Role of aluminium doping in tailoring the structural, electrical, and magnetic characteristics of Li-Co ferrites using sol-gel auto-combustion synthesis

Khushal P. Mudholkar, Madhu G. Kottad, Shivanand V. Angadi, Lingaraj D. Horakeri, Sushant S. Kakati, Shridhar N. Mathad, Chidanandayya S. Hiremath, Rangappa B. Pujar, Mahesh S. Bannur

Article ID: 11330
Vol 8, Issue 2, 2025

VIEWS - 167 (Abstract)

Abstract


This study examined the impact of aluminium doping on the structural, electrical, and magnetic properties of Li(0.5)Co(0.75)AlxFe(2−x)O4 spinel ferrites (x =0.15 to 0.60). The samples were synthesised using the sol-gel auto-combustion technique, and they were examined using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), dielectric measurements, and vibrating sample magnetometry (VSM). All samples possessed a single-phase cubic spinel structure with Fd-3m space group, according to XRD analyses. SEM images showed the creation of homogeneous particles with an average size of about 21 nm. All samples had spinel ferrite phases, confirmed from FTIR spectra. DC electrical conductivity studies showed that the conductivity increased with increasing aluminium content up to x = 0.45 before dropping at x = 0.60. The maximum saturation magnetization value was found at x = 0.45, according to VSM measurements, which demonstrated that the magnetic characteristics were strongly correlated with the amount of aluminium.


Keywords


ferrites; structural studies; morphology; magnetic materials

Full Text:

PDF


References


1.         Kakati S, Rendale MK, Mathad SN. Synthesis, Characterization, and Applications of CoFe2O4 and M-CoFe2O4 (M = Ni, Zn, Mg, Cd, Cu, RE) Ferrites: A Review. International Journal of Self-Propagating High-Temperature Synthesis. 2021; 30(4): 189-219. doi: 10.3103/s1061386221040038

2.         Choi W, Mallesh S, Ko H, et al. Fabrication of thin and lightweight cobalt-coated quartz fiber/aluminosilicate composites for high-temperature microwave absorption. Ceramics International. 2023; 49(9): 13586-13600. doi: 10.1016/j.ceramint.2022.12.235

3.         Venkatachalapathy R, Manoharan C, Venkateshwarlu M, et al. Solution combustion route for Ni and Al co-doped lithium ferrite nanoparticles: Synthesis, the effect of doping on the structural, morphological, optical, and magnetic properties. Ceramics International. 2023; 49(4): 6594-6607. doi: 10.1016/j.ceramint.2022.10.212

4.         Xiao C, Wang B, Zhao D, et al. Comprehensive investigation on Lithium batteries for electric and hybrid-electric unmanned aerial vehicle applications. Thermal Science and Engineering Progress. 2023; 38: 101677. doi: 10.1016/j.tsep.2023.101677

5.         Kakati S.S, Makandar T.M, Rendale M.K, et al. Green Synthesis Approach for Nanosized Cobalt Doped Mg–Zn through Citrus Lemon Mediated Sol–Gel Auto Combustion Method. International Journal of Self-Propagating High-Temperature Synthesis. 2022; 31(3): 131-137. doi: 10.3103/s1061386222030049

6.         Kashid P, Shedam M, Kulkarni AB, et al. Synthesis and Structural Studies of Nano Co0.85Cd0.15Fe2O4 Ferrite by Co-Precipitation Method. Journal of Advanced Physics. 2017; 6(4): 545-548. doi: 10.1166/jap.2017.1373

7.         Hu S, Wang C, Zhou L, et al. Hydrothermal-assisted synthesis of surface aluminum-doped LiCoO2 nanobricks for high-rate lithium-ion batteries. Ceramics International. 2018; 44(13): 14995-15000. doi: 10.1016/j.ceramint.2018.05.128

8.         Zhang W, Gan J, Li L, et al. Tailoring of optical and electrical properties of transparent and conductive Al-doped ZnO films by adjustment of Al concentration. Materials Science in Semiconductor Processing. 2018; 74: 147-153. doi: 10.1016/j.mssp.2017.10.028

9.         Bu IYY. Sol–gel production of Cu/Al co-doped zinc oxide: Effect of Al co-doping concentration on its structure and optoelectronic properties. Superlattices and Microstructures. 2014; 76: 115-124. doi: 10.1016/j.spmi.2014.09.011

10.      Tseng YT, Choudhury A, Peng KC, et al. Concentration effect of aluminum nitrate on the Crystalline−Amorphous transition between Al-doped ZnO nanorods and nanostructures prepared by electrochemical deposition. Electrochimica Acta. 2019; 308: 350-362. doi: 10.1016/j.electacta.2019.04.006

11.      Kalyani CH, Subba Reddy IV, Raju P, et al. Effects of Al3+ concentration on the structural, dielectric and conductivity properties of Al-doped ZnO. Materials Today: Proceedings. 2023; 80: 1111-1115. doi: 10.1016/j.matpr.2022.12.005

12.      Wang D, Qu Z, Wang Y, et al. Effects of Al-doping concentration on the structure and electromagnetic shielding properties of transparent Ag thin films. Optical Materials. 2023; 135: 113353. doi: 10.1016/j.optmat.2022.113353

13.      Srinivas C, Naga Praveen K, Ranjith Kumar E, et al. Microwave absorption properties of rare earth (RE) ions doped Mn–Ni–Zn nanoferrites (RE = Dy, Sm, Ce, Er) to shield electromagnetic interference (EMI) in X-band frequency. Ceramics International. 2022; 48(22): 33891-33900. doi: 10.1016/j.ceramint.2022.07.338

14.      El-Moneim AA, Mazen SA, Abu-Elsaad NI. Evaluating the theoretical elastic properties of Li-Mn ferrites: A new approach. Materials Chemistry and Physics. 2022; 291: 126679. doi: 10.1016/j.matchemphys.2022.126679

15.      Totagi RS, Choudhari NJ, Kakati SS, et al. Electrical properties of Ni-Mg-Cu nanoferrites synthesized by sucrose precursor technique. Scholars Research Library Der Pharma Chemica. 2015; 7(3): 11–15.

16.      Shidaganal LC, Gandhad SS, Hiremath CS, et al. Effect of Al doping on structural and mechanical properties of Ni-Cd ferrites. AIP Conference Proceedings. 2018; 1953: 130025. doi: 10.1063/1.5033169

17.      Adarakatti SN, Pattar VS, Korishettar PK, et al. Synthesis, Structural and Electrical Studies of Li-Ni-Cu Nano Ferrites. Acta Chemica Iasi. 2018; 26(1): 1-12. doi: 10.2478/achi-2018-0001

18.      Pujar AS, Kulkarni AB, Mathad SN,et al. Structural, Electrical, and IR Properties of CuxCo1–xFe2O4(x= 0, 0.4, 1.0) Prepared by Solid-State Method. International Journal of Self-Propagating High-Temperature Synthesis. 2018;27: 174–179.

19.      Patil MR, Rendale MK, Mathad SN, et al. FTIR spectra and elastic properties of Cd-substituted Ni–Zn ferrites. International Journal of Self-Propagating High-Temperature Synthesis. 2017; 26(1): 33–39.

20.      Durgadsimi SU. Synthesis and structural analysis of nickel ferrite synthesized by co-precipitation method. Eurasian Physical Technical Journal. 2021; 18(4 (38)): 14-19. doi: 10.31489/2021no4/14-19

21.      Shashidharagowda H, Mathad S, Abbigeri M. Structural, vibrational and magnetic characterization of copper doped CoMn2O4 nano-particles synthesized by chemical route. Science of Sintering. 2021; 53(4): 429-444. doi: 10.2298/sos2104429s

22.      Yang M, Zhou W, Liu Y, et al. LiCoxNi1−xO2 with high dielectric and microwave absorption performance in X-band. Ceramics International. 2019; 45(14): 17800-17805. doi: 10.1016/j.ceramint.2019.05.351

23.      Goel S, Garg A, Baskey H.B, et al. Studies on dielectric and magnetic properties of barium hexaferrite and bio-waste derived activated carbon composites for X-band microwave absorption, Journal of Alloys and Compounds. 2021.

24.      Mathad S.N, Jadhav R.N, Pawar R.P, et al. Dielectric spectroscopy and microwave conductivity of bismuth strontium manganites at high frequencies. Electronic Materials Letters. 2013; 9(1): 87-93. doi: 10.1007/s13391-012-2109-8

25.      Mudholakar KP, Vinaykumar S, Tambe V.V, et al. Effect of Sintering condition on Magnetization and Microstructure of CuxCo(1-x)Fe2O4 Ferrites. International Journal of Advanced Science and Engineering. 2022; 9(2): 2678-2685. doi: 10.29294/ijase.9.2.2022.2678-2685

26.      Zeeshan T, Anjum S, Waseem S, et al. Influence of zinc substitution on structural, elastic, magnetic and optical properties of cobalt chromium ferrites. Materials Science-Poland. 2021; 39(1): 139-151. doi: 10.2478/msp-2021-0008

27.      Jahan N,Khandaker J.I,Das H, et al. Structural and magnetic properties analysis of trivalent Al3+ ions substituted Ni-Zn-Co nano-spinel ferrites. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2021; (4):045001.

28.      Modi KB, Gajera J.D, Chhantbar M.C, et al. Structural properties of magnesium and aluminium co-substituted lithium ferrite. Materials Letters. 2003.

29.      Kuru M, Kılıç Dokan F, Şaşmaz Kuru T. Structural, electrical and magnetic characterization of Al3+ substituted Mg–Zn ferrites. Applied Physics A. 2022; 128(4). doi: 10.1007/s00339-022-05443-x




DOI: https://doi.org/10.24294/can11330

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Author(s)

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.