management. 1992; 18(3): 9-13. doi: 10.3905/jpm.1992.9

18. Rao R. Separation theorems for singular values of matrices and their applications in multivariate analysis. Journal of Multivariate Analysis. 1979; 9(3): 362-377. doi: 10.1016/0047-259X(79)90094-0

19. Partovi H, Caputo M. Principal Portfolios: Recasting the Efficient Frontier. Technical report; 2004.

20. Pasini G. Principal component analysis for stock portfolio management. International Journal of Pure and Apllied Mathematics. 2017; 115(1). doi: 10.12732/ijpam.v115i1.12

21. Shlens, J. A Tutorial on Principal Component Analysis. Preprint arXiv; 2005.

22. Contributors W. Principal Component Analysis. Wikipedia; 2022.

23. Hendrickson AE, White PO. Promax: A quick method for rotation to oblique simple structure. British Journal of Statistical Psychology. 1964; 17(1): 65-70. doi: 10.1111/j.2044-8317.1964.tb00244.x

24. Kaiser HF. The Varimax Criterion for Analytic Rotation in Factor Analysis. Psychometrika. 1958; 23(3): 187-200. doi: 10.1007/bf02289233

25. Roncalli T, Teiletche J. An Alternative Approach to Alternative Beta. SSRN Electronic Journal; 2007.

26. Yang L, Rea W, Rea A. Identifying Highly Correlated Stocks Using the Last Few Principal Components. Technical report; 2015.

27. Markowitz HM. Foundations of Portfolio Theory. The Journal of Finance. 1991; 46(2): 469-477. doi: 10.1111/j.1540-6261.1991.tb02669.x

28. Gerber S, Markowitz HM, Ernst PA, et al. The Gerber Statistic: A Robust Co-Movement Measure for Portfolio Optimization. The Journal of Portfolio Management. 2021; 48(3): 87-102. doi: 10.3905/jpm.2021.1.316

29. Smyth W, Broby D. An enhanced Gerber statistic for portfolio optimization. Finance Research Letters. 2022; 49: 103229. doi: 10.1016/j.frl.2022.103229

30. Chao YS, Wu CJ. Principal component-based weighted indices and a framework to evaluate indices: Results from the Medical Expenditure Panel Survey 1996 to 2011. Podobnik B, ed. PLOS ONE. 2017; 12(9): e0183997. doi: 10.1371/journal.pone.0183997

31. Hubert M, Rousseeuw P, Verdonck T. Robust PCA for skewed data and its outlier map. Computational Statistics & Data Analysis. 2009; 53(6): 2264-2274. doi: 10.1016/j.csda.2008.05.027

32. Broby D. Equity Index Construction. The Journal of Index Investing. 2011; 2(2): 36-39. doi: 10.3905/jii.2011.2.2.036

33. Brown SJ, Warner JB. Measuring security price performance. Journal of Financial Economics. 1980; 8(3): 205-258. doi: 10.1016/0304-405X(80)90002-1

34. Wold S. Cross-Validatory Estimation of the Number of Components in Factor and Principal Components Models. Technometrics. 1978; 20(4): 397-405. doi: 10.1080/00401706.1978.10489693

35. Fraley C, Raftery A. How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis. The Computer Journal. 1998; 41(8): 578-588. doi: 10.1093/comjnl/41.8.578




DOI: https://doi.org/10.24294/fsj10858

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Author(s)

License URL: https://creativecommons.org/licenses/by/4.0/