doi: 10.1016/j.ceramint.2025.03.208

"> doi: 10.1016/j.molliq.2024.126735

"> doi: 10.1016/j.nanoen.2018.09.056

"> doi: 10.1016/j.porgcoat.2011.04.003

"> doi: 10.1021/am5087775

"> doi: 10.3390/nano8070546

"> doi: org/10.1115/1.4067474

"> doi: org/10.1021/acsanm.4c01100

"> doi: 10.1021/acsanm.2c03200

"> doi: 10.1007/s10853-016-9800-3

"> doi: 10.1002/anie.200700234

"> doi: 10.1016/j.mser.2010.06.004

">

Growth of 2D hexagonal boron nitride nanosheets on Ag using atmospheric pressure plasma for enhanced hardness

Muhammad Mudassar, Muhammad Shahid Rafique, Hafsa Mahmood, Muhammad Arslan, Tehreem Arshad, Ayesha Armani, Fakhar Siddiq, Maimoona Kanwal, Imran Shahadat, Fazila Javed

Article ID: 11613
Vol 8, Issue 2, 2025

VIEWS - 71 (Abstract)

Abstract


Two-dimensional hexagonal boron nitride nanosheets (h-BNNS) were synthesized on silver (Ag) substrates via a scalable, room-temperature atmospheric pressure plasma (APP) technique, employing borazine as a precursor. This approach overcomes the limitations of conventional chemical vapor deposition (CVD), which requires high temperatures (>800 °C) and low pressures (10⁻2 Pa). The h-BNNS were characterized using FT-IR spectroscopy, confirming the presence of BN functional groups (805 cm⁻1 and 1632 cm⁻1), while FESEM/EDS revealed uniform nanosheet morphology with reduced particle size (80.66 nm at 20 min plasma exposure) and pore size (28.6 nm). XRD analysis demonstrated high crystallinity, with prominent h-BN (002) and h-BN (100) peaks, and Scherrer calculations indicated a crystallite size of ~15 nm. The coatings exhibited minimal disruption to UV-VIS reflectivity, maintaining Ag’s optical properties. Crucially, Vickers hardness tests showed a 39% improvement (38.3 HV vs. 27.6 HV for pristine Ag) due to plasma-induced cross-linking and interfacial adhesion. This work establishes APP as a cost-effective, eco-friendly alternative for growing h-BNNS on temperature-sensitive substrates, with applications in optical mirrors, corrosion-resistant coatings, energy devices and gas sensing.


Keywords


2D materials; Vicker’s hardness; h-BN nanosheets (h-BNNS); borazine; surface chemistry; atmospheric pressure plasma (APP)

Full Text:

PDF


References


1.         Wang J, Ma F, Liang W, et al. Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures. Materials Today Physics. 2017; 2: 6-34. doi: 10.1016/j.mtphys.2017.07.001

2.         Wang S, Li M, Xiang H, et al. A high recognition accuracy tactile sensor based on boron nitride nanosheets/epoxy composites for material identification. Materials Horizons. Published online 2025. doi: 10.1039/d4mh01779j

3.         Boldrin L, Scarpa F, Chowdhury R, et al. Effective mechanical properties of hexagonal boron nitride nanosheets. Nanotechnology. 2011; 22(50): 505702. doi: 10.1088/0957-4484/22/50/505702

4.         Golberg D, Costa PMFJ, Lourie O, et al. Direct Force Measurements and Kinking under Elastic Deformation of Individual Multiwalled Boron Nitride Nanotubes. Nano Letters. 2007; 7(7): 2146-2151. doi: 10.1021/nl070863r

5.         An L, Yu Y, Cai Q, et al. Hexagonal boron nitride nanosheets: Preparation, heat transport property and application as thermally conductive fillers. Progress in Materials Science. 2023; 138: 101154. doi: 10.1016/j.pmatsci.2023.101154

6.         Wu W, Zheng M, Lu K, et al. Thermally conductive composites based on hexagonal boron nitride nanosheets for thermal management: Fundamentals to applications. Composites Part A: Applied Science and Manufacturing. 2023; 169: 107533. doi: 10.1016/j.compositesa.2023.107533

7.         Yin Z, Bi J, Liang G, et al. Microstructure and mechanical properties of boron nitride nanosheets reinforced eutectic-composition Al2O3/YAG/YSZ composites. Materials Characterization. 2023; 196: 112631. doi: 10.1016/j.matchar.2023.112631

8.         Hameed NA, Ali IM, Hassun HK. Calculating surface roughness for a large scale SEM images by mean of image processing. Energy Procedia. 2019; 157: 84-89.

9.         Fang H, Bai SL, Wong CP. White graphene”—h-BN based polymeric composites and their application in thermal management. Composites Communications. 2016; 2: 19-24.

10.      Fan M, Wang Z, Zhao Y, et al. Porous heterostructure of graphene/hexagonal boron nitride as an efficient electrocatalyst for hydrogen peroxide generation. Carbon Energy. 2022; 5(5). doi: 10.1002/cey2.309

11.      Bayramoğlu G, Mudu M. Processing and Characterization of Polypropylene Nanocomposite Films Reinforced with H-BN Nanosheets. Periodica Polytechnica Chemical Engineering. 2023; 67(1): 94-103. doi: 10.3311/PPch.21110

12.      Naskar AK, Keum JK, Boeman RG. Polymer matrix nanocomposites for automotive structural components. Nature Nanotechnology. 2016; 11(12): 1026-1030. doi: 10.1038/nnano.2016.262

13.      Liu Z, Dibaji A, Li D, et al., Challenges and solutions in surface engineering and assembly of boron nitride nanosheets. Materials Today. 2021; 44: 194-210.

14.      Chen Y, Kang Q, Jiang P, et al. Rapid, high-efficient and scalable exfoliation of high-quality boron nitride nanosheets and their application in lithium-sulfur batteries. Nano Research. 2020; 14(7): 2424-2431. doi: 10.1007/s12274-020-3245-3

15.      Hayat A, Sohail M, Hamdy MS, et al. Fabrication, characteristics, and applications of boron nitride and their composite nanomaterials. Surfaces and Interfaces. 2022; 29: 101725. doi: 10.1016/j.surfin.2022.101725

16.      Deshmukh AR, Jeong JW, Lee SJ, et al. Ultrasound-Assisted Facile Green Synthesis of Hexagonal Boron Nitride Nanosheets and Their Applications. ACS Sustainable Chemistry & Engineering. 2019; 7(20): 17114-17125. doi: 10.1021/acssuschemeng.9b03387

17.      Dubey R, Cowles M, Salimi Z, et al. Boron nitride nanosheets, quantum dots, and dots: Synthesis, properties, and biomedical applications. APL Materials. 2025; 13(4). doi: 10.1063/5.0255590

18.      Yuan Y, Ru Z, Yi J, et al. Improving the high temperature mechanical properties of boron nitride nanosheet/CuTi composite by increasing grain growth activation energy. Ceramics International. 2025. doi: 10.1016/j.ceramint.2025.03.208

19.      Weng Q, Wang X, Wang X, et al. Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chemical Society Reviews. 2016; 45(14): 3989-4012. doi: 10.1039/c5cs00869g

20.      Kuang H, Li Y, Huang S, et al. Piezoelectric boron nitride nanosheets for high performance energy harvesting devices. Nano Energy. 2021; 80: 105561. doi: 10.1016/j.nanoen.2020.105561

21.      Li LH, Cervenka J, Watanabe K, et al. Strong Oxidation Resistance of Atomically Thin Boron Nitride Nanosheets. ACS Nano. 2014; 8(2): 1457-1462. doi: 10.1021/nn500059s

22.      Bhattacharjee A, Jiang H, Li LH, et al. Thermal transport property of boron nitride nanosheets. Applied Physics Reviews. 2024; 11(4). doi: 10.1063/5.0213741

23.      Verma A, Parashar A, Packirisamy M. Tailoring the failure morphology of 2D bicrystalline graphene oxide. Journal of Applied Physics. 2018; 124(1). doi: 10.1063/1.5033542

24.      Pisharody GR, Sahoo P, Rao DS, et al. Polymer network liquid crystal incorporating a 2D material: Influence of lateral size and concentration of h-BN nanoflakes. Journal of Molecular Liquids. 2025; 418: 126735. doi: 10.1016/j.molliq.2024.126735

25.      Cumings J, Zettl A. Field emission and current-voltage properties of boron nitride nanotubes. Solid State Communications. 2004; 129(10): 661-664. doi: 10.1016/j.ssc.2003.11.026

26.      Brodu E, Balat-Pichelin M. Emissivity of Boron Nitride and Metals for the Solar Probe Plus Mission. Journal of Spacecraft and Rockets. 2016; 53(6): 1119-1127. doi: 10.2514/1.a33453

27.      Chia X, Pumera M. Characteristics and performance of two-dimensional materials for electrocatalysis. Nature Catalysis. 2018; 1(12): 909-921. doi: 10.1038/s41929-018-0181-7

28.      Gao Z, Jiang Z, Li J, et al. Anisotropic Mechanics of 2D Materials. Advanced Engineering Materials. 2022; 24(11). doi: 10.1002/adem.202200519

29.      Fryauf DM, Phillips AC, Kobayashi NP. Corrosion protection of silver-based telescope mirrors using evaporated anti-oxidation overlayers and aluminum oxide films by atomic layer deposition. Low-Dimensional Materials and Devices 2016. 2016; 9924: 99240S. doi: 10.1117/12.2238749

30.      Dean CR, Young AF, Meric I, et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology. 2010; 5(10): 722-726. doi: 10.1038/nnano.2010.172

31.      Cai Q, Li LH, Mateti S, et al. Boron Nitride Nanosheets: Thickness‐Related Properties and Applications. Advanced Functional Materials. 2024; 34(40). doi: 10.1002/adfm.202403669

32.      Yu R, Yuan X. Rising of boron nitride: A review on boron nitride nanosheets enhanced anti-corrosion coatings. Progress in Organic Coatings. 2024; 186: 107990. doi: 10.1016/j.porgcoat.2023.107990

33.      Hossain K, Ahmed MT, Rabu RA, et al. First-principles investigations of As-doped tetragonal boron nitride nanosheets for toxic gas sensing applications. Nanoscale Advances. 2025; 7(1): 354-369. doi: 10.1039/d4na00739e

34.      Shelimov KB, Moskovits M. Composite Nanostructures Based on Template-Grown Boron Nitride Nanotubules. Chemistry of Materials. 1999; 12(1): 250-254. doi: 10.1021/cm9905996

35.      Golberg D, Bando Y, Kurashima K, et al. Nanotubes of Boron Nitride Filled with Molybdenum Clusters. Journal of Nanoscience and Nanotechnology. 2001; 1(1): 49-54. doi: 10.1166/jnn.2001.008

36.      Ma R, Bando Y, Sato T. Coaxial nanocables: Fe nanowires encapsulated in BN nanotubes with intermediate C layers. Chemical physics letters. 2001; 350(1-2): 1-5.

37.      Chen X, Wu P, Rousseas M, et al. Boron Nitride Nanotubes Are Noncytotoxic and Can Be Functionalized for Interaction with Proteins and Cells. Journal of the American Chemical Society. 2009; 131(3): 890-891. doi: 10.1021/ja807334b

38.      Doğan M, Selek A, Turhan O, et al. Different functional groups functionalized hexagonal boron nitride (h-BN) nanoparticles and multi-walled carbon nanotubes (MWCNT) for hydrogen storage. Fuel. 2021; 303: 121335. doi: 10.1016/j.fuel.2021.121335

39.      Kim KB, Jang W, Cho JY, et al. Transparent and flexible piezoelectric sensor for detecting human movement with a boron nitride nanosheet (BNNS). Nano Energy. 2018; 54: 91-98. doi: 10.1016/j.nanoen.2018.09.056

40.      Cumings J, Zettl A. Field emission and current-voltage properties of boron nitride nanotubes. Solid State Communications. 2004;129(10): 661-664.

41.      Fu M, Yu H, Chen W. Construction of Co3O4 porous rod/graphene heterostructures toward strong and broadband microwave absorption applications. Applied Surface Science. 2023; 622: 156946.

42.      Biswas A, Ruan Q, Lee F, et al. Unidirectional domain growth of hexagonal boron nitride thin films. Applied Materials Today. 2023; 30: 101734. doi: 10.1016/j.apmt.2023.101734

43.      Kubota Y, Watanabe K, Tsuda O, et al. Deep Ultraviolet Light-Emitting Hexagonal Boron Nitride Synthesized at Atmospheric Pressure. Science. 2007; 317(5840): 932-934. doi: 10.1126/science.1144216

44.      Watanabe K, Taniguchi T, Kanda H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nature Materials. 2004; 3(6): 404-409. doi: 10.1038/nmat1134

45.      Li, Q. Anisotropic Mechanical Properties of 2-D Materials. In Material Flow Analysis. IntechOpen. 2021. doi: 10.5772/intechopen.96598

46.      Grassini S, Angelini E, Mao Y, et al. Aesthetic coatings for silver based alloys with improved protection efficiency. Progress in Organic Coatings. 2011; 72(1-2): 131-137. doi: 10.1016/j.porgcoat.2011.04.003

47.       Zhang L, Li X, Shao Y, et al. Improving the quality of GaN crystals by using graphene or hexagonal boron nitride nanosheets substrate. ACS applied materials & interfaces. 2015; 7(8): 4504-4510. doi: 10.1021/am5087775

48.      Jiang H, Cai Q, Mateti S, et al. Boron Nitride Nanosheet Dispersion at High Concentrations. ACS Applied Materials & Interfaces. 2021; 13(37): 44751-44759. doi: 10.1021/acsami.1c11795

49.      Vijayaraghavan V, Zhang L. Effective mechanical properties and thickness determination of boron nitride nanosheets using molecular dynamics simulation. Nanomaterials. 2018; 8(7): 546. doi: 10.3390/nano8070546

50.      Wu M, Gao J, Dai W, et al. A mini review of flexible heat spreaders based on functionalized boron nitride nanosheets. ASME Journal of Heat and Mass Transfer. 2025; 147(3). doi: org/10.1115/1.4067474

51.      Gay PA, Bercot P, Pagetti J. The protection of silver against atmospheric attack. Plating and surface finishing. 2004; 91(5): 71-73

52.      Hagans PL, Haas CM. Chromate Conversion Coatings. Surface Engineering. 1994; 405-411. doi: 10.31399/asm.hb.v05.a0001275

53.      Chen C, Yu B, Jia H, et al. Efficient Preparation of Hydrophilic Boron Nitride Nanosheets for Human Heat Dissipation Applications. ACS Applied Nano Materials. 2024; 7(10): 11487-11497. doi: org/10.1021/acsanm.4c01100

54.      Roudi MRR, Ranjkesh M, Korayem AH, Shahsavary R. Review of boron nitride nanosheet-based composites for construction applications. ACS Applied Nano Materials. 2022; 5(12): 17356-17372. doi: 10.1021/acsanm.2c03200

55.      Zhang Y, Du H, Ma Y, et al. Hexagonal boron nitride nanosheet for effective ambient N2 fixation to NH3. Nano Research. 2019; 12(4): 919-924. doi: 10.1007/s12274-019-2323-x

56.      Petrelli C, Goos A, Ruhlandt-Senge K, Spencer JT. Functionalization of boron nitride nanosheets (BNNSs) by organic polymers: formation of substituted polythiophene–BNNS structures. Journal of Materials Science. 2016; 51: 4952-4962. doi: 10.1007/s10853-016-9800-3

57.      Müller F, Hüfner S, Sachdev H, et al. Epitaxial growth of hexagonal boron nitride on Ag(111). Physical Review B. 2010; 82(11). doi: 10.1103/physrevb.82.113406

58.      Garnica M, Schwarz M, Ducke J, et al., Comparative study of the interfaces of graphene and h-BN with silver. Physical Review B. 2016; 94(15): 155431.

59.      Han R, Khan MH, Angeloski A, et al. Hexagonal Boron Nitride Nanosheets Grown via Chemical Vapor Deposition for Silver Protection. ACS Applied Nano Materials. 2019; 2(5): 2830-2835. doi: 10.1021/acsanm.9b00298

60.      Li LH, Xing T, Chen Y, et al. Boron Nitride Nanosheets for Metal Protection. Advanced Materials Interfaces. 2014; 1(8). doi: 10.1002/admi.201300132

61.      Corso M, Auwärter W, Muntwiler M, et al. Boron Nitride Nanomesh. Science. 2004; 303(5655): 217-220. doi: 10.1126/science.1091979

62.      Goriachko A, He, Knapp M, et al. Self-Assembly of a Hexagonal Boron Nitride Nanomesh on Ru(0001). Langmuir. 2007; 23(6): 2928-2931. doi: 10.1021/la062990t

63.      Rohr C, Boo JH, Ho W. The growth of h-BN thin films on silicon using single source precursor. Thin Solid Films. 1998; 322(1-2): 9-13.

64.      Deng JX, Zhang XK, Qian Y, et al. Optical properties of hexagonal boron nitride thin films deposited by radio frequency bias magnetron sputtering. Chinese Physics B. 2009; 18(9): 4013-4018. doi: 10.1088/1674-1056/18/9/066

65.      Du M, Wu Y, Hao X. A facile chemical exfoliation method to obtain large size boron nitride nanosheets. CrystEngComm. 2013; 15(9): 1782. doi: 10.1039/c2ce26446c

66.      Wang N, Yang G, Wang H, et al. A universal method for large-yield and high-concentration exfoliation of two-dimensional hexagonal boron nitride nanosheets. Materials Today. 2019; 27: 33-42. doi: 10.1016/j.mattod.2018.10.039

67.      Sainsbury T, Satti A, May P, et al. Oxygen Radical Functionalization of Boron Nitride Nanosheets. Journal of the American Chemical Society. 2012; 134(45): 18758-18771. doi: 10.1021/ja3080665

68.      Berner S, Corso M, Widmer R, et al. Boron nitride nanomesh: Functionality from a corrugated monolayer. Angewandte Chemie international edition. 2007; 46(27): 5115-5119. doi: 10.1002/anie.200700234

69.      Zhi C, Bando Y, Tang C, Golberg D. Boron nitride nanotubes. Materials Science and Engineering: R: Reports. 2010; 70(3-6): 92-111. doi: 10.1016/j.mser.2010.06.004

70.      Zheng X, Wu K, Zhan Y, et al. Heterostructured Alumina/Boron Nitride Nanosheets for Thermal Management of Poly(dimethylsiloxane). ACS Applied Nano Materials. 2024; 7(10): 11803-11815. doi: 10.1021/acsanm.4c01401

71.      Nadeem MS, Baoji M, Alam MM, et al. Sr-doped ZnO thin film on a silicon substrate (100) grown by sol-gel method: Structural and optical study. Optical Materials. 2024; 157: 116106. doi: 10.1016/j.optmat.2024.116106

72.      Nazarov AS, Demin VN, Grayfer ED, et al. Functionalization and Dispersion of Hexagonal Boron Nitride (h‐BN) Nanosheets Treated with Inorganic Reagents. Chemistry – An Asian Journal. 2012; 7(3): 554-560. doi: 10.1002/asia.201100710

73.      Shi Y, Hamsen C, Jia X, et al. Synthesis of Few-Layer Hexagonal Boron Nitride Thin Film by Chemical Vapor Deposition. Nano Letters. 2010; 10(10): 4134-4139. doi: 10.1021/nl1023707

74.      Islas R, Chamorro E, Robles J, et al. Borazine: to be or not to be aromatic. Structural Chemistry. 2007; 18(6): 833-839. doi: 10.1007/s11224-007-9229-z

75.      Seghi S, Lee J, Economy J. High density carbon fiber/boron nitride matrix composites: Fabrication of composites with exceptional wear resistance. Carbon. 2005; 43(10): 2035-2043. doi: 10.1016/j.carbon.2005.02.033

76.      Demin VN, Asanov IP, Akkerman ZL. Chemical vapor deposition of pyrolytic boron nitride from borazine. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 2000; 18(1): 94-98. doi: 10.1116/1.582124

77.      Bachmann P, Düll F, Späth F, et al. A HR-XPS study of the formation of h-BN on Ni(111) from the two precursors, ammonia borane and borazine. The Journal of Chemical Physics. 2018; 149(16). doi: 10.1063/1.5051595

78.      Konyashin I, Bill J, Aldinger F. Plasma‐assisted CVD of cubic boron nitride. Chemical Vapor Deposition. 1997; 3(5): 239-255. doi: 10.1002/cvde.19970030502

79.      Rao CN, Rao KK. Effect of temperature on the lattice parameters of some silver—palladium alloys. Canadian Journal of Physics. 1964; 42(7): 1336-1342. doi: 10.1139/p64-120

80.      Paszkowicz W, Pelka JB, Knapp M, et al. Lattice parameters and anisotropic thermal expansion of hexagonal boron nitride in the 10–297.5 K temperature range. Applied Physics A: Materials Science & Processing. 2002; 75(3): 431-435. doi: 10.1007/s003390100999

81.      Medasani B, Park YH, Vasiliev I. Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles. Physical Review B. 2007; 75(23). doi: 10.1103/physrevb.75.235436

82.      Roy S, Zhang X, Puthirath AB, et al. Structure, Properties and Applications of Two-Dimensional H-BN. Adv Mater. 2021; 33(44): e2101589

83.      Ji T, Zhang L, Wang W, et al. Cold plasma modification of boron nitride fillers and its effect on the thermal conductivity of silicone rubber/boron nitride composites. Polymer Composites. 2012; 33(9): 1473-1481. doi: 10.1002/pc.22277

84.      Nadeem MS, Munawar T, Alam MM, et al. Effect of Co/Nd co-doping on the structural, optical, and morphological properties of ZnO nanorods grown on silicon substrate Si (100) by hydrothermal method. Journal of Luminescence. 2024; 269: 120484. doi: 10.1016/j.jlumin.2024.120484

85.      Achour H, Achour A, Solaymani S, et al. Plasma surface functionalization of boron nitride nano-sheets. Diamond and Related Materials. 2017; 77: 110-115. doi: 10.1016/j.diamond.2017.06.012

86.      Thurston RM, Clay JD, Schulte MD. Effect of Atmospheric Plasma Treatment On Polymer Surface Energy and Adhesion. Journal of Plastic Film & Sheeting. 2007; 23(1): 63-78. doi: 10.1177/8756087907078698

87.      Qureshi A, Shah S, Pelagade S, et al. Surface modification of polycarbonate by plasma treatment. Journal of Physics: Conference Series. 2010; 208: 012108. doi: 10.1088/1742-6596/208/1/012108

88.      Gibeop N, Lee DW, Prasad CV, et al. Effect of plasma treatment on mechanical properties of jute fiber/poly (lactic acid) biodegradable composites. Advanced Composite Materials. 2013; 22(6): 389-399. doi: 10.1080/09243046.2013.843814

89.      Turcu IE, Dance JB. X-rays from laser plasmas: generation and applications. Wiley-VCH; 1998.

90.      Ahmad AN, Rafique MS, Arslan M, et al. Emission of ions and electrons correlated with soft and hard x-rays evolution from thermal plasma. Physics of Plasmas. 2024; 31(5). doi: 10.1063/5.0197805

91.      Mudassar M, Rafique MS, Naveed A, et al. Atmospheric pressure plasma-assisted growth of hexagonal boron nitride nanosheets for improved aluminum hardness. Diamond and Related Materials. 2024; 145: 111076. doi: 10.1016/j.diamond.2024.111076




DOI: https://doi.org/10.24294/can11613

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Author(s)

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.