Growth of 2D hexagonal boron nitride nanosheets on Ag using atmospheric pressure plasma for enhanced hardness
Vol 8, Issue 2, 2025
VIEWS - 71 (Abstract)
Abstract
Two-dimensional hexagonal boron nitride nanosheets (h-BNNS) were synthesized on silver (Ag) substrates via a scalable, room-temperature atmospheric pressure plasma (APP) technique, employing borazine as a precursor. This approach overcomes the limitations of conventional chemical vapor deposition (CVD), which requires high temperatures (>800 °C) and low pressures (10⁻2 Pa). The h-BNNS were characterized using FT-IR spectroscopy, confirming the presence of BN functional groups (805 cm⁻1 and 1632 cm⁻1), while FESEM/EDS revealed uniform nanosheet morphology with reduced particle size (80.66 nm at 20 min plasma exposure) and pore size (28.6 nm). XRD analysis demonstrated high crystallinity, with prominent h-BN (002) and h-BN (100) peaks, and Scherrer calculations indicated a crystallite size of ~15 nm. The coatings exhibited minimal disruption to UV-VIS reflectivity, maintaining Ag’s optical properties. Crucially, Vickers hardness tests showed a 39% improvement (38.3 HV vs. 27.6 HV for pristine Ag) due to plasma-induced cross-linking and interfacial adhesion. This work establishes APP as a cost-effective, eco-friendly alternative for growing h-BNNS on temperature-sensitive substrates, with applications in optical mirrors, corrosion-resistant coatings, energy devices and gas sensing.
Keywords
Full Text:
PDFReferences
1. Wang J, Ma F, Liang W, et al. Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures. Materials Today Physics. 2017; 2: 6-34. doi: 10.1016/j.mtphys.2017.07.001
2. Wang S, Li M, Xiang H, et al. A high recognition accuracy tactile sensor based on boron nitride nanosheets/epoxy composites for material identification. Materials Horizons. Published online 2025. doi: 10.1039/d4mh01779j
3. Boldrin L, Scarpa F, Chowdhury R, et al. Effective mechanical properties of hexagonal boron nitride nanosheets. Nanotechnology. 2011; 22(50): 505702. doi: 10.1088/0957-4484/22/50/505702
4. Golberg D, Costa PMFJ, Lourie O, et al. Direct Force Measurements and Kinking under Elastic Deformation of Individual Multiwalled Boron Nitride Nanotubes. Nano Letters. 2007; 7(7): 2146-2151. doi: 10.1021/nl070863r
5. An L, Yu Y, Cai Q, et al. Hexagonal boron nitride nanosheets: Preparation, heat transport property and application as thermally conductive fillers. Progress in Materials Science. 2023; 138: 101154. doi: 10.1016/j.pmatsci.2023.101154
6. Wu W, Zheng M, Lu K, et al. Thermally conductive composites based on hexagonal boron nitride nanosheets for thermal management: Fundamentals to applications. Composites Part A: Applied Science and Manufacturing. 2023; 169: 107533. doi: 10.1016/j.compositesa.2023.107533
7. Yin Z, Bi J, Liang G, et al. Microstructure and mechanical properties of boron nitride nanosheets reinforced eutectic-composition Al2O3/YAG/YSZ composites. Materials Characterization. 2023; 196: 112631. doi: 10.1016/j.matchar.2023.112631
8. Hameed NA, Ali IM, Hassun HK. Calculating surface roughness for a large scale SEM images by mean of image processing. Energy Procedia. 2019; 157: 84-89.
9. Fang H, Bai SL, Wong CP. White graphene”—h-BN based polymeric composites and their application in thermal management. Composites Communications. 2016; 2: 19-24.
10. Fan M, Wang Z, Zhao Y, et al. Porous heterostructure of graphene/hexagonal boron nitride as an efficient electrocatalyst for hydrogen peroxide generation. Carbon Energy. 2022; 5(5). doi: 10.1002/cey2.309
11. Bayramoğlu G, Mudu M. Processing and Characterization of Polypropylene Nanocomposite Films Reinforced with H-BN Nanosheets. Periodica Polytechnica Chemical Engineering. 2023; 67(1): 94-103. doi: 10.3311/PPch.21110
12. Naskar AK, Keum JK, Boeman RG. Polymer matrix nanocomposites for automotive structural components. Nature Nanotechnology. 2016; 11(12): 1026-1030. doi: 10.1038/nnano.2016.262
13. Liu Z, Dibaji A, Li D, et al., Challenges and solutions in surface engineering and assembly of boron nitride nanosheets. Materials Today. 2021; 44: 194-210.
14. Chen Y, Kang Q, Jiang P, et al. Rapid, high-efficient and scalable exfoliation of high-quality boron nitride nanosheets and their application in lithium-sulfur batteries. Nano Research. 2020; 14(7): 2424-2431. doi: 10.1007/s12274-020-3245-3
15. Hayat A, Sohail M, Hamdy MS, et al. Fabrication, characteristics, and applications of boron nitride and their composite nanomaterials. Surfaces and Interfaces. 2022; 29: 101725. doi: 10.1016/j.surfin.2022.101725
16. Deshmukh AR, Jeong JW, Lee SJ, et al. Ultrasound-Assisted Facile Green Synthesis of Hexagonal Boron Nitride Nanosheets and Their Applications. ACS Sustainable Chemistry & Engineering. 2019; 7(20): 17114-17125. doi: 10.1021/acssuschemeng.9b03387
17. Dubey R, Cowles M, Salimi Z, et al. Boron nitride nanosheets, quantum dots, and dots: Synthesis, properties, and biomedical applications. APL Materials. 2025; 13(4). doi: 10.1063/5.0255590
18. Yuan Y, Ru Z, Yi J, et al. Improving the high temperature mechanical properties of boron nitride nanosheet/CuTi composite by increasing grain growth activation energy. Ceramics International. 2025. doi: 10.1016/j.ceramint.2025.03.208
19. Weng Q, Wang X, Wang X, et al. Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chemical Society Reviews. 2016; 45(14): 3989-4012. doi: 10.1039/c5cs00869g
20. Kuang H, Li Y, Huang S, et al. Piezoelectric boron nitride nanosheets for high performance energy harvesting devices. Nano Energy. 2021; 80: 105561. doi: 10.1016/j.nanoen.2020.105561
21. Li LH, Cervenka J, Watanabe K, et al. Strong Oxidation Resistance of Atomically Thin Boron Nitride Nanosheets. ACS Nano. 2014; 8(2): 1457-1462. doi: 10.1021/nn500059s
22. Bhattacharjee A, Jiang H, Li LH, et al. Thermal transport property of boron nitride nanosheets. Applied Physics Reviews. 2024; 11(4). doi: 10.1063/5.0213741
23. Verma A, Parashar A, Packirisamy M. Tailoring the failure morphology of 2D bicrystalline graphene oxide. Journal of Applied Physics. 2018; 124(1). doi: 10.1063/1.5033542
24. Pisharody GR, Sahoo P, Rao DS, et al. Polymer network liquid crystal incorporating a 2D material: Influence of lateral size and concentration of h-BN nanoflakes. Journal of Molecular Liquids. 2025; 418: 126735. doi: 10.1016/j.molliq.2024.126735
25. Cumings J, Zettl A. Field emission and current-voltage properties of boron nitride nanotubes. Solid State Communications. 2004; 129(10): 661-664. doi: 10.1016/j.ssc.2003.11.026
26. Brodu E, Balat-Pichelin M. Emissivity of Boron Nitride and Metals for the Solar Probe Plus Mission. Journal of Spacecraft and Rockets. 2016; 53(6): 1119-1127. doi: 10.2514/1.a33453
27. Chia X, Pumera M. Characteristics and performance of two-dimensional materials for electrocatalysis. Nature Catalysis. 2018; 1(12): 909-921. doi: 10.1038/s41929-018-0181-7
28. Gao Z, Jiang Z, Li J, et al. Anisotropic Mechanics of 2D Materials. Advanced Engineering Materials. 2022; 24(11). doi: 10.1002/adem.202200519
29. Fryauf DM, Phillips AC, Kobayashi NP. Corrosion protection of silver-based telescope mirrors using evaporated anti-oxidation overlayers and aluminum oxide films by atomic layer deposition. Low-Dimensional Materials and Devices 2016. 2016; 9924: 99240S. doi: 10.1117/12.2238749
30. Dean CR, Young AF, Meric I, et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology. 2010; 5(10): 722-726. doi: 10.1038/nnano.2010.172
31. Cai Q, Li LH, Mateti S, et al. Boron Nitride Nanosheets: Thickness‐Related Properties and Applications. Advanced Functional Materials. 2024; 34(40). doi: 10.1002/adfm.202403669
32. Yu R, Yuan X. Rising of boron nitride: A review on boron nitride nanosheets enhanced anti-corrosion coatings. Progress in Organic Coatings. 2024; 186: 107990. doi: 10.1016/j.porgcoat.2023.107990
33. Hossain K, Ahmed MT, Rabu RA, et al. First-principles investigations of As-doped tetragonal boron nitride nanosheets for toxic gas sensing applications. Nanoscale Advances. 2025; 7(1): 354-369. doi: 10.1039/d4na00739e
34. Shelimov KB, Moskovits M. Composite Nanostructures Based on Template-Grown Boron Nitride Nanotubules. Chemistry of Materials. 1999; 12(1): 250-254. doi: 10.1021/cm9905996
35. Golberg D, Bando Y, Kurashima K, et al. Nanotubes of Boron Nitride Filled with Molybdenum Clusters. Journal of Nanoscience and Nanotechnology. 2001; 1(1): 49-54. doi: 10.1166/jnn.2001.008
36. Ma R, Bando Y, Sato T. Coaxial nanocables: Fe nanowires encapsulated in BN nanotubes with intermediate C layers. Chemical physics letters. 2001; 350(1-2): 1-5.
37. Chen X, Wu P, Rousseas M, et al. Boron Nitride Nanotubes Are Noncytotoxic and Can Be Functionalized for Interaction with Proteins and Cells. Journal of the American Chemical Society. 2009; 131(3): 890-891. doi: 10.1021/ja807334b
38. Doğan M, Selek A, Turhan O, et al. Different functional groups functionalized hexagonal boron nitride (h-BN) nanoparticles and multi-walled carbon nanotubes (MWCNT) for hydrogen storage. Fuel. 2021; 303: 121335. doi: 10.1016/j.fuel.2021.121335
39. Kim KB, Jang W, Cho JY, et al. Transparent and flexible piezoelectric sensor for detecting human movement with a boron nitride nanosheet (BNNS). Nano Energy. 2018; 54: 91-98. doi: 10.1016/j.nanoen.2018.09.056
40. Cumings J, Zettl A. Field emission and current-voltage properties of boron nitride nanotubes. Solid State Communications. 2004;129(10): 661-664.
41. Fu M, Yu H, Chen W. Construction of Co3O4 porous rod/graphene heterostructures toward strong and broadband microwave absorption applications. Applied Surface Science. 2023; 622: 156946.
42. Biswas A, Ruan Q, Lee F, et al. Unidirectional domain growth of hexagonal boron nitride thin films. Applied Materials Today. 2023; 30: 101734. doi: 10.1016/j.apmt.2023.101734
43. Kubota Y, Watanabe K, Tsuda O, et al. Deep Ultraviolet Light-Emitting Hexagonal Boron Nitride Synthesized at Atmospheric Pressure. Science. 2007; 317(5840): 932-934. doi: 10.1126/science.1144216
44. Watanabe K, Taniguchi T, Kanda H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nature Materials. 2004; 3(6): 404-409. doi: 10.1038/nmat1134
45. Li, Q. Anisotropic Mechanical Properties of 2-D Materials. In Material Flow Analysis. IntechOpen. 2021. doi: 10.5772/intechopen.96598
46. Grassini S, Angelini E, Mao Y, et al. Aesthetic coatings for silver based alloys with improved protection efficiency. Progress in Organic Coatings. 2011; 72(1-2): 131-137. doi: 10.1016/j.porgcoat.2011.04.003
47. Zhang L, Li X, Shao Y, et al. Improving the quality of GaN crystals by using graphene or hexagonal boron nitride nanosheets substrate. ACS applied materials & interfaces. 2015; 7(8): 4504-4510. doi: 10.1021/am5087775
48. Jiang H, Cai Q, Mateti S, et al. Boron Nitride Nanosheet Dispersion at High Concentrations. ACS Applied Materials & Interfaces. 2021; 13(37): 44751-44759. doi: 10.1021/acsami.1c11795
49. Vijayaraghavan V, Zhang L. Effective mechanical properties and thickness determination of boron nitride nanosheets using molecular dynamics simulation. Nanomaterials. 2018; 8(7): 546. doi: 10.3390/nano8070546
50. Wu M, Gao J, Dai W, et al. A mini review of flexible heat spreaders based on functionalized boron nitride nanosheets. ASME Journal of Heat and Mass Transfer. 2025; 147(3). doi: org/10.1115/1.4067474
51. Gay PA, Bercot P, Pagetti J. The protection of silver against atmospheric attack. Plating and surface finishing. 2004; 91(5): 71-73
52. Hagans PL, Haas CM. Chromate Conversion Coatings. Surface Engineering. 1994; 405-411. doi: 10.31399/asm.hb.v05.a0001275
53. Chen C, Yu B, Jia H, et al. Efficient Preparation of Hydrophilic Boron Nitride Nanosheets for Human Heat Dissipation Applications. ACS Applied Nano Materials. 2024; 7(10): 11487-11497. doi: org/10.1021/acsanm.4c01100
54. Roudi MRR, Ranjkesh M, Korayem AH, Shahsavary R. Review of boron nitride nanosheet-based composites for construction applications. ACS Applied Nano Materials. 2022; 5(12): 17356-17372. doi: 10.1021/acsanm.2c03200
55. Zhang Y, Du H, Ma Y, et al. Hexagonal boron nitride nanosheet for effective ambient N2 fixation to NH3. Nano Research. 2019; 12(4): 919-924. doi: 10.1007/s12274-019-2323-x
56. Petrelli C, Goos A, Ruhlandt-Senge K, Spencer JT. Functionalization of boron nitride nanosheets (BNNSs) by organic polymers: formation of substituted polythiophene–BNNS structures. Journal of Materials Science. 2016; 51: 4952-4962. doi: 10.1007/s10853-016-9800-3
57. Müller F, Hüfner S, Sachdev H, et al. Epitaxial growth of hexagonal boron nitride on Ag(111). Physical Review B. 2010; 82(11). doi: 10.1103/physrevb.82.113406
58. Garnica M, Schwarz M, Ducke J, et al., Comparative study of the interfaces of graphene and h-BN with silver. Physical Review B. 2016; 94(15): 155431.
59. Han R, Khan MH, Angeloski A, et al. Hexagonal Boron Nitride Nanosheets Grown via Chemical Vapor Deposition for Silver Protection. ACS Applied Nano Materials. 2019; 2(5): 2830-2835. doi: 10.1021/acsanm.9b00298
60. Li LH, Xing T, Chen Y, et al. Boron Nitride Nanosheets for Metal Protection. Advanced Materials Interfaces. 2014; 1(8). doi: 10.1002/admi.201300132
61. Corso M, Auwärter W, Muntwiler M, et al. Boron Nitride Nanomesh. Science. 2004; 303(5655): 217-220. doi: 10.1126/science.1091979
62. Goriachko A, He, Knapp M, et al. Self-Assembly of a Hexagonal Boron Nitride Nanomesh on Ru(0001). Langmuir. 2007; 23(6): 2928-2931. doi: 10.1021/la062990t
63. Rohr C, Boo JH, Ho W. The growth of h-BN thin films on silicon using single source precursor. Thin Solid Films. 1998; 322(1-2): 9-13.
64. Deng JX, Zhang XK, Qian Y, et al. Optical properties of hexagonal boron nitride thin films deposited by radio frequency bias magnetron sputtering. Chinese Physics B. 2009; 18(9): 4013-4018. doi: 10.1088/1674-1056/18/9/066
65. Du M, Wu Y, Hao X. A facile chemical exfoliation method to obtain large size boron nitride nanosheets. CrystEngComm. 2013; 15(9): 1782. doi: 10.1039/c2ce26446c
66. Wang N, Yang G, Wang H, et al. A universal method for large-yield and high-concentration exfoliation of two-dimensional hexagonal boron nitride nanosheets. Materials Today. 2019; 27: 33-42. doi: 10.1016/j.mattod.2018.10.039
67. Sainsbury T, Satti A, May P, et al. Oxygen Radical Functionalization of Boron Nitride Nanosheets. Journal of the American Chemical Society. 2012; 134(45): 18758-18771. doi: 10.1021/ja3080665
68. Berner S, Corso M, Widmer R, et al. Boron nitride nanomesh: Functionality from a corrugated monolayer. Angewandte Chemie international edition. 2007; 46(27): 5115-5119. doi: 10.1002/anie.200700234
69. Zhi C, Bando Y, Tang C, Golberg D. Boron nitride nanotubes. Materials Science and Engineering: R: Reports. 2010; 70(3-6): 92-111. doi: 10.1016/j.mser.2010.06.004
70. Zheng X, Wu K, Zhan Y, et al. Heterostructured Alumina/Boron Nitride Nanosheets for Thermal Management of Poly(dimethylsiloxane). ACS Applied Nano Materials. 2024; 7(10): 11803-11815. doi: 10.1021/acsanm.4c01401
71. Nadeem MS, Baoji M, Alam MM, et al. Sr-doped ZnO thin film on a silicon substrate (100) grown by sol-gel method: Structural and optical study. Optical Materials. 2024; 157: 116106. doi: 10.1016/j.optmat.2024.116106
72. Nazarov AS, Demin VN, Grayfer ED, et al. Functionalization and Dispersion of Hexagonal Boron Nitride (h‐BN) Nanosheets Treated with Inorganic Reagents. Chemistry – An Asian Journal. 2012; 7(3): 554-560. doi: 10.1002/asia.201100710
73. Shi Y, Hamsen C, Jia X, et al. Synthesis of Few-Layer Hexagonal Boron Nitride Thin Film by Chemical Vapor Deposition. Nano Letters. 2010; 10(10): 4134-4139. doi: 10.1021/nl1023707
74. Islas R, Chamorro E, Robles J, et al. Borazine: to be or not to be aromatic. Structural Chemistry. 2007; 18(6): 833-839. doi: 10.1007/s11224-007-9229-z
75. Seghi S, Lee J, Economy J. High density carbon fiber/boron nitride matrix composites: Fabrication of composites with exceptional wear resistance. Carbon. 2005; 43(10): 2035-2043. doi: 10.1016/j.carbon.2005.02.033
76. Demin VN, Asanov IP, Akkerman ZL. Chemical vapor deposition of pyrolytic boron nitride from borazine. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 2000; 18(1): 94-98. doi: 10.1116/1.582124
77. Bachmann P, Düll F, Späth F, et al. A HR-XPS study of the formation of h-BN on Ni(111) from the two precursors, ammonia borane and borazine. The Journal of Chemical Physics. 2018; 149(16). doi: 10.1063/1.5051595
78. Konyashin I, Bill J, Aldinger F. Plasma‐assisted CVD of cubic boron nitride. Chemical Vapor Deposition. 1997; 3(5): 239-255. doi: 10.1002/cvde.19970030502
79. Rao CN, Rao KK. Effect of temperature on the lattice parameters of some silver—palladium alloys. Canadian Journal of Physics. 1964; 42(7): 1336-1342. doi: 10.1139/p64-120
80. Paszkowicz W, Pelka JB, Knapp M, et al. Lattice parameters and anisotropic thermal expansion of hexagonal boron nitride in the 10–297.5 K temperature range. Applied Physics A: Materials Science & Processing. 2002; 75(3): 431-435. doi: 10.1007/s003390100999
81. Medasani B, Park YH, Vasiliev I. Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles. Physical Review B. 2007; 75(23). doi: 10.1103/physrevb.75.235436
82. Roy S, Zhang X, Puthirath AB, et al. Structure, Properties and Applications of Two-Dimensional H-BN. Adv Mater. 2021; 33(44): e2101589
83. Ji T, Zhang L, Wang W, et al. Cold plasma modification of boron nitride fillers and its effect on the thermal conductivity of silicone rubber/boron nitride composites. Polymer Composites. 2012; 33(9): 1473-1481. doi: 10.1002/pc.22277
84. Nadeem MS, Munawar T, Alam MM, et al. Effect of Co/Nd co-doping on the structural, optical, and morphological properties of ZnO nanorods grown on silicon substrate Si (100) by hydrothermal method. Journal of Luminescence. 2024; 269: 120484. doi: 10.1016/j.jlumin.2024.120484
85. Achour H, Achour A, Solaymani S, et al. Plasma surface functionalization of boron nitride nano-sheets. Diamond and Related Materials. 2017; 77: 110-115. doi: 10.1016/j.diamond.2017.06.012
86. Thurston RM, Clay JD, Schulte MD. Effect of Atmospheric Plasma Treatment On Polymer Surface Energy and Adhesion. Journal of Plastic Film & Sheeting. 2007; 23(1): 63-78. doi: 10.1177/8756087907078698
87. Qureshi A, Shah S, Pelagade S, et al. Surface modification of polycarbonate by plasma treatment. Journal of Physics: Conference Series. 2010; 208: 012108. doi: 10.1088/1742-6596/208/1/012108
88. Gibeop N, Lee DW, Prasad CV, et al. Effect of plasma treatment on mechanical properties of jute fiber/poly (lactic acid) biodegradable composites. Advanced Composite Materials. 2013; 22(6): 389-399. doi: 10.1080/09243046.2013.843814
89. Turcu IE, Dance JB. X-rays from laser plasmas: generation and applications. Wiley-VCH; 1998.
90. Ahmad AN, Rafique MS, Arslan M, et al. Emission of ions and electrons correlated with soft and hard x-rays evolution from thermal plasma. Physics of Plasmas. 2024; 31(5). doi: 10.1063/5.0197805
91. Mudassar M, Rafique MS, Naveed A, et al. Atmospheric pressure plasma-assisted growth of hexagonal boron nitride nanosheets for improved aluminum hardness. Diamond and Related Materials. 2024; 145: 111076. doi: 10.1016/j.diamond.2024.111076
DOI: https://doi.org/10.24294/can11613
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Author(s)
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.