Nanoscale water flows in networks against a total fail

Sungsook Ahn

Article ID: 2562
Vol 6, Issue 1, 2023

VIEWS - 641 (Abstract) 27 (PDF)

Abstract


A failsafe network design recovering from the stressed condition against a massive supply disruption is generally useful for various applications. Water flow in plants under a tension is inherently vulnerable to an embolism, a water supply cut off, causing a death. However, the function of the network structures of leaf veins and xylem stems effectively reduces the embolism-induced failure. In this study, water transport in plants under the pressurized conditions compared to the normal physiological conditions is observed by X-ray imaing. By examining embolism-induced water supply limits in the architecturally diverse leaf and stem networks, a progressive hydraulic rule has been found: the limited flows in the selected parts of the network structures against a total fail. For a scientific explanation on nanoscale water flow dynamics occurring in plants, temporal meniscus development in the nanomembrane model system is investigated. The pressure-driven hydrodynamic transport phenomena can be explained to follow network dynamics of the modified imbibition typically occuring in nanostrutcures. This study contributes to a variety of design technologies of networked materials against the spread of flow damages under the stressed conditions.


Keywords


Water Flow; Network; Xylem; Leaf Venation; Imbibition

Full Text:

PDF


References


1. Carreras BA, Lynch VE, Dobson I, Newman DE. Critical points and transitions in an electric power transmission model for cascading failure blackouts. Chaos 2002; 12(4): 985–984. doi:10.1063/1.1505810.

2. Motter AE. Cascade control and defense in complex networks. Physical Review Letters 2004; 93(9): 098701. doi: 10.1103/PhysRevLett.93.098701.

3. Cornelius SP, Lee JS, Motter AE. Dispensability of Escherichia coli’s latent pathways. Proceedings of the National Academy of Sciences 2011; 108(8): 3124–3129. doi: 10.1073/pnas.1009772108.

4. Sahasrabudhe S, Motter AE. Rescuing ecosystems from extinction cascades through compensatory perturbations. Nature Communications 2011; 2(1): 170. doi: 10.1038/ncomms1163.

5. Buldyrev SV, Parshani R, Paul G, et al. Catastrophic cascade of failures in interdependent networks. Nature 2010; 464(7291): 1025–1028. doi: 10.1038/nature08932.

6. Leicht EA, D'Souza RM. Percolation on interacting networks. arXiv 2009; arXiv:0907.0894. doi: 10.48550/arXiv.0907.0894.

7. Carreras BA, Newman DE, Dobson I, Poole AB. Evidence for selforganized criticality in a time series of electric power system blackouts. IEEE Transactions on Circuits and Systems I: Regular Papers 2004; 51(9): 1733–1740. doi: 10.1109/TCSI.2004.834513.

8. Helbing D. Traffic and related self-driven many-particle systems. Reviews of Modern Physics 2001; 73(4): 1067. doi: 10.1103/RevModPhys.73.1067.

9. Vespignani A. Predicting the behavior of techno-social systems. Science 2009; 325(5939): 425–428. doi: 10.1126/science.1171990.

10. Pace ML, Cole JJ, Carpenter SR, et al. Trophic cascades revealed in diverse ecosystems. Trends in Ecology and Evolution 1999; 14(12): 483–488. doi: 10.1016/S0169-5347(99)01723-1.

11. Scheffer M, Carpenter S, Foley JA, et al. Catastrophic shifts in ecosystems. Nature 2001; 413(6856): 591–596. doi: 10.1038/35098000

12. Motter AE. Improved network performance via antagonism: From synthetic rescues to multi-drug combinations. Bioessays 2010; 32(3): 236–245. doi: 10.1002/bies.200900128.

13. Barabási AL, Gulbahce N, Loscalzo J. Network medicine: A network based approach to human disease. Nature Reviews Genetics 2011; 12(1): 56–68. doi: 10.1038/nrg2918.

14. Dosenbach NUF, Fair DA, Miezin FM, et al. Distinct brain networks for adaptive and stable task control in humans. Proceedings of the National Academy of Sciences 2007; 104(26): 11073–11078. doi: 10.1073/pnas.0704320104.

15. Vidal M, Cusick ME, Barabási AL. Interactome networks and human disease. Cell 2011; 144(6): 986–998. doi: 10.1016/j.cell.2011.02.016.

16. Pastor-Satorras R, Vázquez A, Vespignani A. Dynamical and correlation properties of the Internet. Physical Review Letters 2001; 87(25): 258701. doi: 10.1103/PhysRevLett.87.258701.

17. Gallos LK, Song C, Makse HA. Scaling of degree correlations and its influence on diffusion in scale-free networks. Physical Review Letters 2008; 100(24): 248701. doi: 10.1103/PhysRevLett.100.248701.

18. Radicchi F. Driving interconnected networks to supercriticality. Physical Review X 2014; 4(2): 021014. doi: 10.1103/PhysRevX.4.021014.

19. Cornelius SP, Kath WL, Motter AE. Realistic control of network dynamics. Nature Communications 2013; 4(1): 1942. doi: 10.1038/ncomms2939.

20. Motter AE, Gulbahce N, Almaas E, Barabási AL. Predicting synthetic rescues in metabolic networks. Molecular Systems Biology 2008; 4(1): 168. doi: 10.1038/msb.2008.1.

21. Dobson I, McCalley J, Liu CC. Fast simulation, monitoring, and mitigation of cascading failure. Tempe: Power Systems Engineering Research Center (PSERC) Publication; 2010.

22. Anghel M, Werley KA, Motter AE. Stochastic model for power grid dynamics. In: Proceedings of the 40th International Conference on System Sciences (HICSS’07); 2007 Jan 3–6; Waikoloa, HI, USA. IEEE; 2007. p. 113.

23. Tyree MT, Ewers FW. The hydraulic architecture of trees and other woody plants. New Phytologist 1991; 119(3): 345–360. doi: 10.1111/j.1469-8137.1991.tb00035.x.

24. Wheeler TD, Stroock AD. The transpiration of water at negative pressures in a synthetic tree. Nature 2008; 455(7210): 208–212. doi: 10.1038/nature07226.

25. Da Silva VR. Hydraulic conductivity. London: IntechOpen; 2013.

26. Tyree MT, Sperry JS. Vulnerability of xylem to cavitation and embolism. Annual Review of Plant Biology 1989; 40: 19–38. doi: 10.1146/annurev.pp.40.060189.000315.

27. Zimmermann MH. The hydraulic architecture of plants. In: Xylem structure and the ascent of sap. New York: Springer-Verlag; 1983. p. 66–82.

28. Tyree MT, Ewers FW. The hydraulic architecture of trees and other woody plants. New Phytologist 1991; 119(3): 345–360. doi: 10.1111/j.1469-8137.1991.tb00035.x.

29. Zimmermann MH, Brown CL. Trees: Structure and cunction. New York: Springer-Verlag; 1971.

30. Hacke U, Sauter JJ. Drought-induced xylem dysfunction in petioles, branches and roots of Populus balsamifera and Alnus glutinosa (L.) Gaertn. Plant Physiology 1996; 111(2): 413–417. doi: 10.1104/pp.111.2.413.

31. Brodersen CR, McElrone AJ, Choat B, et al. In vivo visualizations of drought-induced embolism spread in Vitis vinifera. Plant Physiology 2013; 161(4): 1820–1829. doi: 10.1104/pp.112.212712.

32. Tyree MT, Sperry JS. Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress?: Answers from a model. Plant Physiology 1988; 88(3): 574–580. doi: 10.1104/pp.88.3.574.

33. Pittermann J, Choat B, Jansen S, et al. The relationships between xylem safety and hydraulic efficiency in the Cupressaceae: The evolution of pitMembrane form and function. Plant Physiology 2010; 153(4): 1919–1931. doi: 10.1104/pp.110.158824.

34. Pockman WT, Sperry JS, O'Leary JW. Sustained and significant negative water-pressure in xylem. Nature 1995; 378(6558): 715–716. doi: 10.1038/378715a0.

35. Brodersen CR, McElrone AJ, Choat B, et al. The dynamics of embolism repair in xylem: In vivo visualizations using high resolution computed tomography. Plant Physiology 2010; 154(3): 1088–1095. doi: 10.1104/pp.110.162396.

36. Martorell S, Diaz-Espejo A, Medrano H, et al. Rapid hydraulic recovery in Eucalyptus pauciflora after drought: Linkages between stem hydraulics and leaf gas exchange. Plant, Cell & Environment 2014; 37(3): 617–626. doi: 10.1111/pce.12182.

37. Wheeler JK, Huggett BA, Tofte AN, et al. Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism. Plant, Cell & Environment 2013; 36(11): 1938–1949. doi: 10.1111/pce.12139.

38. Zwieniecki MA, Melcher PJ, Ahrens ET. Analysis of spatial and temporal dynamics of xylem refilling in Acer rubrum L. using magnetic resonance imaging. Frontiers in Plant Science 2013; 4: 265. doi: 10.3389/fpls.2013.00265.

39. Steudle E, Peterson CA. How does water get through roots? Journal of Experimental Botany 1998; 49(322): 775–788. doi: 10.1093/jxb/49.322.775.

40. Ewers FW, Carlton MR, Fisher JB, et al. Vessel diameters in roots versus stems of tropical lianas and other growth forms. IAWA Journal 1997; 18(3): 261–279.

41. Sperry JS, Love DM. What plant hydraulics can tell us about responses to climate-change droughts. New Phytologist 2015; 207(1): 14–27. doi: 10.1111/nph.13354.

42. Boyce CK, Brodribb TJ, Feild TS, Zwieniecki MA. Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proceedings of the Royal Society B: Biological Sciences 2009; 276(1663): 1771–1776. doi: 10.1098/rspb.2008.1919.

43. Brodribb TJ, Feild TS. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecology Letters 2010; 13(2): 175–183. doi: 10.1111/j.1461-0248.2009.01410.x.

44. Choat B, Brodersen CR, McElrone AJ. Synchrotron X-ray microtomography of xylem embolism in Sequoia sempervirens saplings during cycles of drought and recovery. New Phytologist 2015; 205(3): 1095–1105. doi: 10.1111/nph.13110.

45. Hochberg U, Albuquerque C, Rachmilevitch S, et al. Grapevine petioles are more sensitive to drought induced embolism than stems: Evidence from in vivo MRI and microcomputed tomography observations of hydraulic vulnerability segmentation. Plant, Cell & Environment 2016; 39(9): 1886–1894. doi: 10.1111/pce.12688.

46. Ahn S, Jung SY, Lee JP, et al. Gold nanoparticle flow sensors designed for dynamic X-ray imaging in biofluids. ACS Nano 2010; 4(7): 3753–3762. doi: 10.1021/nn1003293.

47. Park J, Kim HK, Ryu J, et al. Functional water flow pathways and hydraulic regulation in the xylem network of Arabidopsis. Plant and Cell Physiology 2015; 56(3): 520–531. doi: 10.1093/pcp/pcu198.

48. Ryu J, Ahn S, Kim SG, et al. Interactive ion-mediated sap flow regulation in olive and laurel stems: Physicochemical characteristics of water transport via the pit structure. PLoS One 2014; 9(5): e98484. doi: 10.1371/journal.pone.0098484.

49. Hwang BG, Ahn S, Lee SJ. Use of gold nanoparticles to detect water uptake in vascular plants. PLoS One 2014; 9(12): e114902. doi: 10.1371/journal.pone.0114902.

50. Boccaletti S, Latora V, Moreno Y, et al. Complex networks: Structure and dynamics. Physics Reports 2006; 424(4–5): 175–308. doi: 10.1016/j.physrep.2005.10.009.

51. Case DJ, Liu Y, Kiss IZ, et al. Braess’s paradox and programmable behaviour in microfluidic networks. Nature 2019; 574(7780): 647–652. doi: 10.1038/s41586-019-1701-6.

52. Albert R, Albert I, Nakarado GL. Structural vulnerability of the North American power grid. Physical Review E 2004; 69(2): 025103. doi: 10.1103/PhysRevE.69.025103.

53. Cohen R, Erez K, ben-Avraham D, Havlin S. Resilience of the internet to random breakdowns. Physical Review Letters 2000; 85(21): 4626–4628. doi: 10.1103/PhysRevLett.85.4626.

54. Zwieniecki MA, Melcher PJ, Feild TS, Holbrook NM. A potential role for xylem–phloem interactions in the hydraulic architecture of trees: Effects of phloem girdling on xylem hydraulic conductance. Tree Physiology 2004; 24(8): 911–917. doi: 10.1093/treephys/24.8.911.

55. Esau K. Anatomy of seed plants. 2nd ed. New York: John Wiley & Sons; 1977.

56. Hickey LJ. Classification of architecture of dicotyledonous leaves. American Journal of Botany 1973; 60(1): 17–33. doi: 10.2307/2441319.

57. Plymale EL, Wylie RB. The major veins of mesomorphic leaves. American Journal of Botany 1944; 31(2): 99–106. doi: 10.2307/2437600.

58. Coomes DA, Heathcote S, Godfrey ER, et al. Scaling of xylem vessels and veins within the leaves of oak species. Biology Letters 2008; 4(3): 302–306. doi: 10.1098/rsbl.2008.0094.

59. Sack L, Scoffoni C, McKown AD, et al. Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nature Communications 2012; 3(1): 837. doi: 10.1038/ncomms1835.

60. McKown AD, Cochard H, Sack L. Decoding leaf hydraulics with a spatially explicit model: Principles of venation architecture and implications for its evolution. The American Naturalist 2010; 175(4): 447–460. doi: 10.1086/650721.

61. Transport of water and solutes in plants. Available from: https://courses.lumenlearning.com/boundless-biology/chapter/transport-of-water-and-solutes-in-plants/.

62. van Oss CJ. Interfacial forces in aqueous media. 2nd ed. New York: CRC Press; 2006.

63. Lee SJ, Kim K, Ahn S. The internal structure of macroporous membranes and transport of surface-modified nanoparticles. Microscopy and Microanalysis 2015; 21(4): 936–945. doi: 10.1017/S1431927615013719.

64. Gruener S, Huber P. Imbibition in mesoporous silica: Rheological concepts and experiments on water and a liquid crystal. Journal of Physics: Condensed Matter 2011; 23(18): 184109. doi: 10.1088/0953-8984/23/18/184109.

65. Gruener S, Sadjadi Z, Hermes HE, et al. Anomalous front broadening during spontaneous imbibition in a matrix with elongated pores. Proceedings of the National Academy of Sciences 2012; 109(26): 10245–10250. doi: 10.1073/pnas.1119352109.

66. Li K, Horne RN. Generalized scaling approach for spontaneous imbibition: An analytical model. SPE Reservoir Evaluation & Engineering 2006; 9(3): 251–258. doi: 10.2118/77544-PA.

67. Supple S, Quirke N. Rapid imbibition of fluids in carbon nanotubes. Physical Review Letters 2003; 90(21): 214501. doi: 10.1103/PhysRevLett.90.214501.

68. Soriano J, Mercier A, Planet R, et al. Anomalous roughening of viscous fluid fronts in spontaneous imbibition. Physical Review Letters 2005; 95(10): 104501. doi: 10.1103/PhysRevLett.95.104501.

69. de Gennes PG, Brochard-Wyart F, Quere D. Hydrodynamics of interfaces: Thin films, waves, and ripples. In: Capillarity and wetting phenomena: Drops, bubbles, pearls, waves. New York: Springer; 2004.

70. Quéré D. Inertial capillarity. Europhysics Letters 1997; 39(5): 533–538. doi: 10.1209/epl/i1997-00389-2.

71. Huber P. Soft matter in hard confinement: Phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media. Journal of Physics: Condensed Matter 2015; 27(10): 103102. doi: 10.1088/0953-8984/27/10/103102.

72. Miranda AM, Menezes-Sobrinho IL, Couto MS. Spontaneous imbibition experiment in newspaper sheets. Physical Review Letters 2010; 104(8): 086101. doi: 10.1103/PhysRevLett.104.086101.

73. Li K, Horne RN. Computation of capillary pressure and global mobility from spontaneous water imbibition into oil-saturated rock. SPE Journal 2005; 10(4): 458–465. doi: 10.2118/80553-PA.

74. Washburn EW. The dynamics of capillary flow. Physical Review 1921; 17(3): 273–283. doi: 10.1103/PhysRev.17.273.

75. Lucas R. On the time law of the capillary rise of liquids. Kolloid-Zeitschrift 1918; 23(1): 15.

76. Xue Y, Markmann J, Duan H, et al. Switchable imbibition in nanoporous gold. Nature Communications 2014; 5(1): 4237. doi: 10.1038/ncomms5237.

77. Li K, Zhang D, Bian H, et al. Criteria for applying the Lucas-Washburn law. Scientific Reports 2015; 5(1): 14085. doi: 10.1038/srep14085.

78. Bernabé Y, Li M, Maineult A. Permeability and pore connectivity: A new model based on network simulations. Journal of Geophysical Research: Solid Earth 2010; 115: B10203. doi: 10.1029/2010JB007444

79. Bear J. Dynamics of fluids in porous media. Elsevier; 1972.

80. Bonner J. Water Transport: This classical problem in plant physiology is becoming increasingly amenable to mathematical analysis. Science 1959; 129: 447–450.

81. Kim ME, Jeoung DJ, Kim KS. Effects of water flow on dental hard tissue ablation using Er:YAG laser. Journal of Clinical Laser Medicine & Surgery 2003; 21(3): 139–144. doi: 10.1089/104454703321895581.

82. Szafer A, Zhong J, Gore JC. Theoretical model for water diffusion in tissues. Magnetic Resonance in Medicine 1995; 33(5): 697–712. doi: 10.1002/mrm.1910330516.

83. Available from: http://www.knrrc.or.kr/ (accessed 2023 May 1).




DOI: https://doi.org/10.24294/can.v6i1.2562

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.