Nanoreinforcement effects in multifunctional polyurethane foams—Scientific status hitherto and future
Vol 8, Issue 3, 2025
VIEWS - 52 (Abstract)
Abstract
Keywords
Full Text:
PDFReferences
1. Zarmehr SP, Kazemi M, Madasu NGA, et al. Application of bio-based polyurethanes in construction: A state-of-the-art review. Resources, Conservation and Recycling. 2025; 212: 107906. doi: 10.1016/j.resconrec.2024.107906
2. Van Nguyen T, An Y, Kusano Y, et al. Effect of soft segment chemistry on marine-biodegradation of segmented polyurethane elastomers. Polymer Degradation and Stability. 2025; 233: 111149. doi: 10.1016/j.polymdegradstab.2024.111149
3. Shikha, M. Meena, and J. Jacob, Pentaerythritol derived phosphorous based bicyclic compounds as promising flame retardants for thermoplastic polyurethane films. Journal of Applied Polymer Science, 2020: p. 50375.
4. Kausar A, Ahmad I, Lam TD. High-tech graphene oxide reinforced conducting matrix nanocomposites—Current status and progress. Characterization and Application of Nanomaterials. 2023; 6(1). doi: 10.24294/can.v6i1.2637
5. Nguyen TA, Nguyen TB, Tran DQ, et al. Bio-functional nanocellulose/lignocellulose-based polyurethane nanocomposite foams with enhanced flame retardancy, thermal conductivity, and thermal stability. International Journal of Biological Macromolecules. 2025; 305: 141133. doi: 10.1016/j.ijbiomac.2025.141133
6. Karulf L, Singh B, Singh R, et al. Carbon dioxide utilization: CO2-based polyurethane foam. Journal of CO2 Utilization. 2025; 91: 103000. doi: 10.1016/j.jcou.2024.103000
7. Du Y, Wang M, Ye X, et al. Advances in the Field of Graphene-Based Composites for Energy–Storage Applications. Crystals. 2023; 13(6): 912. doi: 10.3390/cryst13060912
8. Ding H, Zhang X. Sodium Intercalation in Nitrogen-Doped Graphene-Based Anode: A First-Principles Study. Crystals. 2023; 13(7): 1011. doi: 10.3390/cryst13071011
9. Jibin K, Augustine S, Velayudhan P, et al. Unleashing the Power of Graphene-Based Nanomaterials for Chromium(VI) Ion Elimination from Water. Crystals. 2023; 13(7): 1047. doi: 10.3390/cryst13071047
10. Nguyen KTD, Nguyen M, Nguyen TA, et al. A novel multifunctional high bio-content polyurethane nanocomposite and comprehensive comparison with its commercial relevance. Composites Part A: Applied Science and Manufacturing. 2025; 191: 108753. doi: 10.1016/j.compositesa.2025.108753
11. Kuo CC, Lu YQ, Farooqui A, et al. Technical Advancements and Applications in Predictive Modeling of Polyurethane Foaming Height. Published online 2024. doi: 10.2139/ssrn.5032941
12. Vothi H, Le V, Nguyen-Ha T, et al. Sustainable polyurethane nanocomposite foam from waste poly(ethylene terephthalate): preparation, thermal stability, and flame retardancy. Macromolecular Research. 2024; 32(12): 1227-1235. doi: 10.1007/s13233-024-00304-3
13. Dong H, Li S, Jia Z, et al. A Review of Polyurethane Foams for Multi-Functional and High-Performance Applications. Polymers. 2024; 16(22): 3182. doi: 10.3390/polym16223182
14. Hu J, Wu X, Ma T. Gradation design and performance evaluation of self-compacting polyurethane mixture. Construction and Building Materials. 2025; 458: 139528. doi: 10.1016/j.conbuildmat.2024.139528
15. Heiran R, Ghaderian A, Reghunadhan A, et al. Glycolysis: an efficient route for recycling of end of life polyurethane foams. Journal of Polymer Research. 2021; 28(1). doi: 10.1007/s10965-020-02383-z
16. Lei W, Zhou X, Fang C, et al. Eco-friendly waterborne polyurethane reinforced with cellulose nanocrystal from office waste paper by two different methods. Carbohydrate Polymers. 2019; 209: 299-309. doi: 10.1016/j.carbpol.2019.01.013
17. Kumar Patel K, Purohit R. Improved shape memory and mechanical properties of microwave-induced thermoplastic polyurethane/graphene nanoplatelets composites. Sensors and Actuators A: Physical. 2019; 285: 17-24. doi: 10.1016/j.sna.2018.10.049
18. Zhang J, Lv S, Zhao X, et al. Surface functionalization of polyurethanes: A critical review. Advances in Colloid and Interface Science. 2024; 325: 103100. doi: 10.1016/j.cis.2024.103100
19. Białkowska A, Kucharczyk W, Zarzyka I, et al. Polylactide-Based Nonisocyanate Polyurethanes: Preparation, Properties Evaluation and Structure Analysis. Polymers. 2024; 16(2): 253. doi: 10.3390/polym16020253
20. De Hoyos-Martinez PL, Mendez SB, Martinez EC, et al. Elaboration of Thermally Performing Polyurethane Foams, Based on Biopolyols, with Thermal Insulating Applications. Polymers. 2024; 16(2): 258. doi: 10.3390/polym16020258
21. Reignier J, Alcouffe P, Méchin F, et al. The morphology of rigid polyurethane foam matrix and its evolution with time during foaming – New insight by cryogenic scanning electron microscopy. Journal of Colloid and Interface Science. 2019; 552: 153-165. doi: 10.1016/j.jcis.2019.05.032
22. Kurańska M, Polaczek K, Auguścik-Królikowska M, et al. Open-cell rigid polyurethane bio-foams based on modified used cooking oil. Polymer. 2020; 190: 122164. doi: 10.1016/j.polymer.2020.122164
23. Fu Y, Qiu C, Ni L, et al. Cell structure control and performance of rigid polyurethane foam with lightweight, good mechanical, thermal insulation and sound insulation. Construction and Building Materials. 2024; 447: 138068. doi: 10.1016/j.conbuildmat.2024.138068
24. Ates M, Karadag S, Eker AA, et al. Polyurethane foam materials and their industrial applications. Polymer International. 2022; 71(10): 1157-1163. doi: 10.1002/pi.6441
25. Sukhawipat N, Saengdee L, Pasetto P, et al. Sustainable Rigid Polyurethane Foam from Wasted Palm Oil and Water Hyacinth Fiber Composite—A Green Sound-Absorbing Material. Polymers. 2022; 14(1): 201. doi: 10.3390/polym14010201
26. Li C, Ye H, Ge S, et al. Fabrication and properties of antimicrobial flexible nanocomposite polyurethane foams with in situ generated copper nanoparticles. Journal of Materials Research and Technology. 2022; 19: 3603-3615. doi: 10.1016/j.jmrt.2022.06.115
27. Saint-Michel F, Chazeau L, Cavaillé JY, et al. Mechanical properties of high density polyurethane foams: I. Effect of the density. Composites Science and Technology. 2006; 66(15): 2700-2708. doi: 10.1016/j.compscitech.2006.03.009
28. Makarov M, Bourguignon M, Grignard B, et al. Advancing Non-isocyanate Polyurethane Foams: exo-Vinylene Cyclic Carbonate–Amine Chemistry Enabling Room-Temperature Reactivity and Fast Self-Blowing. Macromolecules. 2025; 58(3): 1673-1685. doi: 10.1021/acs.macromol.4c02894
29. Soundhar A, Rajesh M, Jayakrishna K, et al. Investigation on mechanical properties of polyurethane hybrid nanocomposite foams reinforced with roselle fibers and silica nanoparticles. Nanocomposites. 2019; 5(1): 1-12. doi: 10.1080/20550324.2018.1562614
30. Alasti Bonab S, Moghaddas J, Rezaei M. In-situ synthesis of silica aerogel/polyurethane inorganic-organic hybrid nanocomposite foams: Characterization, cell microstructure and mechanical properties. Polymer. 2019; 172: 27-40. doi: 10.1016/j.polymer.2019.03.050
31. Olszewski A, Kosmela P, Piasecki A, et al. Comprehensive Investigation of Stoichiometry–Structure–Performance Relationships in Flexible Polyurethane Foams. Polymers. 2022; 14(18): 3813. doi: 10.3390/polym14183813
32. Jin FL, Zhao M, Park M, et al. Recent Trends of Foaming in Polymer Processing: A Review. Polymers. 2019; 11(6): 953. doi: 10.3390/polym11060953
33. Abd El-Fattah M, Hasan AMA, Keshawy M, et al. Nanocrystalline cellulose as an eco-friendly reinforcing additive to polyurethane coating for augmented anticorrosive behavior. Carbohydrate Polymers. 2018; 183: 311-318. doi: 10.1016/j.carbpol.2017.12.084
34. Song S, Xing Y, Wu D, et al. Effect of molecular weight of aliphatic dicarboxylic acids polyester on properties of the waterborne polyurethane sizing agent. Carbon Letters. 2025; 35(3): 1017-1026. doi: 10.1007/s42823-024-00850-x
35. Patti A, Acierno D. Structure‐property relationships of waterborne polyurethane ( WPU ) in aqueous formulations. Journal of Vinyl and Additive Technology. 2023; 29(4): 589-606. doi: 10.1002/vnl.21981
36. Mekonnen TH, Haile T, Ly M. Hydrophobic functionalization of cellulose nanocrystals for enhanced corrosion resistance of polyurethane nanocomposite coatings. Applied Surface Science. 2021; 540: 148299. doi: 10.1016/j.apsusc.2020.148299
37. Kim MS, Ryu KM, Lee SH, et al. Chitin Nanofiber-Reinforced Waterborne Polyurethane Nanocomposite Films with Enhanced Thermal and Mechanical Performance. Carbohydrate Polymers. 2021; 258: 117728. doi: 10.1016/j.carbpol.2021.117728
38. Sun, J., et al., Asymmetric‐Structured Waterborne Polyurethane Foams for Enhanced Electromagnetic Wave Absorption Performance. Advanced Engineering Materials: p. 2501259.
39. Cao J, Xie X, Liu Y, et al. Advanced waterborne polyurethane/poly(ionic liquids) foam for highly efficient and selective adsorption of 99TcO4-/ReO4-. Chemical Engineering Journal. 2025; 508: 161007. doi: 10.1016/j.cej.2025.161007
40. Tian X, He M, Ding C, et al. Multifunctional waterborne polyurethane microfiber leather with breathable, moisture-wicking, antibacterial, weather-resistant, and high-strength. Progress in Organic Coatings. 2025; 200: 109021. doi: 10.1016/j.porgcoat.2024.109021
41. Wei XX, Pei C, Zhu JH. Towards the large-scale application of graphene-modified cement-based composites: A comprehensive review. Construction and Building Materials. 2024; 421: 135632. doi: 10.1016/j.conbuildmat.2024.135632
42. Geim AK, Novoselov KS. The rise of graphene. Nature Materials. 2007; 6(3): 183-191. doi: 10.1038/nmat1849
43. Lu Z, Han T, Yao Y, et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature. 2024; 626(8000): 759-764. doi: 10.1038/s41586-023-07010-7
44. Mbayachi VB, Ndayiragije E, Sammani T, et al. Graphene synthesis, characterization and its applications: A review. Results in Chemistry. 2021; 3: 100163. doi: 10.1016/j.rechem.2021.100163
45. Santra S, Bose A, Mitra K, et al. Exploring two decades of graphene: The jack of all trades. Applied Materials Today. 2024; 36: 102066. doi: 10.1016/j.apmt.2024.102066
46. Lv H, Yao Y, Yuan M, et al. Functional nanoporous graphene superlattice. Nature Communications. 2024; 15(1). doi: 10.1038/s41467-024-45503-9
47. Kong M, Yang M, Li R, et al. Graphene-based flexible wearable sensors: mechanisms, challenges, and future directions. The International Journal of Advanced Manufacturing Technology. 2023; 131(5-6): 3205-3237. doi: 10.1007/s00170-023-12007-7
48. Zhang H, Zhang G, Tang M, et al. Synergistic effect of carbon nanotube and graphene nanoplates on the mechanical, electrical and electromagnetic interference shielding properties of polymer composites and polymer composite foams. Chemical Engineering Journal. 2018; 353: 381-393. doi: 10.1016/j.cej.2018.07.144
49. Ramasamy RP, Somanathan S, Rafailovich MH, et al. Broadband dielectric spectroscopy and small-angle neutron scattering investigations of polyurethane–graphene foams. Journal of Materials Science: Materials in Electronics. 2020; 31(18): 15843-15851. doi: 10.1007/s10854-020-04146-4
50. Saganuwan SA. Biomedical Applications of Polyurethane Hydrogels, Polyurethane Aerogels, and Polyurethane-graphene Nanocomposite Materials. Central Nervous System Agents in Medicinal Chemistry. 2022; 22(2): 79-87. doi: 10.2174/1871524922666220429115124
51. Feng C, Yi Z, Jin X, et al. Solvent crystallization-induced porous polyurethane/graphene composite foams for pressure sensing. Composites Part B: Engineering. 2020; 194: 108065. doi: 10.1016/j.compositesb.2020.108065
52. Zhang H, Wang H, Wang T, et al. Polyurethane Foam with High-Efficiency Flame Retardant, Heat Insulation, and Sound Absorption Modified By Phosphorus-Containing Graphene Oxide. ACS Applied Polymer Materials. 2024; 6(3): 1878-1890. doi: 10.1021/acsapm.3c02706
53. Hodlur RM, Rabinal MK. Self assembled graphene layers on polyurethane foam as a highly pressure sensitive conducting composite. Composites Science and Technology. 2014; 90: 160-165. doi: 10.1016/j.compscitech.2013.11.005
54. Chen Y, Li Y, Xu D, et al. Fabrication of stretchable, flexible conductive thermoplastic polyurethane/graphene composites via foaming. RSC Advances. 2015; 5(100): 82034-82041. doi: 10.1039/c5ra12515d
55. Kim JM, Kim DH, Kim J, et al. Effect of graphene on the sound damping properties of flexible polyurethane foams. Macromolecular Research. 2017; 25(2): 190-196. doi: 10.1007/s13233-017-5017-9
56. Patole SP, Reddy SK, Schiffer A, et al. Piezoresistive and Mechanical Characteristics of Graphene Foam Nanocomposites. ACS Applied Nano Materials. 2019; 2(3): 1402-1411. doi: 10.1021/acsanm.8b02306
57. Zhong W, Ding X, Li W, et al. Facile Fabrication of Conductive Graphene/Polyurethane Foam Composite and Its Application on Flexible Piezo-Resistive Sensors. Polymers. 2019; 11(8): 1289. doi: 10.3390/polym11081289
58. Qin LC, Zhao X, Hirahara K, et al. The smallest carbon nanotube. Nature. 2000; 408(6808): 50-50. doi: 10.1038/35040699
59. Baughman RH, Cui C, Zakhidov AA, et al. Carbon Nanotube Actuators. Science. 1999; 284(5418): 1340-1344. doi: 10.1126/science.284.5418.1340
60. Guo H li, Zhang Q xian, Liu Y ping, et al. Properties and Defence Applications of Carbon Nanotubes. Journal of Physics: Conference Series. 2023; 2478(4): 042010. doi: 10.1088/1742-6596/2478/4/042010
61. Syduzzaman M, Islam Saad MS, Piam MF, et al. Carbon nanotubes: Structure, properties and applications in the aerospace industry. Results in Materials. 2025; 25: 100654. doi: 10.1016/j.rinma.2024.100654
62. Mishra S, Kumari S, Mishra AC, et al. Carbon Nanotube – Synthesis, Purification and Biomedical Applications. Current Nanomaterials. 2023; 8(4): 328-335. doi: 10.2174/2405461507666220827092425
63. Yahyazadeh A, Nanda S, Dalai AK. Carbon Nanotubes: A Review of Synthesis Methods and Applications. Reactions. 2024; 5(3): 429-451. doi: 10.3390/reactions5030022
64. Tyagi S, Negi S. Calculation of Density of States of Pristine and Functionalized Carbon Nanotubes: A DFT Approach. Indian Journal Of Science And Technology. 2023; 16(40): 3567-3574. doi: 10.17485/ijst/v16i40.1019
65. Darıcık F, Topcu A, Aydın K, et al. Carbon nanotube (CNT) modified carbon fiber/epoxy composite plates for the PEM fuel cell bipolar plate application. International Journal of Hydrogen Energy. 2023; 48(3): 1090-1106. doi: 10.1016/j.ijhydene.2022.09.297
66. Mishra S, Sundaram B. Efficacy and challenges of carbon nanotube in wastewater and water treatment. Environmental Nanotechnology, Monitoring & Management. 2023; 19: 100764. doi: 10.1016/j.enmm.2022.100764
67. Xavier JR, Sadagopan Pandian V. RETRACTED: Carbon nanotube‐based polymer nanocomposites: Evaluation of barrier, hydrophobic, and mechanical properties for aerospace applications. Polymer Engineering & Science. 2023; 63(9): 2806-2827. doi: 10.1002/pen.26407
68. Si J, Zhang P, Zhang Z. Road map for, and technical challenges of, carbon-nanotube integrated circuit technology. National Science Review. 2023; 11(3). doi: 10.1093/nsr/nwad261
69. Sulthana YR, Gurusamy Thangavelu SA. Development of nonisocyanate polyurethane–MWCNT nanocomposites: coatings with enhanced antifouling, corrosion resistance and UV protection properties. New Journal of Chemistry. 2025; 49(2): 404-417. doi: 10.1039/d4nj04917a
70. Pathak R, Punetha VD, Bhatt S, et al. A review on carbon nanofiller-based hyperbranched polyurethane nanocomposites: synthesis strategies, applications and challenges. Journal of Materials Science. 2024; 59(34): 16069-16111. doi: 10.1007/s10853-024-10158-w
71. Iqbal N, Mubashar A, Ahmad S, et al. Improving mechanical properties and ballistic limit of polyurethane foam cores in sandwich panels through multi-walled carbon nanotube reinforcement. Journal of Sandwich Structures & Materials. 2025; 27(6): 1220-1239. doi: 10.1177/10996362251336644
72. Hasani Baferani A, Ohadi A, Katbab AA. Toward mechanistic understanding the effect of aspect ratio of carbon nanotubes upon different properties of polyurethane/carbon nanotube nanocomposite foam. Polymer Engineering & Science. 2021; 61(12): 3037-3049. doi: 10.1002/pen.25816
73. You KM, Park SS, Lee CS, et al. Preparation and characterization of conductive carbon nanotube-polyurethane foam composites. Journal of Materials Science. 2011; 46(21): 6850-6855. doi: 10.1007/s10853-011-5645-y
74. Zhai T, Li D, Fei G, et al. Piezoresistive and compression resistance relaxation behavior of water blown carbon nanotube/polyurethane composite foam. Composites Part A: Applied Science and Manufacturing. 2015; 72: 108-114. doi: 10.1016/j.compositesa.2015.02.003
75. Espadas-Escalante J, Avilés F, Gonzalez-Chi P, et al. Thermal conductivity and flammability of multiwall carbon nanotube/polyurethane foam composites. Journal of Cellular Plastics. 2016; 53(2): 215-230. doi: 10.1177/0021955x16644893
76. Huang W, Dai K, Zhai Y, et al. Flexible and Lightweight Pressure Sensor Based on Carbon Nanotube/Thermoplastic Polyurethane-Aligned Conductive Foam with Superior Compressibility and Stability. ACS Applied Materials & Interfaces. 2017; 9(48): 42266-42277. doi: 10.1021/acsami.7b16975
77. Guo H, Thirunavukkarasu N, Mubarak S, et al. Preparation of Thermoplastic Polyurethane/Multi-Walled Carbon Nanotubes Composite Foam with High Resilience Performance via Fused Filament Fabrication and CO2 Foaming Technique. Polymers. 2023; 15(6): 1535. doi: 10.3390/polym15061535
78. Ramya, K., et al., A Complete Review of Electromagnetic Interference in Electric Vehicle. IEEE Access, 2025.
79. Wang C, Lin X, Xu J, et al. Multifunctional bamboo-derived porous carbon for efficient electrical-thermal energy management and electromagnetic interference shielding. Carbon. 2025; 233: 119872. doi: 10.1016/j.carbon.2024.119872
80. Tang X, Lu Y, Li S, et al. Hierarchical Polyimide Nonwoven Fabric with Ultralow-Reflectivity Electromagnetic Interference Shielding and High-Temperature Resistant Infrared Stealth Performance. Nano-Micro Letters. 2024; 17(1). doi: 10.1007/s40820-024-01590-3
81. Manogaran R, Murugesan M. A review on recent advancements in textile fabrics for electromagnetic interference (EMI) shielding materials. Materials Today Communications. 2025; 44: 111879. doi: 10.1016/j.mtcomm.2025.111879
82. Kumar DA, Murugesan M. Interfacial tailoring of conducting polymer nanocomposite films for high-efficiency X-band EMI shielding. Results in Engineering. 2025; 27: 106639. doi: 10.1016/j.rineng.2025.106639
83. Kamedulski P, Truszkowski S, Lukaszewicz JP. Highly Effective Methods of Obtaining N-Doped Graphene by Gamma Irradiation. Materials. 2020; 13(21): 4975. doi: 10.3390/ma13214975
84. Kumar R, Sahoo S, Joanni E, et al. Heteroatom doping of 2D graphene materials for electromagnetic interference shielding: a review of recent progress. Critical Reviews in Solid State and Materials Sciences. 2021; 47(4): 570-619. doi: 10.1080/10408436.2021.1965954
85. Ghosh S, Ganguly S, Remanan S, et al. Ultra-light weight, water durable and flexible highly electrical conductive polyurethane foam for superior electromagnetic interference shielding materials. Journal of Materials Science: Materials in Electronics. 2018; 29(12): 10177-10189. doi: 10.1007/s10854-018-9068-2
86. Yang J, Liao X, Wang G, et al. Gradient structure design of lightweight and flexible silicone rubber nanocomposite foam for efficient electromagnetic interference shielding. Chemical Engineering Journal. 2020; 390: 124589. doi: 10.1016/j.cej.2020.124589
87. Sultana, S., et al., Recent advances in synthesis and processing of nanomaterial-based polymeric foams for EMI shielding applications. Journal of Materials Science, 2025: p. 1-40.
88. Kaur, R., S.K. Verma, and R. Mehta, Tailoring the Properties of Polyurethane Composites: A Comprehensive Review. Polymer-Plastics Technology and Materials, 2025: p. 1-15.
89. Li H, Yuan D, Li P, et al. High conductive and mechanical robust carbon nanotubes/waterborne polyurethane composite films for efficient electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing. 2019; 121: 411-417. doi: 10.1016/j.compositesa.2019.04.003
90. Jiang Q, Liao X, Li J, et al. Flexible thermoplastic polyurethane/reduced graphene oxide composite foams for electromagnetic interference shielding with high absorption characteristic. Composites Part A: Applied Science and Manufacturing. 2019; 123: 310-319. doi: 10.1016/j.compositesa.2019.05.017
91. Gavgani JN, Adelnia H, Zaarei D, et al. Lightweight flexible polyurethane/reduced ultralarge graphene oxide composite foams for electromagnetic interference shielding. RSC Advances. 2016; 6(33): 27517-27527. doi: 10.1039/c5ra25374h
92. Oraby H, Tantawy HR, Correa-Duarte MA, et al. Tuning Electro-Magnetic Interference Shielding Efficiency of Customized Polyurethane Composite Foams Taking Advantage of rGO/Fe3O4 Hybrid Nanocomposites. Nanomaterials. 2022; 12(16): 2805. doi: 10.3390/nano12162805
93. Soykan U, Kalkan Y, Kaya S, et al. Remarkable improvement in radiation shielding efficiency, thermal insulation performance and compressive strength of rigid polyurethane foam composites by synergetic effect of PbO and colemanite fillers. Radiation Physics and Chemistry. 2025; 227: 112401. doi: 10.1016/j.radphyschem.2024.112401
94. Soykan U, Akdogan E, Uzun Duran S, et al. A Green and Sustainable Solution for Neutron Shielding: Preparation and Evaluation of Biodegradable Boron‐Incorporated Rigid Polyurethane Foam Composites With Enhanced Radiation Attenuation and Physicomechanical Features. Polymer Engineering & Science. 2025; 65(11): 6275-6290. doi: 10.1002/pen.70131
95. Li Y, Shen B, Yi D, et al. The influence of gradient and sandwich configurations on the electromagnetic interference shielding performance of multilayered thermoplastic polyurethane/graphene composite foams. Composites Science and Technology. 2017; 138: 209-216. doi: 10.1016/j.compscitech.2016.12.002
96. Fan D, Li N, Li M, et al. Polyurethane/polydopamine/graphene auxetic composite foam with high-efficient and tunable electromagnetic interference shielding performance. Chemical Engineering Journal. 2022; 427: 131635. doi: 10.1016/j.cej.2021.131635
97. Pastore Carbone MG, Beaugendre M, Koral C, et al. Thermoplastic polyurethane–graphene nanoplatelets microcellular foams for electromagnetic interference shielding. Graphene Technology. 2020; 5(3-4): 33-39. doi: 10.1007/s41127-020-00034-0
98. Kiddell S, Kazemi Y, Sorken J, et al. Influence of Flash Graphene on the acoustic, thermal, and mechanical performance of flexible polyurethane foam. Polymer Testing. 2023; 119: 107919. doi: 10.1016/j.polymertesting.2022.107919
99. Kouka MA, Abbassi F, Habibi M, et al. 4D Printing of Shape Memory Polymers, Blends, and Composites and Their Advanced Applications: A Comprehensive Literature Review. Advanced Engineering Materials. 2022; 25(4). doi: 10.1002/adem.202200650
100. Yadav A, Singh SK, Das S, et al. Shape memory polymer and composites for space applications: A review. Polymer Composites. 2025; 46(13): 11647-11683. doi: 10.1002/pc.29707
101. Zhao J, Zhu J, Zhang J, et al. Review of research on thermoplastic self-healing polyurethanes. Reactive and Functional Polymers. 2024; 199: 105886. doi: 10.1016/j.reactfunctpolym.2024.105886
102. Alipour S, Pourjavadi A, Hosseini SH. Magnetite embedded κ-carrageenan-based double network nanocomposite hydrogel with two-way shape memory properties for flexible electronics and magnetic actuators. Carbohydrate Polymers. 2023; 310: 120610. doi: 10.1016/j.carbpol.2023.120610
103. Behera PK, Dhamaniya S, Mohanty S, et al. Advances in thermoplastic polyurethane elastomers. Advances in Thermoplastic Elastomers. Published online 2024: 407-444. doi: 10.1016/b978-0-323-91758-2.00014-3
104. Backes, E.H., et al., Thermoplastic polyurethanes: synthesis, fabrication techniques, blends, composites, and applications. Journal of Materials Science, 2024: p. 1-30.
105. Ma, Q., et al., Nanocomposite‐enhanced polymeric weak gel for conformance control in high‐salinity and high‐temperature reservoir condition. Polymer Engineering & Science, 2025.
106. Zhang H, Zhang G, Li J, et al. Lightweight, multifunctional microcellular PMMA/Fe 3 O 4 @MWCNTs nanocomposite foams with efficient electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing. 2017; 100: 128-138. doi: 10.1016/j.compositesa.2017.05.009
107. Peng S, Geng Y, Li Z, et al. Investigating the effects of temperature on thermal and mechanical properties of polyurethane/polycaprolactone/graphene oxide nanocomposites: focusing on creating a smart polymer nanocomposite via molecular dynamics method. Molecular Physics. 2024; 123(1). doi: 10.1080/00268976.2024.2351164
108. Zarghami Dehaghani M, Kaffashi B, Haponiuk JT, et al. Shape memory thin films of Polyurethane: Does graphene content affect the recovery behavior of Polyurethane nanocomposites? Polymer Composites. 2020; 41(8): 3376-3388. doi: 10.1002/pc.25627
109. Wu G, Gu Y, Hou X, et al. Hybrid Nanocomposites of Cellulose/Carbon-Nanotubes/Polyurethane with Rapidly Water Sensitive Shape Memory Effect and Strain Sensing Performance. Polymers. 2019; 11(10): 1586. doi: 10.3390/polym11101586
110. Joseph TM, Thomas MG, Mahapatra DK, et al. Adaptive and intelligent polyurethane shape-memory polymers enabling next-generation biomedical platforms. Case Studies in Chemical and Environmental Engineering. 2025; 11: 101165. doi: 10.1016/j.cscee.2025.101165
111. Poser A, Pretsch T. FOIM: Thermal Foaming of Shape Memory Polyurethane Foil. Macromolecular Rapid Communications. 2025; 46(8). doi: 10.1002/marc.202401103
112. Singhal P, Rodriguez JN, Small W, et al. Ultra low density and highly crosslinked biocompatible shape memory polyurethane foams. Journal of Polymer Science Part B: Polymer Physics. 2012; 50(10): 724-737. doi: 10.1002/polb.23056
113. Kang SM, Kwon SH, Park JH, et al. Carbon nanotube reinforced shape memory polyurethane foam. Polymer Bulletin. 2013; 70(3): 885-893. doi: 10.1007/s00289-013-0905-4
114. Kim HM, Park J, Huang ZM, et al. Carbon Nanotubes Embedded Shape Memory Polyurethane Foams. Macromolecular Research. 2019; 27(9): 919-925. doi: 10.1007/s13233-019-7129-x
115. Kumar B, Noor N, Thakur S, et al. Shape Memory Polyurethane-Based Smart Polymer Substrates for Physiologically Responsive, Dynamic Pressure (Re)Distribution. ACS Omega. 2019; 4(13): 15348-15358. doi: 10.1021/acsomega.9b01167
116. Song W, Muhammad S, Dang S, et al. The state-of-art polyurethane nanoparticles for drug delivery applications. Frontiers in Chemistry. 2024; 12. doi: 10.3389/fchem.2024.1378324
117. Dang G peng, Gu J ting, Song J han, et al. Multifunctional polyurethane materials in regenerative medicine and tissue engineering. Cell Reports Physical Science. 2024; 5(7): 102053. doi: 10.1016/j.xcrp.2024.102053
118. Barrioni BR, de Carvalho SM, Oréfice RL, et al. Synthesis and characterization of biodegradable polyurethane films based on HDI with hydrolyzable crosslinked bonds and a homogeneous structure for biomedical applications. Materials Science and Engineering: C. 2015; 52: 22-30. doi: 10.1016/j.msec.2015.03.027
119. Batool JA, Rehman K, Qader A, et al. Biomedical Applications of Carbohydrate-based Polyurethane: From Biosynthesis to Degradation. Current Pharmaceutical Design. 2022; 28(20): 1669-1687. doi: 10.2174/1573412918666220118113546
120. Singh, J., S. Singh, and R. Gill, Applications of biopolymer coatings in biomedical engineering. Journal of Electrochemical Science and Engineering, 2023. 13(1): p. 63-81.
121. Zhou X, Wei X, Peng Y, et al. Progress on the Structure and Application of Porous Polyurethane Materials. Macromolecular Rapid Communications. 2025; 46(19). doi: 10.1002/marc.202500294
122. Caba V, Borgese L, Agnelli S, et al. A green and simple process to develop conductive polyurethane foams for biomedical applications. International Journal of Polymeric Materials and Polymeric Biomaterials. 2018; 68(1-3): 126-133. doi: 10.1080/00914037.2018.1525732
123. Guelcher SA, Patel V, Gallagher KM, et al. Synthesis and In Vitro Biocompatibility of Injectable Polyurethane Foam Scaffolds. Tissue Engineering. 2006; 12(5): 1247-1259. doi: 10.1089/ten.2006.12.1247
124. Yuan Y, Guo Q, Xu L, et al. Rigid Polyurethane Foam Derived from Renewable Sources: Research Progress, Property Enhancement, and Future Prospects. Molecules. 2025; 30(3): 678. doi: 10.3390/molecules30030678
125. Schreader KJ, Bayer IS, Milner DJ, et al. A polyurethane‐based nanocomposite biocompatible bone adhesive. Journal of Applied Polymer Science. 2012; 127(6): 4974-4982. doi: 10.1002/app.38100
126. Zawadzak E, Bil M, Ryszkowska J, et al. Polyurethane foams electrophoretically coated with carbon nanotubes for tissue engineering scaffolds. Biomedical Materials. 2008; 4(1): 015008. doi: 10.1088/1748-6041/4/1/015008
127. Shin YC, Kang SH, Lee JH, et al. Three-dimensional graphene oxide-coated polyurethane foams beneficial to myogenesis. Journal of Biomaterials Science, Polymer Edition. 2017; 29(7-9): 762-774. doi: 10.1080/09205063.2017.1348738
DOI: https://doi.org/10.24294/can11881
Refbacks
- There are currently no refbacks.
Copyright (c) Author(s) 2025
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.
_1.jpg)
