Evaluation of static atomic charges in elementary nanostructures: Boron planar clusters

Tornike Odishvili, Levan Chkhartishvili

Article ID: 11815
Vol 8, Issue 3, 2025

VIEWS - 19 (Abstract)

Abstract


Static atomic charges affect key ground-state parameters of boron quasi-planar clusters Bn, n ≤ 20, which serve as building blocks of borophenes and other two-dimensional boron-based materials promising for various advanced applications. Assuming that the outer valence shells partial electron density of the constituent B atoms are shared between them proportionally to their coordination numbers, the static atomic charges in small boron planar clusters in the electrically neutral and positively and negatively singly charged states are estimated to be in the ranges of –0.750e (B70) to +0.535e (B200), –0.500e (B7+, B8+, and B9+) to +0.556e (B17+), and –1.000e (B7) to +0.512e (B20), respectively.

Keywords


static atomic charge; coordination number; valence electron; cluster; boron

Full Text:

PDF


References

1. Kiran B, Bulusu S, Zhai HJ, et al. Planar-to-tubular structural transition in boron clusters: B20 as the embryo of single-walled boron nanotubes. Proceedings of the National Academy of Sciences. 2005; 102(4): 961-964. doi: 10.1073/pnas.0408132102

2. Alexandrova AN, Boldyrev AI, Zhai HJ, et al. All-boron aromatic clusters as potential new inorganic ligands and building blocks in chemistry. Coordination Chemistry Reviews. 2006; 250(21-22): 2811-2866. doi: 10.1016/j.ccr.2006.03.032

3. Li WL, Chen Q, Tian WJ, et al. The B35 Cluster with a double-hexagonal vacancy: A new and more flexible structural motif for borophene. Journal of the American Chemical Society. 2014; 136(35): 12257-12260. doi: 10.1021/ja507235s

4. Becker R, Chkhartishvili L, Martin P. Boron, the new graphene? Vacuum Technology & Coating. 2015. 16(4): 38-44.

5. Chkhartishvili L. Ch. 7: All-boron nanostructures. CRC Concise Encyclopedia of Nanotechnology CRC Press; 2016: 53-69.

6. Tian Y, Guo Z, Zhang T, et al. Inorganic boron-based nanostructures: Synthesis, optoelectronic properties, and prospective applications. Nanomaterials. 2019; 9(4): 538. doi: 10.3390/nano9040538

7. Li D, Gao J, Cheng P, et al. 2D boron sheets: Structure, growth, and electronic and thermal transport properties. Advanced Functional Materials. 2019; 30(8): 1904349. doi: 10.1002/adfm.201904349

8. Boustani I. Molecular Modelling and Synthesis of Nanomaterials. Springer International Publishing; 2020. doi: 10.1007/978-3-030-32726-2

9. Matsuda I, Wu K, eds. 2D Boron: Boraphene, Borophene, Boronene. Springer International Publishing; 2021. doi: 10.1007/978-3-030-49999-0

10. Chkhartishvili L. Relative stability of boron planar clusters in diatomic molecular model. Molecules. 2022; 27(5): 1469. doi: 10.3390/molecules27051469

11. Odishvili T, Chkhartishvili L. All-boron planar clusters with electric dipole moment. Solid State Sciences. 2025; 160: 107833. doi: 10.1016/j.solidstatesciences.2025.107833

12. Chkhartishvili L. Quasi-planar elemental clusters in pair interactions approximation. Open Physics. 2016; 14(1): 617-620. doi: 10.1515/phys-2016-0070

13. Chkhartishvili L. Relative stability of planar clusters B11, B12, and B13 in neutral- and charged-states. Characterization and Application of Nanomaterials. 2020; 3(2): 73-80. doi: 10.24294/can.v3i2.761

14. Chkhartishvili L. Nanoclusters binding energy in diatomic model. International Journal of Advanced Nano Computing and Analytics. 2021; 1(1): 80-83. doi: 10.61797/ijanca.v1i1.109

15. Chkhartishvili L. Effect of static atomic charges on small elemental clusters: Evidence from boron. International Journal of Advanced Nano Computing and Analytics. 2023; 2(1): 13-21. doi: 10.61797/ijanca.v2i1.150



DOI: https://doi.org/10.24294/can11815

Refbacks

  • There are currently no refbacks.


Copyright (c) Author(s) 2025

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.