A review study of the structure, properties and general application of poly(methyl methacrylate)

Shaymaa Sansul, Emad Yousif, Khalid Zainulabdeen

Article ID: 2537
Vol 6, Issue 1, 2023

VIEWS - 1151 (Abstract) 311 (PDF)

Abstract


Poly(methyl methacrylate) (PMMA) is a versatile and widely used polymer that has gained significant attention in various industries due to its unique combination of properties and ease of processing. PMMA, also known as acrylic or plexiglass, is a transparent thermoplastic with exceptional optical clarity, high-impact resistance, and excellent weatherability. This scholarly article endeavors to offer an exhaustive examination of the composition, characteristics, and broad utilization of poly(methyl methacrylate) (PMMA). This study aims to conduct an in-depth analysis of the molecular composition and chemical attributes inherent to PMMA. Furthermore, it intends to examine the mechanical and physical attributes exhibited by PMMA meticulously. Additionally, an exploration of varied methodologies employed in the processing and fabrication of PMMA will be undertaken. The extensive array of applications of PMMA spanning multiple industries will be underscored, followed by a comprehensive discourse on its merits, constraints, contemporary advancements, and prospective avenues. Understanding the properties and applications of PMMA is crucial for engineers, scientists, and professionals working in fields such as automotive, aerospace, medical, and signage, where PMMA finds extensive use.


Keywords


Poly(methyl methacrylate); Structure; Properties; Application; Polymer

Full Text:

PDF


References


1. Lacroix HL, Van der Tempel L. Thermohygroelastic properties of polymethylmethacrylate. Philips Research; 2007.

2. Goseki R, Ishizone T. Poly(methyl methacrylate) (PMMA). In: Kobayashi S, Müllen K (editors). Encyclopedia of polymeric nanomaterials. Heidelberg: Springer Berlin, Heidelberg; 2015. p. 1702–1710.

3. Wu W, Ouyang Q, He L, Huang Q. Optical and thermal properties of polymethyl methacrylate (PMMA) bearing phenyl and adamantyl substituents. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022; 653: 130018. doi: 10.1016/j.colsurfa.2022.130018.

4. Ali U, Karim KJ, Buang NA. A review of the properties and applications of poly(methyl methacrylate) (PMMA). Polymer Reviews 2015; 55(4): 678–705. doi: 10.1080/15583724.2015.1031377.

5. Yuan M, Xu L, Cui X, et al. Facile synthesis of ultrahigh molecular weight poly(methyl methacrylate) by organic halides in the presence of palladium nanoparticles. Polymers 2020; 12(11): 2747. doi: 10.3390/polym12112747.

6. Chang L, Woo EM. Tacticity effects on glass transition and phase behavior in binary blends of poly(methyl methacrylate)s of three different configurations. Polymer Chemistry 2010; 1(2): 198–202. doi: 10.1039/b9py00237e.

7. Ishitake K, Satoh K, Kamigaito M, Okamoto Y. From-syndiotactic-to-isotactic stereogradient methacrylic polymers by RAFT copolymerization of methacrylic acid and its bulky esters. Polymer Chemistry 2012; 3(7): 1750–1757. doi: 10.1039/C1PY00401H.

8. Chen C, Ren C, Xi F. Stereoregularity of poly(methyl methacrylate) obtained with chiral anionic complex initiato. Chinese Journal of Polymer Science 1995; 13(1): 91–96.

9. Mark JE. Physical properties of polymers handbook, 2nd ed. New York: Springer; 2007.

10. Sansul S, Yousif E, Ahmed, DS, et al. Pendant modification of poly (methyl methacrylate) to enhance its stability against photoirradiation. Polymers 2023; 15(14): 2989. doi: 10.3390/polym15142989.

11. Plota A, Masek A. Lifetime prediction methods for degradable polymeric materials—A short review. Materials 2020; 13(20): 4507. doi: 10.3390/ma13204507.

12. AI Khulaifi RS, AlShehri MM, Al-Owais AA, et al. New method based on the direct analysis in real time coupled with time-of-flight mass spectrometry to investigate the thermal depolymerization of poly(methyl methacrylate). Polymers 2023; 15(3): 599. doi: 10.3390/polym15030599.

13. Solyman SM, Darwish MSA, Yoon J. Catalytic activity of hybrid iron oxide silver nanoparticles in methyl methacrylate polymerization. Catalysts 2020; 10(4): 422. doi: 10.3390/catal10040422.

14. Miao Y, von Jouanne A, Yokochi A. Current technologies in depolymerization process and the road ahead. Polymers 2021; 13(3): 449. doi: 10.3390/polym13030449.

15. Bubmann T, Seidel A, Altstädt V. Transparent PC/PMMA blends via reactive compatibilization in a twin-screw extruder. Polymers 2019; 11(12): 2070. doi: 10.3390/polym11122070.

16. Kashiwagi T, Inabi A, Hamins A. Behavior of primary radicals during thermal degradation of poly (methyl methacrylate). Polymer Degradation and Stability 1989; 26(2): 161–184. doi: 10.1016/0141-3910(89)90007-4.

17. Moens EKC, De Smit K, Marien YW, et al. Progress in reaction mechanisms and reactor technologies for thermochemical recycling of poly(methyl methacrylate). Polymers 2020; 12(8): 1667. doi: 10.3390/polym12081667.

18. Rymuszka D, Terpiłowski K, Sternik D, et al. Wettability and thermal analysis of hydrophobic poly(methyl methacrylate)/silica nanocomposites. Adsorption Science & Technology 2017; 35(5–6): 560–571. doi: 10.1177/0263617417701922.

19. Shi H, Zhuang Q, Zheng A, et al. Radical reaction extrusion copolymerization mechanism of MMA and N-phenylmaleimide and properties of products. RSC Advances 2022; 12(40): 26251–26263. doi: 10.1039/d2ra03263e.

20. Forte MA, Silva RM, Tavares CJ, e Silva RF. Is poly(methyl methacrylate) (PMMA) a suitable substrate for ALD?: A review. Polymers 2021; 13(8): 1346. doi: 10.3390/polym13081346.

21. Campo EA. Industrial polymers. Cincinnati, OH: Hanser Publications; 2007.

22. Shen J, Li Z, Cheng R, et al. Eu3+-doped NaGdF4 nanocrystal down-converting layer for efficient dye-sensitized solar cells. ACS Applied Materials & Interfaces 2014; 6(20): 17454–17462. doi: 10.1021/am505086e.

23. Yang H, Huang M, Wu J, et al. The polymer gel electrolyte based on poly(methyl methacrylate) and its application in quasi-solid-state dye-sensitized solar cells. Materials Chemistry and Physics 2008; 110(1): 38–42. doi: 10.1016/j.matchemphys.2008.01.010.

24. Hammam M, El-Mansy MK, El-Bashir SM, El-Shaarawy MG. Performance evaluation of thin-film solar concentrators for greenhouse applications. Desalination 2007; 209(1–3): 244–250. doi: 10.1016/j.desal.2007.04.034.

25. Chen F, Ma X, Qu X, Yan H. Structure and properties of an organic rectorite/poly(methyl methacrylate) nanocomposite gel polymer electrolyte by in situ synthesis. Journal of Applied Polymer Science. 2009; 114(5): 2632–2638. doi: 10.1002/app.30872.

26. Ding D, Lanzetta L, Liang X, et al. Ultrathin polymethylmethacrylate interlayers boost performance of hybrid tin halide perovskite solar cells. Chemical Communications 2021; 57(41): 5047–5050. doi: 10.1039/d0cc07418g.

27. Chen JY, Chang WL, Huang CK, Sun KW. Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cells. Optics Express 2011; 19(15): 14411–14419. doi: 10.1364/OE.19.014411.

28. John J, Gangadhar SA, Shah I. Flexural strength of heat-polymerized polymethyl methacrylate denture resin reinforced with glass, aramid, or nylon fibers. The Journal of Prosthetic Dentistry 2001; 86(4): 424–427. doi: 10.1067/mpr.2001.118564.

29. Schoonover IC, Sweeney WT. Some properties of two types of resins used for dentures. The Journal of the American Dental Association and the Dental Cosmos 1938; 25(9): 1487–1500.

30. Mishra S, Sen G. Microwave initiated synthesis of polymethylmethacrylate grafted guar (GG-g-PMMA) characterizations and applications. International Journal of Biological Macromolecules 2011; 48(4): 688–694. doi: 10.1016/j.ijbiomac.2011.02.013.

31. Perween M, Parmar DB, Bhadu GR, Srivastava DN. Polymer–graphite composite: A versatile use and throw plastic chip electrode. Analyst 2014; 139(22): 5919–5926. doi: 10.1039/C4AN01405G.

32. Wang X, Wang P, Jiang Y, et al. Facile surface modification of silica nanoparticles with a combination of noncovalent and covalent methods for composites application. Composites Science and Technology 2014; 104: 1–8. doi: 10.1016/j.compscitech.2014.08.027.

33. Jancar J, Douglas JF, Starr FW, et al. Current issues in research on structure-property relationships in polymer nanocomposites. Polymer 2010; 51(15): 3321–3343. doi: 10.1016/j.polymer.2010.04.074.

34. Camara RM, Portela R, Gutierrez-Martin F, Sánchez B. Evaluation of several commercial polymers as support for TiO2 in photo-catalytic applications. Global NEST Journal 2014; 16(3): 525–532.

35. Henry AC. Surface modification and characterization of PMMA used in the construction of microelectromechanical systems [PhD thesis]. Baton Rouge, LA: Louisiana State University and Agricultural & Mechanical College; 2001. p. 342.

36. Colón LA, Burgos G, Maloney TD, et al. Recent progress in capillary electrochromatography. Electrophoresis 2000; 21(18): 3965–3993. doi: 10.1002/1522-2683(200012)21:18<3965::aid-elps3965>3.0.co;2-t.

37. Feit ED, Wilkins CW. Polymer materials for electronic applications (ACS symposium series). Washington, D.C.: American Chemical Society; 1982.

38. Ahmed DS, Kadhom M, Hadi AG, et al. Tetra schiff bases as polyvinyl chloride thermal stabilizers. Chemistry 2021; 3(1): 288–295. doi: /10.3390/chemistry3010021.

39. Ueno T, Allen RD, Thackeray J. Chemistry of photoresist materials. In: Microlithography. Boca Raton: CRC Press; 2020. p. 327–418.

40. Ghosh P, Mukherjee GS. Photopolymers (I): Photoinitiating role of monochloroacetic acid in the synthesis of poly(methyl methacrylate). Polymers for Advanced Technologies 1999; 10(12):687–694. doi: 10.1002/(SICI)1099-1581(199912)10:12<687::AID-PAT922>3.0.CO;2-4.

41. Yamakawa S, Hamashima K, Kinoshita T, Sasaki K. Temporal solitary subpicosecond pulse propagation in a dye-doped polymer slab waveguide with a negative nonlinear refractive index. Applied Physics Letters 1998; 72(13): 1562–1564. doi: 10.1063/1.121115.

42. Chang JY, Kim TJ, Han MJ, et al. N-phenylmaleimide polymers for second-order nonlinear optics. Polymer 1997; 38(18): 4651–4656. doi: 10.1016/S0032-3861(96)01056-7.

43. Brower SC, Hayden LM. Activation volumes associated with chromophore reorientation in corona poled guest-host and side-chain polymers. Journal of Polymer Science Part B: Polymer Physics 1995; 33(17): 2391–2404. doi: 10.1002/polb.1995.090331710.

44. Watanabe T, Ooba N, Hida Y, Hikita M. Influence of humidity on refractive index of polymers for optical waveguide and its temperature dependence. Applied Physics Letters 1998; 72(13): 1533–1535. doi: 10.1063/1.120574.

45. Ahmed A, Abdallh M, Al-Mashhadani MH, et al. Environmental stability of poly(vinyl chloride) modified by Schiff’s base under exposure to UV. Biointerface Research in Applied Chemistry 2021; 11(5): 13465–13473. doi: 10.33263/BRIAC115.1346513473.

46. Ali U, Karim KJBA, Buang NA. A review of the properties and applications of poly (methyl methacrylate) (PMMA). Polymer Reviews 2015; 55(4): 678–705. doi: 10.1080/15583724.2015.1031377.

47. Croutxe-Barghorn C, Lougnot DJ. Use of self-processing dry photopolymers for the generation of relief optical elements: A photochemical study. Pure and Applied Optics: Journal of the European Optical Society Part A 1996; 5(6): 811. doi: 10.1088/0963-9659/5/6/007.

48. Vettiger P, Moore DF, Forster T. Josephson edge-junction devices using E-beam lithography. IEEE Transactions on Electron Devices 1981; 28(11): 1385–1393. doi: 10.1109/T-ED.1981.20619.

49. Zeitler HU, Hieke EK. Optimization of exposure and development parameters for electron‐beam‐written PMMA structures. Journal of the Electrochemical Society 1979; 126(8): 1430. doi: 10.1149/1.2129296.

50. Wong CP. Encapsulation: Process techniques and materials. In: Wong CP (editor). Polymers for electronic & photonic application. Cambridge: Academic Press; 2013. p. 167.

51. Chaitanya S, Mukherjee GS, Banerjee M, Jain A. Optical studies of Rhodamine B doped polymethyl methacrylate (PMMA) films. Materials Today: Proceedings 2021; 47: 592–596. doi: 10.1016/j.matpr.2020.11.162.

52. Choudhary A, Mukherjee GS, Banerjee M, Nagar S. Studies on structural and magnetic properties of PMMA/Co/Ag nanocomposite film. AIP Conference Proceedings 2020; 2220(1): 020075. doi: 10.1063/5.0001417.

53. Choudhary A, Banerjee M, Mukherjee GS, Joshi A. Magnetic and structural properties of poly methyl methacrylate (PMMA)/Fe film. AIP Conference Proceedings 2019; 2100(1): 020181. doi: 10.1063/1.5098735.

54. Pawar E. A review article on acrylic PMMA. IOSR Journal of Mechanical and Civil Engineering 2016; 13(2): 1–4. doi: 10.9790/1684-1302010104.

55. Patil A, Patel A, Purohit R. An overview of polymeric materials for automotive applications. Materials Today: Proceedings 2017; 4(2): 3807–3815. doi: 10.1016/j.matpr.2017.02.278.

56. Singh D, Kumar A, Rai KN. Nanosil strengthening of PMMA composite panels. Journal of Thermoplastic Composite Materials 2012; 25(5): 591–606. doi: 10.1177/0892705711412648.

57. Tahalyani J, Khanale M, Kandasubramanian B. Dielectric polymeric compositions for improved electrical properties of flexible electronics. In: Hussain CM (editor). Handbook of nanomaterials for industrial applications. Amsterdam: Elsevier; 2018. p. 430–467.

58. Ali WN, Ahmad NF, Yussof SN. How many microwave disinfection cycles is safe for the adaptability of polymethyl methacrylate (PMMA) denture base materials?: An in vitro study. Dental Hypotheses 2022; 13(3): 99–102. doi: 10.4103/denthyp.denthyp_97_21.

59. Zhang S, Cao J, Shang Y, et al. Nanocomposite polymer membrane derived from nano TiO2-PMMA and glass fiber nonwoven: High thermal endurance and cycle stability in lithium ion battery applications. Journal of Materials Chemistry A 2015; 3(34): 17697–17703. doi: 10.1039/C5TA02781K.

60. Lafleur LK, Bishop JD, Heiniger EK, et al. A rapid, instrument-free, sample-to-result nucleic acid amplification test. Lab on a Chip 2016; 16(19): 3777–3787. doi: 10.1039/C6LC00677A.




DOI: https://doi.org/10.24294/can.v6i1.2537

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Shaymaa Sansul, Emad Yousif, Khalid Zainulabdeen

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.