Nanoreinforcement effects in multifunctional polyurethane foams—Scientific status hitherto and future

Ayesha Kausar

Article ID: 11881
Vol 8, Issue 3, 2025

VIEWS - 52 (Abstract)

Abstract


Polyurethane is a multipurpose polymer with valuable mechanical, thermal, and chemical stability, and countless other physical features. Polyurethanes can be processed as foam, elastomer, or fibers. This innovative overview is designed to uncover the present state and opportunities in the field of polyurethanes and their nanocomposite sponges. Special emphasis has been given to fundamentals of polyurethanes and foam materials, related nanocomposite categories, and associated properties and applications. According to literature so far, adding carbon nanoparticles such as graphene and carbon nanotube influenced cell structure, overall microstructure, electrical/thermal conductivity, mechanical/heat stability, of the resulting polyurethane nanocomposite foams. Such progressions enabled high tech applications in the fields such as electromagnetic interference shielding, shape memory, and biomedical materials, underscoring the need of integrating these macromolecular sponges on industrial level environmentally friendly designs. Future research must be intended to resolve key challenges related to manufacturing and applicability of polyurethane nanocomposite foams. In particular, material design optimization, invention of low price processing methods, appropriate choice of nanofiller type/contents, understanding and control of interfacial and structure-property interplay must be determined.

Keywords


polyurethane; nanocomposite; foam; manufacturing; properties; radiation shielding; shape memory; biomedical

Full Text:

PDF


References

1. Zarmehr SP, Kazemi M, Madasu NGA, et al. Application of bio-based polyurethanes in construction: A state-of-the-art review. Resources, Conservation and Recycling. 2025; 212: 107906. doi: 10.1016/j.resconrec.2024.107906

2. Van Nguyen T, An Y, Kusano Y, et al. Effect of soft segment chemistry on marine-biodegradation of segmented polyurethane elastomers. Polymer Degradation and Stability. 2025; 233: 111149. doi: 10.1016/j.polymdegradstab.2024.111149

3. Shikha, M. Meena, and J. Jacob, Pentaerythritol derived phosphorous based bicyclic compounds as promising flame retardants for thermoplastic polyurethane films. Journal of Applied Polymer Science, 2020: p. 50375.

4. Kausar A, Ahmad I, Lam TD. High-tech graphene oxide reinforced conducting matrix nanocomposites—Current status and progress. Characterization and Application of Nanomaterials. 2023; 6(1). doi: 10.24294/can.v6i1.2637

5. Nguyen TA, Nguyen TB, Tran DQ, et al. Bio-functional nanocellulose/lignocellulose-based polyurethane nanocomposite foams with enhanced flame retardancy, thermal conductivity, and thermal stability. International Journal of Biological Macromolecules. 2025; 305: 141133. doi: 10.1016/j.ijbiomac.2025.141133

6. Karulf L, Singh B, Singh R, et al. Carbon dioxide utilization: CO2-based polyurethane foam. Journal of CO2 Utilization. 2025; 91: 103000. doi: 10.1016/j.jcou.2024.103000

7. Du Y, Wang M, Ye X, et al. Advances in the Field of Graphene-Based Composites for Energy–Storage Applications. Crystals. 2023; 13(6): 912. doi: 10.3390/cryst13060912

8. Ding H, Zhang X. Sodium Intercalation in Nitrogen-Doped Graphene-Based Anode: A First-Principles Study. Crystals. 2023; 13(7): 1011. doi: 10.3390/cryst13071011

9. Jibin K, Augustine S, Velayudhan P, et al. Unleashing the Power of Graphene-Based Nanomaterials for Chromium(VI) Ion Elimination from Water. Crystals. 2023; 13(7): 1047. doi: 10.3390/cryst13071047

10. Nguyen KTD, Nguyen M, Nguyen TA, et al. A novel multifunctional high bio-content polyurethane nanocomposite and comprehensive comparison with its commercial relevance. Composites Part A: Applied Science and Manufacturing. 2025; 191: 108753. doi: 10.1016/j.compositesa.2025.108753

11. Kuo CC, Lu YQ, Farooqui A, et al. Technical Advancements and Applications in Predictive Modeling of Polyurethane Foaming Height. Published online 2024. doi: 10.2139/ssrn.5032941

12. Vothi H, Le V, Nguyen-Ha T, et al. Sustainable polyurethane nanocomposite foam from waste poly(ethylene terephthalate): preparation, thermal stability, and flame retardancy. Macromolecular Research. 2024; 32(12): 1227-1235. doi: 10.1007/s13233-024-00304-3

13. Dong H, Li S, Jia Z, et al. A Review of Polyurethane Foams for Multi-Functional and High-Performance Applications. Polymers. 2024; 16(22): 3182. doi: 10.3390/polym16223182

14. Hu J, Wu X, Ma T. Gradation design and performance evaluation of self-compacting polyurethane mixture. Construction and Building Materials. 2025; 458: 139528. doi: 10.1016/j.conbuildmat.2024.139528

15. Heiran R, Ghaderian A, Reghunadhan A, et al. Glycolysis: an efficient route for recycling of end of life polyurethane foams. Journal of Polymer Research. 2021; 28(1). doi: 10.1007/s10965-020-02383-z

16. Lei W, Zhou X, Fang C, et al. Eco-friendly waterborne polyurethane reinforced with cellulose nanocrystal from office waste paper by two different methods. Carbohydrate Polymers. 2019; 209: 299-309. doi: 10.1016/j.carbpol.2019.01.013

17. Kumar Patel K, Purohit R. Improved shape memory and mechanical properties of microwave-induced thermoplastic polyurethane/graphene nanoplatelets composites. Sensors and Actuators A: Physical. 2019; 285: 17-24. doi: 10.1016/j.sna.2018.10.049

18. Zhang J, Lv S, Zhao X, et al. Surface functionalization of polyurethanes: A critical review. Advances in Colloid and Interface Science. 2024; 325: 103100. doi: 10.1016/j.cis.2024.103100

19. Białkowska A, Kucharczyk W, Zarzyka I, et al. Polylactide-Based Nonisocyanate Polyurethanes: Preparation, Properties Evaluation and Structure Analysis. Polymers. 2024; 16(2): 253. doi: 10.3390/polym16020253

20. De Hoyos-Martinez PL, Mendez SB, Martinez EC, et al. Elaboration of Thermally Performing Polyurethane Foams, Based on Biopolyols, with Thermal Insulating Applications. Polymers. 2024; 16(2): 258. doi: 10.3390/polym16020258

21. Reignier J, Alcouffe P, Méchin F, et al. The morphology of rigid polyurethane foam matrix and its evolution with time during foaming – New insight by cryogenic scanning electron microscopy. Journal of Colloid and Interface Science. 2019; 552: 153-165. doi: 10.1016/j.jcis.2019.05.032

22. Kurańska M, Polaczek K, Auguścik-Królikowska M, et al. Open-cell rigid polyurethane bio-foams based on modified used cooking oil. Polymer. 2020; 190: 122164. doi: 10.1016/j.polymer.2020.122164

23. Fu Y, Qiu C, Ni L, et al. Cell structure control and performance of rigid polyurethane foam with lightweight, good mechanical, thermal insulation and sound insulation. Construction and Building Materials. 2024; 447: 138068. doi: 10.1016/j.conbuildmat.2024.138068

24. Ates M, Karadag S, Eker AA, et al. Polyurethane foam materials and their industrial applications. Polymer International. 2022; 71(10): 1157-1163. doi: 10.1002/pi.6441

25. Sukhawipat N, Saengdee L, Pasetto P, et al. Sustainable Rigid Polyurethane Foam from Wasted Palm Oil and Water Hyacinth Fiber Composite—A Green Sound-Absorbing Material. Polymers. 2022; 14(1): 201. doi: 10.3390/polym14010201

26. Li C, Ye H, Ge S, et al. Fabrication and properties of antimicrobial flexible nanocomposite polyurethane foams with in situ generated copper nanoparticles. Journal of Materials Research and Technology. 2022; 19: 3603-3615. doi: 10.1016/j.jmrt.2022.06.115

27. Saint-Michel F, Chazeau L, Cavaillé JY, et al. Mechanical properties of high density polyurethane foams: I. Effect of the density. Composites Science and Technology. 2006; 66(15): 2700-2708. doi: 10.1016/j.compscitech.2006.03.009

28. Makarov M, Bourguignon M, Grignard B, et al. Advancing Non-isocyanate Polyurethane Foams: exo-Vinylene Cyclic Carbonate–Amine Chemistry Enabling Room-Temperature Reactivity and Fast Self-Blowing. Macromolecules. 2025; 58(3): 1673-1685. doi: 10.1021/acs.macromol.4c02894

29. Soundhar A, Rajesh M, Jayakrishna K, et al. Investigation on mechanical properties of polyurethane hybrid nanocomposite foams reinforced with roselle fibers and silica nanoparticles. Nanocomposites. 2019; 5(1): 1-12. doi: 10.1080/20550324.2018.1562614

30. Alasti Bonab S, Moghaddas J, Rezaei M. In-situ synthesis of silica aerogel/polyurethane inorganic-organic hybrid nanocomposite foams: Characterization, cell microstructure and mechanical properties. Polymer. 2019; 172: 27-40. doi: 10.1016/j.polymer.2019.03.050

31. Olszewski A, Kosmela P, Piasecki A, et al. Comprehensive Investigation of Stoichiometry–Structure–Performance Relationships in Flexible Polyurethane Foams. Polymers. 2022; 14(18): 3813. doi: 10.3390/polym14183813

32. Jin FL, Zhao M, Park M, et al. Recent Trends of Foaming in Polymer Processing: A Review. Polymers. 2019; 11(6): 953. doi: 10.3390/polym11060953

33. Abd El-Fattah M, Hasan AMA, Keshawy M, et al. Nanocrystalline cellulose as an eco-friendly reinforcing additive to polyurethane coating for augmented anticorrosive behavior. Carbohydrate Polymers. 2018; 183: 311-318. doi: 10.1016/j.carbpol.2017.12.084

34. Song S, Xing Y, Wu D, et al. Effect of molecular weight of aliphatic dicarboxylic acids polyester on properties of the waterborne polyurethane sizing agent. Carbon Letters. 2025; 35(3): 1017-1026. doi: 10.1007/s42823-024-00850-x

35. Patti A, Acierno D. Structure‐property relationships of waterborne polyurethane ( WPU ) in aqueous formulations. Journal of Vinyl and Additive Technology. 2023; 29(4): 589-606. doi: 10.1002/vnl.21981

36. Mekonnen TH, Haile T, Ly M. Hydrophobic functionalization of cellulose nanocrystals for enhanced corrosion resistance of polyurethane nanocomposite coatings. Applied Surface Science. 2021; 540: 148299. doi: 10.1016/j.apsusc.2020.148299

37. Kim MS, Ryu KM, Lee SH, et al. Chitin Nanofiber-Reinforced Waterborne Polyurethane Nanocomposite Films with Enhanced Thermal and Mechanical Performance. Carbohydrate Polymers. 2021; 258: 117728. doi: 10.1016/j.carbpol.2021.117728

38. Sun, J., et al., Asymmetric‐Structured Waterborne Polyurethane Foams for Enhanced Electromagnetic Wave Absorption Performance. Advanced Engineering Materials: p. 2501259.

39. Cao J, Xie X, Liu Y, et al. Advanced waterborne polyurethane/poly(ionic liquids) foam for highly efficient and selective adsorption of 99TcO4-/ReO4-. Chemical Engineering Journal. 2025; 508: 161007. doi: 10.1016/j.cej.2025.161007

40. Tian X, He M, Ding C, et al. Multifunctional waterborne polyurethane microfiber leather with breathable, moisture-wicking, antibacterial, weather-resistant, and high-strength. Progress in Organic Coatings. 2025; 200: 109021. doi: 10.1016/j.porgcoat.2024.109021

41. Wei XX, Pei C, Zhu JH. Towards the large-scale application of graphene-modified cement-based composites: A comprehensive review. Construction and Building Materials. 2024; 421: 135632. doi: 10.1016/j.conbuildmat.2024.135632

42. Geim AK, Novoselov KS. The rise of graphene. Nature Materials. 2007; 6(3): 183-191. doi: 10.1038/nmat1849

43. Lu Z, Han T, Yao Y, et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature. 2024; 626(8000): 759-764. doi: 10.1038/s41586-023-07010-7

44. Mbayachi VB, Ndayiragije E, Sammani T, et al. Graphene synthesis, characterization and its applications: A review. Results in Chemistry. 2021; 3: 100163. doi: 10.1016/j.rechem.2021.100163

45. Santra S, Bose A, Mitra K, et al. Exploring two decades of graphene: The jack of all trades. Applied Materials Today. 2024; 36: 102066. doi: 10.1016/j.apmt.2024.102066

46. Lv H, Yao Y, Yuan M, et al. Functional nanoporous graphene superlattice. Nature Communications. 2024; 15(1). doi: 10.1038/s41467-024-45503-9

47. Kong M, Yang M, Li R, et al. Graphene-based flexible wearable sensors: mechanisms, challenges, and future directions. The International Journal of Advanced Manufacturing Technology. 2023; 131(5-6): 3205-3237. doi: 10.1007/s00170-023-12007-7

48. Zhang H, Zhang G, Tang M, et al. Synergistic effect of carbon nanotube and graphene nanoplates on the mechanical, electrical and electromagnetic interference shielding properties of polymer composites and polymer composite foams. Chemical Engineering Journal. 2018; 353: 381-393. doi: 10.1016/j.cej.2018.07.144

49. Ramasamy RP, Somanathan S, Rafailovich MH, et al. Broadband dielectric spectroscopy and small-angle neutron scattering investigations of polyurethane–graphene foams. Journal of Materials Science: Materials in Electronics. 2020; 31(18): 15843-15851. doi: 10.1007/s10854-020-04146-4

50. Saganuwan SA. Biomedical Applications of Polyurethane Hydrogels, Polyurethane Aerogels, and Polyurethane-graphene Nanocomposite Materials. Central Nervous System Agents in Medicinal Chemistry. 2022; 22(2): 79-87. doi: 10.2174/1871524922666220429115124

51. Feng C, Yi Z, Jin X, et al. Solvent crystallization-induced porous polyurethane/graphene composite foams for pressure sensing. Composites Part B: Engineering. 2020; 194: 108065. doi: 10.1016/j.compositesb.2020.108065

52. Zhang H, Wang H, Wang T, et al. Polyurethane Foam with High-Efficiency Flame Retardant, Heat Insulation, and Sound Absorption Modified By Phosphorus-Containing Graphene Oxide. ACS Applied Polymer Materials. 2024; 6(3): 1878-1890. doi: 10.1021/acsapm.3c02706

53. Hodlur RM, Rabinal MK. Self assembled graphene layers on polyurethane foam as a highly pressure sensitive conducting composite. Composites Science and Technology. 2014; 90: 160-165. doi: 10.1016/j.compscitech.2013.11.005

54. Chen Y, Li Y, Xu D, et al. Fabrication of stretchable, flexible conductive thermoplastic polyurethane/graphene composites via foaming. RSC Advances. 2015; 5(100): 82034-82041. doi: 10.1039/c5ra12515d

55. Kim JM, Kim DH, Kim J, et al. Effect of graphene on the sound damping properties of flexible polyurethane foams. Macromolecular Research. 2017; 25(2): 190-196. doi: 10.1007/s13233-017-5017-9

56. Patole SP, Reddy SK, Schiffer A, et al. Piezoresistive and Mechanical Characteristics of Graphene Foam Nanocomposites. ACS Applied Nano Materials. 2019; 2(3): 1402-1411. doi: 10.1021/acsanm.8b02306

57. Zhong W, Ding X, Li W, et al. Facile Fabrication of Conductive Graphene/Polyurethane Foam Composite and Its Application on Flexible Piezo-Resistive Sensors. Polymers. 2019; 11(8): 1289. doi: 10.3390/polym11081289

58. Qin LC, Zhao X, Hirahara K, et al. The smallest carbon nanotube. Nature. 2000; 408(6808): 50-50. doi: 10.1038/35040699

59. Baughman RH, Cui C, Zakhidov AA, et al. Carbon Nanotube Actuators. Science. 1999; 284(5418): 1340-1344. doi: 10.1126/science.284.5418.1340

60. Guo H li, Zhang Q xian, Liu Y ping, et al. Properties and Defence Applications of Carbon Nanotubes. Journal of Physics: Conference Series. 2023; 2478(4): 042010. doi: 10.1088/1742-6596/2478/4/042010

61. Syduzzaman M, Islam Saad MS, Piam MF, et al. Carbon nanotubes: Structure, properties and applications in the aerospace industry. Results in Materials. 2025; 25: 100654. doi: 10.1016/j.rinma.2024.100654

62. Mishra S, Kumari S, Mishra AC, et al. Carbon Nanotube – Synthesis, Purification and Biomedical Applications. Current Nanomaterials. 2023; 8(4): 328-335. doi: 10.2174/2405461507666220827092425

63. Yahyazadeh A, Nanda S, Dalai AK. Carbon Nanotubes: A Review of Synthesis Methods and Applications. Reactions. 2024; 5(3): 429-451. doi: 10.3390/reactions5030022

64. Tyagi S, Negi S. Calculation of Density of States of Pristine and Functionalized Carbon Nanotubes: A DFT Approach. Indian Journal Of Science And Technology. 2023; 16(40): 3567-3574. doi: 10.17485/ijst/v16i40.1019

65. Darıcık F, Topcu A, Aydın K, et al. Carbon nanotube (CNT) modified carbon fiber/epoxy composite plates for the PEM fuel cell bipolar plate application. International Journal of Hydrogen Energy. 2023; 48(3): 1090-1106. doi: 10.1016/j.ijhydene.2022.09.297

66. Mishra S, Sundaram B. Efficacy and challenges of carbon nanotube in wastewater and water treatment. Environmental Nanotechnology, Monitoring & Management. 2023; 19: 100764. doi: 10.1016/j.enmm.2022.100764

67. Xavier JR, Sadagopan Pandian V. RETRACTED: Carbon nanotube‐based polymer nanocomposites: Evaluation of barrier, hydrophobic, and mechanical properties for aerospace applications. Polymer Engineering & Science. 2023; 63(9): 2806-2827. doi: 10.1002/pen.26407

68. Si J, Zhang P, Zhang Z. Road map for, and technical challenges of, carbon-nanotube integrated circuit technology. National Science Review. 2023; 11(3). doi: 10.1093/nsr/nwad261

69. Sulthana YR, Gurusamy Thangavelu SA. Development of nonisocyanate polyurethane–MWCNT nanocomposites: coatings with enhanced antifouling, corrosion resistance and UV protection properties. New Journal of Chemistry. 2025; 49(2): 404-417. doi: 10.1039/d4nj04917a

70. Pathak R, Punetha VD, Bhatt S, et al. A review on carbon nanofiller-based hyperbranched polyurethane nanocomposites: synthesis strategies, applications and challenges. Journal of Materials Science. 2024; 59(34): 16069-16111. doi: 10.1007/s10853-024-10158-w

71. Iqbal N, Mubashar A, Ahmad S, et al. Improving mechanical properties and ballistic limit of polyurethane foam cores in sandwich panels through multi-walled carbon nanotube reinforcement. Journal of Sandwich Structures & Materials. 2025; 27(6): 1220-1239. doi: 10.1177/10996362251336644

72. Hasani Baferani A, Ohadi A, Katbab AA. Toward mechanistic understanding the effect of aspect ratio of carbon nanotubes upon different properties of polyurethane/carbon nanotube nanocomposite foam. Polymer Engineering & Science. 2021; 61(12): 3037-3049. doi: 10.1002/pen.25816

73. You KM, Park SS, Lee CS, et al. Preparation and characterization of conductive carbon nanotube-polyurethane foam composites. Journal of Materials Science. 2011; 46(21): 6850-6855. doi: 10.1007/s10853-011-5645-y

74. Zhai T, Li D, Fei G, et al. Piezoresistive and compression resistance relaxation behavior of water blown carbon nanotube/polyurethane composite foam. Composites Part A: Applied Science and Manufacturing. 2015; 72: 108-114. doi: 10.1016/j.compositesa.2015.02.003

75. Espadas-Escalante J, Avilés F, Gonzalez-Chi P, et al. Thermal conductivity and flammability of multiwall carbon nanotube/polyurethane foam composites. Journal of Cellular Plastics. 2016; 53(2): 215-230. doi: 10.1177/0021955x16644893

76. Huang W, Dai K, Zhai Y, et al. Flexible and Lightweight Pressure Sensor Based on Carbon Nanotube/Thermoplastic Polyurethane-Aligned Conductive Foam with Superior Compressibility and Stability. ACS Applied Materials & Interfaces. 2017; 9(48): 42266-42277. doi: 10.1021/acsami.7b16975

77. Guo H, Thirunavukkarasu N, Mubarak S, et al. Preparation of Thermoplastic Polyurethane/Multi-Walled Carbon Nanotubes Composite Foam with High Resilience Performance via Fused Filament Fabrication and CO2 Foaming Technique. Polymers. 2023; 15(6): 1535. doi: 10.3390/polym15061535

78. Ramya, K., et al., A Complete Review of Electromagnetic Interference in Electric Vehicle. IEEE Access, 2025.

79. Wang C, Lin X, Xu J, et al. Multifunctional bamboo-derived porous carbon for efficient electrical-thermal energy management and electromagnetic interference shielding. Carbon. 2025; 233: 119872. doi: 10.1016/j.carbon.2024.119872

80. Tang X, Lu Y, Li S, et al. Hierarchical Polyimide Nonwoven Fabric with Ultralow-Reflectivity Electromagnetic Interference Shielding and High-Temperature Resistant Infrared Stealth Performance. Nano-Micro Letters. 2024; 17(1). doi: 10.1007/s40820-024-01590-3

81. Manogaran R, Murugesan M. A review on recent advancements in textile fabrics for electromagnetic interference (EMI) shielding materials. Materials Today Communications. 2025; 44: 111879. doi: 10.1016/j.mtcomm.2025.111879

82. Kumar DA, Murugesan M. Interfacial tailoring of conducting polymer nanocomposite films for high-efficiency X-band EMI shielding. Results in Engineering. 2025; 27: 106639. doi: 10.1016/j.rineng.2025.106639

83. Kamedulski P, Truszkowski S, Lukaszewicz JP. Highly Effective Methods of Obtaining N-Doped Graphene by Gamma Irradiation. Materials. 2020; 13(21): 4975. doi: 10.3390/ma13214975

84. Kumar R, Sahoo S, Joanni E, et al. Heteroatom doping of 2D graphene materials for electromagnetic interference shielding: a review of recent progress. Critical Reviews in Solid State and Materials Sciences. 2021; 47(4): 570-619. doi: 10.1080/10408436.2021.1965954

85. Ghosh S, Ganguly S, Remanan S, et al. Ultra-light weight, water durable and flexible highly electrical conductive polyurethane foam for superior electromagnetic interference shielding materials. Journal of Materials Science: Materials in Electronics. 2018; 29(12): 10177-10189. doi: 10.1007/s10854-018-9068-2

86. Yang J, Liao X, Wang G, et al. Gradient structure design of lightweight and flexible silicone rubber nanocomposite foam for efficient electromagnetic interference shielding. Chemical Engineering Journal. 2020; 390: 124589. doi: 10.1016/j.cej.2020.124589

87. Sultana, S., et al., Recent advances in synthesis and processing of nanomaterial-based polymeric foams for EMI shielding applications. Journal of Materials Science, 2025: p. 1-40.

88. Kaur, R., S.K. Verma, and R. Mehta, Tailoring the Properties of Polyurethane Composites: A Comprehensive Review. Polymer-Plastics Technology and Materials, 2025: p. 1-15.

89. Li H, Yuan D, Li P, et al. High conductive and mechanical robust carbon nanotubes/waterborne polyurethane composite films for efficient electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing. 2019; 121: 411-417. doi: 10.1016/j.compositesa.2019.04.003

90. Jiang Q, Liao X, Li J, et al. Flexible thermoplastic polyurethane/reduced graphene oxide composite foams for electromagnetic interference shielding with high absorption characteristic. Composites Part A: Applied Science and Manufacturing. 2019; 123: 310-319. doi: 10.1016/j.compositesa.2019.05.017

91. Gavgani JN, Adelnia H, Zaarei D, et al. Lightweight flexible polyurethane/reduced ultralarge graphene oxide composite foams for electromagnetic interference shielding. RSC Advances. 2016; 6(33): 27517-27527. doi: 10.1039/c5ra25374h

92. Oraby H, Tantawy HR, Correa-Duarte MA, et al. Tuning Electro-Magnetic Interference Shielding Efficiency of Customized Polyurethane Composite Foams Taking Advantage of rGO/Fe3O4 Hybrid Nanocomposites. Nanomaterials. 2022; 12(16): 2805. doi: 10.3390/nano12162805

93. Soykan U, Kalkan Y, Kaya S, et al. Remarkable improvement in radiation shielding efficiency, thermal insulation performance and compressive strength of rigid polyurethane foam composites by synergetic effect of PbO and colemanite fillers. Radiation Physics and Chemistry. 2025; 227: 112401. doi: 10.1016/j.radphyschem.2024.112401

94. Soykan U, Akdogan E, Uzun Duran S, et al. A Green and Sustainable Solution for Neutron Shielding: Preparation and Evaluation of Biodegradable Boron‐Incorporated Rigid Polyurethane Foam Composites With Enhanced Radiation Attenuation and Physicomechanical Features. Polymer Engineering & Science. 2025; 65(11): 6275-6290. doi: 10.1002/pen.70131

95. Li Y, Shen B, Yi D, et al. The influence of gradient and sandwich configurations on the electromagnetic interference shielding performance of multilayered thermoplastic polyurethane/graphene composite foams. Composites Science and Technology. 2017; 138: 209-216. doi: 10.1016/j.compscitech.2016.12.002

96. Fan D, Li N, Li M, et al. Polyurethane/polydopamine/graphene auxetic composite foam with high-efficient and tunable electromagnetic interference shielding performance. Chemical Engineering Journal. 2022; 427: 131635. doi: 10.1016/j.cej.2021.131635

97. Pastore Carbone MG, Beaugendre M, Koral C, et al. Thermoplastic polyurethane–graphene nanoplatelets microcellular foams for electromagnetic interference shielding. Graphene Technology. 2020; 5(3-4): 33-39. doi: 10.1007/s41127-020-00034-0

98. Kiddell S, Kazemi Y, Sorken J, et al. Influence of Flash Graphene on the acoustic, thermal, and mechanical performance of flexible polyurethane foam. Polymer Testing. 2023; 119: 107919. doi: 10.1016/j.polymertesting.2022.107919

99. Kouka MA, Abbassi F, Habibi M, et al. 4D Printing of Shape Memory Polymers, Blends, and Composites and Their Advanced Applications: A Comprehensive Literature Review. Advanced Engineering Materials. 2022; 25(4). doi: 10.1002/adem.202200650

100. Yadav A, Singh SK, Das S, et al. Shape memory polymer and composites for space applications: A review. Polymer Composites. 2025; 46(13): 11647-11683. doi: 10.1002/pc.29707

101. Zhao J, Zhu J, Zhang J, et al. Review of research on thermoplastic self-healing polyurethanes. Reactive and Functional Polymers. 2024; 199: 105886. doi: 10.1016/j.reactfunctpolym.2024.105886

102. Alipour S, Pourjavadi A, Hosseini SH. Magnetite embedded κ-carrageenan-based double network nanocomposite hydrogel with two-way shape memory properties for flexible electronics and magnetic actuators. Carbohydrate Polymers. 2023; 310: 120610. doi: 10.1016/j.carbpol.2023.120610

103. Behera PK, Dhamaniya S, Mohanty S, et al. Advances in thermoplastic polyurethane elastomers. Advances in Thermoplastic Elastomers. Published online 2024: 407-444. doi: 10.1016/b978-0-323-91758-2.00014-3

104. Backes, E.H., et al., Thermoplastic polyurethanes: synthesis, fabrication techniques, blends, composites, and applications. Journal of Materials Science, 2024: p. 1-30.

105. Ma, Q., et al., Nanocomposite‐enhanced polymeric weak gel for conformance control in high‐salinity and high‐temperature reservoir condition. Polymer Engineering & Science, 2025.

106. Zhang H, Zhang G, Li J, et al. Lightweight, multifunctional microcellular PMMA/Fe 3 O 4 @MWCNTs nanocomposite foams with efficient electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing. 2017; 100: 128-138. doi: 10.1016/j.compositesa.2017.05.009

107. Peng S, Geng Y, Li Z, et al. Investigating the effects of temperature on thermal and mechanical properties of polyurethane/polycaprolactone/graphene oxide nanocomposites: focusing on creating a smart polymer nanocomposite via molecular dynamics method. Molecular Physics. 2024; 123(1). doi: 10.1080/00268976.2024.2351164

108. Zarghami Dehaghani M, Kaffashi B, Haponiuk JT, et al. Shape memory thin films of Polyurethane: Does graphene content affect the recovery behavior of Polyurethane nanocomposites? Polymer Composites. 2020; 41(8): 3376-3388. doi: 10.1002/pc.25627

109. Wu G, Gu Y, Hou X, et al. Hybrid Nanocomposites of Cellulose/Carbon-Nanotubes/Polyurethane with Rapidly Water Sensitive Shape Memory Effect and Strain Sensing Performance. Polymers. 2019; 11(10): 1586. doi: 10.3390/polym11101586

110. Joseph TM, Thomas MG, Mahapatra DK, et al. Adaptive and intelligent polyurethane shape-memory polymers enabling next-generation biomedical platforms. Case Studies in Chemical and Environmental Engineering. 2025; 11: 101165. doi: 10.1016/j.cscee.2025.101165

111. Poser A, Pretsch T. FOIM: Thermal Foaming of Shape Memory Polyurethane Foil. Macromolecular Rapid Communications. 2025; 46(8). doi: 10.1002/marc.202401103

112. Singhal P, Rodriguez JN, Small W, et al. Ultra low density and highly crosslinked biocompatible shape memory polyurethane foams. Journal of Polymer Science Part B: Polymer Physics. 2012; 50(10): 724-737. doi: 10.1002/polb.23056

113. Kang SM, Kwon SH, Park JH, et al. Carbon nanotube reinforced shape memory polyurethane foam. Polymer Bulletin. 2013; 70(3): 885-893. doi: 10.1007/s00289-013-0905-4

114. Kim HM, Park J, Huang ZM, et al. Carbon Nanotubes Embedded Shape Memory Polyurethane Foams. Macromolecular Research. 2019; 27(9): 919-925. doi: 10.1007/s13233-019-7129-x

115. Kumar B, Noor N, Thakur S, et al. Shape Memory Polyurethane-Based Smart Polymer Substrates for Physiologically Responsive, Dynamic Pressure (Re)Distribution. ACS Omega. 2019; 4(13): 15348-15358. doi: 10.1021/acsomega.9b01167

116. Song W, Muhammad S, Dang S, et al. The state-of-art polyurethane nanoparticles for drug delivery applications. Frontiers in Chemistry. 2024; 12. doi: 10.3389/fchem.2024.1378324

117. Dang G peng, Gu J ting, Song J han, et al. Multifunctional polyurethane materials in regenerative medicine and tissue engineering. Cell Reports Physical Science. 2024; 5(7): 102053. doi: 10.1016/j.xcrp.2024.102053

118. Barrioni BR, de Carvalho SM, Oréfice RL, et al. Synthesis and characterization of biodegradable polyurethane films based on HDI with hydrolyzable crosslinked bonds and a homogeneous structure for biomedical applications. Materials Science and Engineering: C. 2015; 52: 22-30. doi: 10.1016/j.msec.2015.03.027

119. Batool JA, Rehman K, Qader A, et al. Biomedical Applications of Carbohydrate-based Polyurethane: From Biosynthesis to Degradation. Current Pharmaceutical Design. 2022; 28(20): 1669-1687. doi: 10.2174/1573412918666220118113546

120. Singh, J., S. Singh, and R. Gill, Applications of biopolymer coatings in biomedical engineering. Journal of Electrochemical Science and Engineering, 2023. 13(1): p. 63-81.

121. Zhou X, Wei X, Peng Y, et al. Progress on the Structure and Application of Porous Polyurethane Materials. Macromolecular Rapid Communications. 2025; 46(19). doi: 10.1002/marc.202500294

122. Caba V, Borgese L, Agnelli S, et al. A green and simple process to develop conductive polyurethane foams for biomedical applications. International Journal of Polymeric Materials and Polymeric Biomaterials. 2018; 68(1-3): 126-133. doi: 10.1080/00914037.2018.1525732

123. Guelcher SA, Patel V, Gallagher KM, et al. Synthesis and In Vitro Biocompatibility of Injectable Polyurethane Foam Scaffolds. Tissue Engineering. 2006; 12(5): 1247-1259. doi: 10.1089/ten.2006.12.1247

124. Yuan Y, Guo Q, Xu L, et al. Rigid Polyurethane Foam Derived from Renewable Sources: Research Progress, Property Enhancement, and Future Prospects. Molecules. 2025; 30(3): 678. doi: 10.3390/molecules30030678

125. Schreader KJ, Bayer IS, Milner DJ, et al. A polyurethane‐based nanocomposite biocompatible bone adhesive. Journal of Applied Polymer Science. 2012; 127(6): 4974-4982. doi: 10.1002/app.38100

126. Zawadzak E, Bil M, Ryszkowska J, et al. Polyurethane foams electrophoretically coated with carbon nanotubes for tissue engineering scaffolds. Biomedical Materials. 2008; 4(1): 015008. doi: 10.1088/1748-6041/4/1/015008

127. Shin YC, Kang SH, Lee JH, et al. Three-dimensional graphene oxide-coated polyurethane foams beneficial to myogenesis. Journal of Biomaterials Science, Polymer Edition. 2017; 29(7-9): 762-774. doi: 10.1080/09205063.2017.1348738



DOI: https://doi.org/10.24294/can11881

Refbacks

  • There are currently no refbacks.


Copyright (c) Author(s) 2025

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.