Development of coumarin composite with graphene oxide influence: Preparation, characterization, and application
Vol 8, Issue 3, 2025
VIEWS - 43 (Abstract)
Abstract
The tunable conduction of coumarin-based composites has attracted considerable attention in a wide range of applications due to their unique chemical structures and fascinating properties. The incorporation of graphene oxide (GO) further enhances coumarin properties, including strong fluorescence, reversible photodimerization, and good thermal stability, expanding their potential use in advanced technological applications. This review describes the developmental evolution from GO, GO-polymer, and coumarin-based polymer to the coumarin-GO composite, concerning their synthesis, characterization, unique properties, and wide applications. We especially highlight the outstanding progress in the synthesis and structural characteristics along with their physical and chemical properties. Therefore, understanding their structure-property relations is very important to acquire scientific and technological information for developing the advanced materials with interesting performance in optoelectronic and energy applications as well as in the biomedical field. Given the expertise of influenced factors (e.g., dispersion quality, functionalization, and loading level) on the overall extent of enhancement, future research directions include optimizing coumarin-GO composites by varying the nanofiller types and coumarin compositions, which could significantly promote the development of next-generation polymer composites for specific applications.
Keywords
Full Text:
PDFReferences
1. Kausar A, Ullah-Shah M, Khan MY. An Investigation on Novel Poly(thiourea-amide)-based Nanocomposites Reinforced with Silica Nanotubes. Polymer-Plastics Technology and Engineering. 2014; 53(3): 223-228. doi: 10.1080/03602559.2013.843701
2. Safavi-Mirmahalleh SA, Golshan M, Gheitarani B, et al. A review on applications of coumarin and its derivatives in preparation of photo-responsive polymers. European Polymer Journal. 2023; 198: 112430. doi: 10.1016/j.eurpolymj.2023.112430
3. Cazin I, Rossegger E, Guedes de la Cruz G, et al. Recent Advances in Functional Polymers Containing Coumarin Chromophores. Polymers. Available online: https://www.mdpi.com/2073-4360/13/1/56 (accessed 9 November 2024).
4. Bertrand O, Gohy JF. Photo-responsive polymers: synthesis and applications. Polymer Chemistry. 2017; 8(1): 52-73. doi: 10.1039/c6py01082b
5. Mardani H, Roghani-Mamaqani H, Shahi S, et al. Coumarin-Containing Block Copolymers as Carbon Dioxide Chemosensors based on a Fluorescence Quenching Mechanism. ACS Applied Polymer Materials. 2022; 4(3): 1816-1825. doi: 10.1021/acsapm.1c01625
6. Gupta D, Guliani E, Bajaj K. Coumarin—Synthetic Methodologies, Pharmacology, and Application as Natural Fluorophore. Topics in Current Chemistry. 2024; 382(2). doi: 10.1007/s41061-024-00462-z
7. Kouini B, Belhamdi H, Graphene and Graphene Oxide as Nanofiller for Polymer Blends. In: Sahoo S, Tiwari SK, Nayak GC (eds) Surf. Eng. Graphene. Springer International Publishing, Cham, 2019, pp 231–257
8. Chen D, Feng H, Li J. Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications. Chemical Reviews. 2012; 112(11): 6027-6053. doi: 10.1021/cr300115g
9. Pengsomjit U, Alabdo F, Karuwan C, et al. Innovative Graphene-Based Nanocomposites for Improvement of Electrochemical Sensors: Synthesis, Characterization, and Applications. Critical Reviews in Analytical Chemistry; 2024. doi: 10.1080/10408347.2024.2343854
10. Silva M, Alves NM, Paiva MC. Graphene‐polymer nanocomposites for biomedical applications. Polymers for Advanced Technologies. 2017; 29(2): 687-700. doi: 10.1002/pat.4164
11. Moharana S, Sahu BB, Singh L, Mahaling RN. Graphene-Based Polymer Composites: Physical and Chemical Properties. Carbon Nanostructures. Springer International Publishing, Cham; 2022.
12. Yuan B, Wang B, Hu Y, et al. Electrical conductive and graphitizable polymer nanofibers grafted on graphene nanosheets: Improving electrical conductivity and flame retardancy of polypropylene. Composites Part A: Applied Science and Manufacturing. 2016; 84: 76-86. doi: 10.1016/j.compositesa.2016.01.003
13. Kumar A, Sharma K, Dixit AR. A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications. Journal of Materials Science. 2018; 54(8): 5992-6026. doi: 10.1007/s10853-018-03244-3
14. Fu X, Lin J, Liang Z, et al. Graphene oxide as a promising nanofiller for polymer composite. Surfaces and Interfaces. 2023; 37: 102747. doi: 10.1016/j.surfin.2023.102747
15. Thang NH, Chien TB, Cuong DX. Polymer-Based Hydrogels Applied in Drug Delivery: An Overview. Gels. 2023; 9(7): 523. doi: 10.3390/gels9070523
16. Mishra S, Shah H, Patel A, et al. Applications of Bioengineered Polymer in the Field of Nano-Based Drug Delivery. ACS Omega. 2023; 9(1): 81-96. doi: 10.1021/acsomega.3c07356
17. Wu J, Lin H, Moss DJ, et al. Graphene oxide for photonics, electronics and optoelectronics. Nature Reviews Chemistry. 2023; 7(3): 162-183. doi: 10.1038/s41570-022-00458-7
18. Gao W, Alemany LB, Ci L, et al. New insights into the structure and reduction of graphite oxide. Nature Chemistry. 2009; 1(5): 403-408. doi: 10.1038/nchem.281
19. Sun L. Structure and synthesis of graphene oxide. Chinese Journal of Chemical Engineering. 2019; 27(10): 2251-2260. doi: 10.1016/j.cjche.2019.05.003
20. Yu W, Sisi L, Haiyan Y, et al. Progress in the functional modification of graphene/graphene oxide: a review. RSC Advances. 2020; 10(26): 15328-15345. doi: 10.1039/d0ra01068e
21. Lowe SE, Zhong YL. Challenges of Industrial‐Scale Graphene Oxide Production. Graphene Oxide; 2016. doi: 10.1002/9781119069447.ch13
22. Poh HL, Šaněk F, Ambrosi A, et al. Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties. Nanoscale. 2012; 4(11): 3515. doi: 10.1039/c2nr30490b
23. Panicker NJ, Das J, Sahu PP. Synthesis of highly oxidized graphene (HOG) by using HNO3 and KMnO4 as oxidizing agents. Materials Today: Proceedings. 2021; 46: 6270-6274. doi: 10.1016/j.matpr.2020.05.037
24. Cao K, Tian Z, Zhang X, et al. Green preparation of graphene oxide nanosheets as adsorbent. Scientific Reports. 2023; 13 (1). doi: 10.1038/s41598-023-36595-2
25. Staudenmaier L (1898) Verfahren zur Darstellung der Graphitsäure (Process for the preparation of graphitic acid). Berichte Dtsch Chem Ges 31:1481–1487 (Reports Dtsch Chem Ges 31:1481–1487)
26. Anegbe B, Ifijen IH, Maliki M, et al. Graphene oxide synthesis and applications in emerging contaminant removal: a comprehensive review. Environmental Sciences Europe. 2024; 36(1). doi: 10.1186/s12302-023-00814-4
27. Gao W. Graphene Oxide. Springer International Publishing; 2015. doi: 10.1007/978-3-319-15500-5
28. Ismail NA. Graphene Oxide Functionalization as Friction Modifier Additives for Lube Oil. University of Malaya (Malaysia); 2017.
29. Khan MU, Shaida MA. Reduction mechanism of graphene oxide including various parameters affecting the C/O ratio. Materials Today Communications. 2023; 36: 106577. doi: 10.1016/j.mtcomm.2023.106577
30. Yang J. Synthesis of RGO/NiFe2O4 nanocomposites in supercritical water: Effect of reaction conditions. The University of Tokyo; 2021.
31. Ung YT, Tan EKW, Beh KP, et al. Synthesis of Graphene-based Nanoparticles for Biomedical Applications – a Mini-review. Philippine Journal of Science. 2023; 152(5). doi: 10.56899/152.05.34
32. Yu H, Zhang B, Bulin C, et al. High-efficient Synthesis of Graphene Oxide Based on Improved Hummers Method. Scientific Reports. 2016; 6(1). doi: 10.1038/srep36143
33. Dreyer DR, Todd AD, Bielawski CW. Harnessing the chemistry of graphene oxide. Chemical Society Reviews. 2014; 43(15): 5288. doi: 10.1039/c4cs00060a
34. Liu J, Chen S, Liu Y, et al. Progress in preparation, characterization, surface functional modification of graphene oxide: A review. Journal of Saudi Chemical Society. 2022; 26(6): 101560. doi: 10.1016/j.jscs.2022.101560
35. Weiss NO, Zhou H, Liao L, et al. Graphene: An Emerging Electronic Material. Advanced Materials. 2012; 24(43): 5782-5825. doi: 10.1002/adma.201201482
36. Arshad MU, Wei C, Li Y, et al. Mechanics – Microstructure relations in 1D, 2D and mixed dimensional carbon nanomaterials. Carbon. 2023; 204: 162-190. doi: 10.1016/j.carbon.2022.12.042
37. Xu X, Zhang Z, Yao W. Mechanical Properties of Graphene Oxide Coupled by Multi-Physical Field: Grain Boundaries and Functional Groups. Crystals; 2021.
38. Wan C, Chen B. Reinforcement and interphase of polymer/graphene oxide nanocomposites. Journal of Materials Chemistry. 2012; 22(8): 3637. doi: 10.1039/c2jm15062j
39. Zhang C, Lv W, Xie X, et al. Towards low temperature thermal exfoliation of graphite oxide for graphene production. Carbon. 2013; 62: 11-24. doi: 10.1016/j.carbon.2013.05.033
40. Sun P, Wang Y, Liu H, et al. Structure Evolution of Graphene Oxide during Thermally Driven Phase Transformation: Is the Oxygen Content Really Preserved?. PLoS ONE. 2014; 9(11): e111908. doi: 10.1371/journal.pone.0111908
41. Wan YJ, Tang LC, Gong LX, et al. Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon. 2014; 69: 467-480. doi: 10.1016/j.carbon.2013.12.050
42. Pour ZS, Ghaemy M. Polymer grafted graphene oxide: For improved dispersion in epoxy resin and enhancement of mechanical properties of nanocomposite. Composites Science and Technology. 2016; 136: 145-157. doi: 10.1016/j.compscitech.2016.10.014
43. Guo S, Garaj S, Bianco A, et al. Controlling covalent chemistry on graphene oxide. Nature Reviews Physics. 2022; 4(4): 247-262. doi: 10.1038/s42254-022-00422-w
44. Peng Y, Chen Z, Zhang R, et al. Oxygen-Containing Functional Groups Regulating the Carbon/Electrolyte Interfacial Properties Toward Enhanced K+ Storage. Nano-Micro Letters. 2021; 13(1). doi: 10.1007/s40820-021-00722-3
45. Du W, Wu H, Chen H, et al. Graphene oxide in aqueous and nonaqueous media: Dispersion behaviour and solution chemistry. Carbon. 2020; 158: 568-579. doi: 10.1016/j.carbon.2019.11.027
46. Silva-Leyton R, Quijada R, Bastías R, et al. Polyethylene/graphene oxide composites toward multifunctional active packaging films. Composites Science and Technology. 2019; 184: 107888. doi: 10.1016/j.compscitech.2019.107888
47. Zahidul Islam M, Fu Y, Deb H, et al. Polymer-based low dielectric constant and loss materials for high-speed communication network: Dielectric constants and challenges. European Polymer Journal. 2023; 200: 112543. doi: 10.1016/j.eurpolymj.2023.112543
48. Gautam S, Rialach S, Paul S, et al. MOF/graphene oxide based composites in smart supercapacitors: a comprehensive review on the electrochemical evaluation and material development for advanced energy storage devices. RSC Advances. 2024; 14(20): 14311-14339. doi: 10.1039/d4ra01027b
49. Wu Z, Qian H, Li X, et al. Recent advances in two-step energy transfer light-harvesting systems driven by non-covalent self-assembly. Chinese Chemical Letters. 2024; 35(1): 108829. doi: 10.1016/j.cclet.2023.108829
50. Ye Y, Wang W, Liu X, et al. A Sol–Gel Transition and Self-Healing Hydrogel Triggered via Photodimerization of Coumarin. Gels. 2023; 10(1): 21. doi: 10.3390/gels10010021
51. Wang G, Huang X, Zhou Z, et al. Enabling (De) bonding on-demand with optically switchable pressure sensitive adhesive tape via photodimerization. Chemical Engineering Journal. 2024; 499: 155820. doi: 10.1016/j.cej.2024.155820
52. Mulla BBA, Nesaragi AR, M MPK, et al. Experimental and Theoretical Spectroscopic Investigation on Coumarin Based Derivatives for Non-Linear Optoelectronics Application. Journal of Fluorescence. 2022; 33(1): 161-175. doi: 10.1007/s10895-022-03046-6
53. Yalcin M, Dere A, Yakuphanoglu F. Si/ZnO: Coumarin photocapacitor for electro and photonic applications. Physica B: Condensed Matter. 2024; 693: 416407. doi: 10.1016/j.physb.2024.416407
54. Şahin ME, Biryan F, Çalışkan E, et al. Coumarin–Phosphazenes: Enhanced Photophysical Properties from Hybrid Materials. Inorganic Chemistry. 2024; 63(24): 11006-11020. doi: 10.1021/acs.inorgchem.4c00379
55. Ahmad AA, Demirelli K. Effects of graphite oxide on thermal and electrical behaviors of coumarin‐based methacrylate copolymers: Its single chain polymer molecule via intramolecular cyclobutane formation. Polymers for Advanced Technologies. 2021; 32(11): 4556-4567. doi: 10.1002/pat.5456
56. Shi WQ, Zhao J, Liu XR, et al. Synthesis and Characterization of a Coumarin Antimicrobial Polymer Fluorescent Coating. Advances in Polymer Technology. 2022; 2022: 1-8. doi: 10.1155/2022/6213187
57. Lu Y, Yang Y, Wang J, et al. Development of intrinsically flame-retardant bio-thermosets with further enhanced thermal stability through a photo-thermal dual polymerization strategy. Polymer Degradation and Stability. 2024; 229: 110948. doi: 10.1016/j.polymdegradstab.2024.110948
58. Mulla BBA, Nesaragi AR, M MPK, et al. Exploration of Coumarin Derivative: Experimental and Computational Modeling for Dipole Moment Estimation and Thermal Sensing Application. Journal of Fluorescence. 2023; 34(4): 1719-1735. doi: 10.1007/s10895-023-03364-3
59. Wang C, Gao F, Peng S, et al. Design and synthesis of UV-cured calixarene polyurethane coatings: balancing robust mechanical properties with high self-healing efficiency. Journal of Coatings Technology and Research; 2024. doi: 10.1007/s11998-024-01010-6
60. Tanyıldızı İ, Macit CK, Biryan F, et al. Enhancement of the thermal, electrical properties and mechanical properties of graphene doped novel copolymers bearing coumarin side groups. Journal of Molecular Structure. 2025; 1322: 140412. doi: 10.1016/j.molstruc.2024.140412
61. Alfano AI, Brindisi M, Lange H. Flow synthesis approaches to privileged scaffolds – recent routes reviewed for green and sustainable aspects. Green Chemistry. 2021; 23(6): 2233-2292. doi: 10.1039/d0gc03883k
62. Jumal J, Norhanis Sakinah. Synthesis, Characterization, and Applications of Coumarin Derivatives: A Short Review. Malaysian Journal of Science Health & Technology. 2021; 7(1): 62-68. doi: 10.33102/mjosht.v7i1.145
63. Heravi MM, Khaghaninejad S, Mostofi M. Pechmann Reaction in the Synthesis of Coumarin Derivatives. Advances in Heterocyclic Chemistry; 2014. doi: 10.1016/b978-0-12-800171-4.00001-9
64. van Beurden K, de Koning S, Molendijk D, et al. The Knoevenagel reaction: a review of the unfinished treasure map to forming carbon–carbon bonds. Green Chemistry Letters and Reviews. 2020; 13(4): 349-364. doi: 10.1080/17518253.2020.1851398
65. Shaabani A, Ghadari R, Rahmati A, et al. Coumarin synthesis via Knoevenagel condensation reaction in 1,1,3,3-N,N,N′,N′-tetramethylguanidinium trifluoroacetate ionic liquid. Journal of the Iranian Chemical Society. 2009; 6(4): 710-714. doi: 10.1007/bf03246160
66. Johnson JR. ThePerkin Reaction and Related Reactions. Organic Reactions; 2011. doi: 10.1002/0471264180.or001.08
67. Albarghouti G, Kotikalapudi R, Lankri D, et al. Cascade Pd(ii)-catalyzed Wacker lactonization–Heck reaction: rapid assembly of spiranoid lactones. Chemical Communications. 2016; 52(15): 3095-3098. doi: 10.1039/c5cc09923d
68. Ruiz-Castillo P, Buchwald SL. Applications of Palladium-Catalyzed C–N Cross-Coupling Reactions. Chemical Reviews. 2016; 116(19): 12564-12649. doi: 10.1021/acs.chemrev.6b00512
69. Moloney MG. Reactions of Aldehydes and Ketones and Their Derivatives. Organic Reaction Mechanisms 2020; 2024. doi: 10.1002/9781119716846.ch1
70. Porto RS, Porto VA. Morita–Baylis–Hillman Adducts and Their Derivatives: A Patent-Based Exploration of Diverse Biological Activities. Pharmaceutical Patent Analyst. 2023; 12(3): 127-141. doi: 10.4155/ppa-2023-0021
71. Ansary I, Taher A. One-Pot Synthesis of Coumarin Derivatives. Phytochemicals in Human Health; 2020. doi: 10.5772/intechopen.89013
72. de la Hoz A, Díaz-Ortiz A, Prieto P. Microwave-Assisted Green Organic Synthesis. Alternative Energy Sources for Green Chemistry; 2016. doi: 10.1039/9781782623632-00001
73. Vahabi V, Hatamjafari F. Microwave Assisted Convenient One-Pot Synthesis of Coumarin Derivatives via Pechmann Condensation Catalyzed by FeF3 under Solvent-Free Conditions and Antimicrobial Activities of the Products. Molecules; 2014.
74. Cravotto G, Cintas P. Harnessing mechanochemical effects with ultrasound-induced reactions. Chem Sci. 2012; 3(2): 295-307. doi: 10.1039/c1sc00740h
75. Gao H, Yu R, Ma Z, et al. Recent advances of organometallic complexes in emerging photovoltaics. Journal of Polymer Science. 2021; 60(6): 865-916. doi: 10.1002/pol.20210592
76. Lam KY, Lee CS, Pichika MR, et al. Light-responsive polyurethanes: classification of light-responsive moieties, light-responsive reactions, and their applications. RSC Advances. 2022; 12(24): 15261-15283. doi: 10.1039/d2ra01506d
77. Xi X, Yan C, Shen LZ, et al. Liquid crystal photoalignment technique: Basics, developments, and flexible/stretchable device applications. Materials Today Electronics. 2023; 6: 100069. doi: 10.1016/j.mtelec.2023.100069
78. Bisoyi HK, Li Q. Light-Driven Liquid Crystalline Materials: From Photo-Induced Phase Transitions and Property Modulations to Applications. Chemical Reviews. 2016; 116(24): 15089-15166. doi: 10.1021/acs.chemrev.6b00415
79. Fan Y, Wu Y, Hou J, et al. Coumarin-based near-infrared fluorogenic probes: Recent advances, challenges and future perspectives. Coordination Chemistry Reviews. 2023; 480: 215020. doi: 10.1016/j.ccr.2023.215020
80. Cuevas JM, Seoane-Rivero R, Navarro R, et al. Coumarins into Polyurethanes for Smart and Functional Materials. Polymers; 2020.
81. Prakash S, Kumari M, Chauhan AK. The intervention of nanotechnology in food packaging: a review. Journal of Materials Science. 2024; 59(7): 2585-2601. doi: 10.1007/s10853-024-09360-7
82. Saylan Y, Aliyeva N, Eroglu S, et al. Nanomaterial-Based Sensors for Coumarin Detection. ACS Omega. 2024; 9(28): 30015-30034. doi: 10.1021/acsomega.4c01945
83. Kumar V, Tang X. New Horizons in Nanofiller-Based Polymer Composites II. Polymers. 2023; 15(21): 4259. doi: 10.3390/polym15214259
84. Miedzianowska J, Masłowski M, Rybiński P, et al. Modified Nanoclays/Straw Fillers as Functional Additives of Natural Rubber Biocomposites. Polymers. 2021; 13(5): 799. doi: 10.3390/polym13050799
85. Anwar Z, Kausar A, Muhammad B. Polymer and Graphite-Derived Nanofiller Composite: An Overview of Functional Applications. Polymer-Plastics Technology and Engineering. 2016; 55(16): 1765-1784. doi: 10.1080/03602559.2016.1163598
86. Chiu FC, Chen YJ. Evaluation of thermal, mechanical, and electrical properties of PVDF/GNP binary and PVDF/PMMA/GNP ternary nanocomposites. Composites Part A: Applied Science and Manufacturing. 2015; 68: 62-71. doi: 10.1016/j.compositesa.2014.09.019
87. Nie F, Yan D. Bio-sourced flexible supramolecular glasses for dynamic and full-color phosphorescence. Available online: https://www.nature.com/articles/s41467-024-53963-2 (accessed on 7 November 2024)
88. Peng C, Kuai Z, Lian S, et al. Reversible photoregulation of morphological structure for porous coumarin-graphene composite and the removal of heavy metal ions. Applied Surface Science. 2021; 546: 149065. doi: 10.1016/j.apsusc.2021.149065
89. Trenor SR, Long TE, Love BJ. Photoreversible Chain Extension of Poly (ethylene glycol). Macromolecular Chemistry and Physics. 2004; 205(6): 715-723. doi: 10.1002/macp.200300168
90. Venkatesan S, Ranjithkumar B, Rajeshkumar S, et al. Synthesis, characterization, thermal stability and antibacterial activity of coumarin based methacrylate copolymers. Chinese Journal of Polymer Science. 2014; 32(10): 1373-1380. doi: 10.1007/s10118-014-1515-9
91. Zhao X, Zhang Q, Chen D, et al. Enhanced Mechanical Properties of Graphene-Based Poly (vinyl alcohol) Composites. Macromolecules. 2011; 44(7): 2392-2392. doi: 10.1021/ma200335d
92. Wu T, Wang X, Qiu H, et al. Graphene oxide reduced and modified by soft nanoparticles and its catalysis of the Knoevenagel condensation. Journal of Materials Chemistry (RSC Publishing). Available online: https://pubs.rsc.org/en/content/articlelanding/2012/jm/c2jm15311d (accessed 7 November 2024).
93. Tarhini A, Tehrani-Bagha AR. Advances in Preparation Methods and Conductivity Properties of Graphene-based Polymer Composites. Applied Composite Materials. 2023; 30(6): 1737-1762. doi: 10.1007/s10443-023-10145-5
94. Ghosh TN, Bhunia AK, Pradhan SS, et al. 2D nanomaterial–polymer composite: optical and structural properties along with room temperature enhanced dielectric response and magnetic behaviour of graphene oxide doped polyvinylpyrrolidone nanocomposites. Journal of Materials Science: Materials in Electronics. 2024; 35(17). doi: 10.1007/s10854-024-12881-1
95. Ragab HM. The influence of graphene oxide on the optical, thermal, electrical, and dielectric properties of PVA/PEO composite. Journal of Materials Science: Materials in Electronics. 2022; 33(25): 19793-19804. doi: 10.1007/s10854-022-08789-3
96. Kou Y, Zhou W, Li X, et al. Enhanced dielectric properties of PVDF nanocomposites with modified sandwich-like GO@PVP hybrids. Polymer-Plastics Technology and Materials. 2019; 59(6): 592-605. doi: 10.1080/25740881.2019.1669655
97. Sabet M, Soleimani H, Mohammadian E, et al. Impact of inclusion of graphene oxide nanosheets on polypropylene thermal characteristics. Iranian Polymer Journal. 2020; 29(12): 1099-1112. doi: 10.1007/s13726-020-00864-y
98. Mendoza-Duarte ME, Vega-Rios A. Comprehensive Analysis of Rheological, Mechanical, and Thermal Properties in Poly(lactic acid)/Oxidized Graphite Composites: Exploring the Effect of Heat Treatment on Elastic Modulus. Polymers. 2024; 16(3): 431. doi: 10.3390/polym16030431
99. Demirelli K, Abubakar AM, Ahmad AA, et al. The effect of end group and graphene on dielectric properties and thermal degradation of poly(benzyl methacrylate) prepared by ATRP method. Polymer Bulletin. 2022; 80(1): 279-307. doi: 10.1007/s00289-021-04003-2
100. Chang YW, Lee KS, Lee YW, et al. Poly (ethylene oxide)/graphene oxide nanocomposites: structure, properties and shape memory behavior. Polymer Bulletin. 2015; 72(8): 1937-1948. doi: 10.1007/s00289-015-1381-9
101. Barroso-Bujans F, Alegría A, Pomposo JA, et al. Thermal Stability of Polymers Confined in Graphite Oxide. Macromolecules. 2013; 46(5): 1890-1898. doi: 10.1021/ma302407v
102. Joshi AS, Elamurugu E, Leela.S. Impact of Graphene oxide (GO) and reduced Graphene Oxide (rGO) on the TiO2 thin film composite (TiO2: GO/ rGO) photoanodes. Chemical Physics Impact. 2024; 9: 100667. doi: 10.1016/j.chphi.2024.100667
103. He J, Zhao Y. Light-responsive polymer micelles, nano- and microgels based on the reversible photodimerization of coumarin. Dyes and Pigments. 2011; 89(3): 278-283. doi: 10.1016/j.dyepig.2010.03.032
104. Klein IM, Husic CC, Kovács DP, et al. Validation of the CoGEF Method as a Predictive Tool for Polymer Mechanochemistry. Journal of the American Chemical Society. 2020; 142(38): 16364-16381. doi: 10.1021/jacs.0c06868
105. Ling J, Rong MZ, Zhang MQ. Photo-stimulated self-healing polyurethane containing dihydroxyl coumarin derivatives. Polymer. 2012; 53(13): 2691-2698. doi: 10.1016/j.polymer.2012.04.016
106. Zhang H, Huang R, Cang H, et al. Graphene oxide-coumarin derivative conjugate as activatable nanoprobe for intracellular imaging with one- or two-photon excitation. Journal of Materials Chemistry B (RSC Publishing). Available online: https://pubs.rsc.org/en/content/articlelanding/2014/tb/c3tb21656j (accessed 7 November 2024).
107. Akhila AK, Renuka NK. Coumarin–graphene turn-on fluorescent probe for femtomolar level detection of copper(ii). New Journal of Chemistry. 2019; 43(2): 1001-1008. doi: 10.1039/c8nj04732d
108. Banerjee R, Sinha R, Purkayastha P. β-Cyclodextrin Encapsulated Coumarin 6 on Graphene Oxide Nanosheets: Impact on Ground-State Electron Transfer and Excited-State Energy Transfer. ACS Omega. 2019; 4(14): 16153-16158. doi: 10.1021/acsomega.9b02335
109. Mekki A, Ocaya RO, Dere A, et al. New photodiodes based graphene-organic semiconductor hybrid materials. Synthetic Metals. 2016; 213: 47-56. doi: 10.1016/j.synthmet.2015.12.026
110. Tian M, Gao Y, Nie J, et al. UV-induced coumarin-based spiropyran gradient photodimerization and photoisomerization to construct near-infrared responsive gradient hydrogel actuators in one-step. Journal of Alloys and Compounds. 2025; 1010: 177603. doi: 10.1016/j.jallcom.2024.177603
111. Folorunso O, Olukanmi P, Thokozani S. Conductive polymers’ electronic structure modification for multifunctional applications. Materials Today Communications. 2023; 35: 106308. doi: 10.1016/j.mtcomm.2023.106308
112. Shindalkar SS, Reddy M, Singh R, et al. Polythiophene blends and composites as potential energy storage materials. Synthetic Metals. 2023; 299: 117467. doi: 10.1016/j.synthmet.2023.117467
113. Zhan K, Li F, Wang W, et al. Preparation and mechanism of Cu/GO/Cu laminated composite foils with improved thermal conductivity and mechanical property by architectural design. Journal of Alloys and Compounds. 2022; 904: 164085. doi: 10.1016/j.jallcom.2022.164085
114. Lu G, Tang H, Qu Y, et al. Enhanced Electrical Conductivity of Highly Crystalline Polythiophene/Insulating-Polymer Composite. Macromolecules. 2007; 40(18): 6579-6584. doi: 10.1021/ma071135t
115. Mandal G, Bauri J, Nayak D, et al. Synthesis, Structural Study and Various Applications of Polyaniline and its Nanocomposites. Trends and Developments in Modern Applications of Polyaniline; 2023. doi: 10.5772/intechopen.1002227
116. Pramanik K, Sengupta P, Majumder B, et al. Artificial Bifunctional Photozyme of Glucose Oxidase-Peroxidase for Solar-Powered Glucose-Peroxide Detection in a Biofluid with Resorcinol-Formaldehyde Polymers. PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/32600024/ (accessed 4 November 2024)
117. Dharmendra, Moharana S, Sutar AK, et al. Polythiophene, polypyrrole-NiO ternary hybrid nanocomposites: structural, morphological, dielectric and electrical properties. Journal of Chemical Sciences. 2023; 135(4). doi: 10.1007/s12039-023-02236-4
118. Kaushik P, Bharti R, Sharma R, et al. Progress in synthesis and applications of Polyaniline-Coated Nanocomposites: A comprehensive review. European Polymer Journal. 2024; 221: 113574. doi: 10.1016/j.eurpolymj.2024.113574
119. Citarella A, Vittorio S, Dank C, et al. Syntheses, reactivity, and biological applications of coumarins. Frontiers in Chemistry. 2024; 12. doi: 10.3389/fchem.2024.1362992
120. Guo B, Ma PX. Conducting Polymers for Tissue Engineering. Biomacromolecules. 2018; 19(6): 1764-1782. doi: 10.1021/acs.biomac.8b00276
121. Zhang C, Yu Z, Liu Y, et al. Rigidify styryl-pyridinium dyes to benzo[h]coumarin-based bright two-photon fluorescent probes for cellular bioimaging. RSC Advances. 2024; 14(15): 10255-10261. doi: 10.1039/d3ra08269e
122. Xu Z, Zhang Z, Yin H, et al. Investigation on the role of different conductive polymers in supercapacitors based on a zinc sulfide/reduced graphene oxide/conductive polymer ternary composite electrode. RSC Advances. 2020; 10(6): 3122-3129. doi: 10.1039/c9ra07842h
DOI: https://doi.org/10.24294/can10232
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Author(s)
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.