Antimicrobial and anti biofilm activity of essential oil of LippiagracilisSchauer on Clostridium bifermentans and fungal-containing biofilms

Marcelino Gevilbergue Viana 1, Márcia Tereza Soares Lutterbach 2, Djalma Ribeiro da Silva 3, Cynthia Cavalcanti de Albuquerque 4, Francisco Josiel Nascimento dos Santos 1, Everaldo Silvino dos Santos

Article ID: 646
Vol 2, Issue 1, 2019, Article identifier:

VIEWS - 240 (Abstract) 0 (Untitled) 4 (PDF)


In oil industry microbiologically influenced corrosion plays a key role since it costs a lot of money yearly. This kind of corrosion is mainly induced by the microbial biofilms occurring on the metal surface and their metabolites that modify the electrochemical conditions from metal-solution interface. This study focused on the evaluation of the antimicrobial activity of essential oil of LippiagracilisSchauer over Clostridium bifermentans isolated from ballast of ship transporter of crude oil as well as against fungi occurring on microbial biofilms. Additionally,it was evaluated the influence of the essential oil on the corrosion of AISI 1020 carbon steel by electrochemical and gravimetric techniques.A minimum inhibitory concentration of the 20.0μg.L-1was obtained for the essential oil over the C. bifermentans that was the same used for investigating the biocide activity against fungal biofilms for different contact time.  Results showed that colony former unit (CFU) for fungi reduced to zero after 120 minutes exposition to the essential oil. Also, the essential oil of L. gracilisSchauer showed a quite good potential to control effectively the growth of C. bifermentans.Electrochemical polarization and gravimetry assays showed that essential oil of L. gracilis Schauer at concentration of 60µg.L-1was efficient to inhibit the corrosion of AISI 1020 carbon steel. L. gracilis Schauer essential oil acted as a powerful biocide.


Microbiologically influenced corrosion; essential oil; LippiagracilisSchauer; biocide; biofilm

Full Text:

Untitled PDF


Acevedo, M.S., Puentes, C., Carreño, K., Léon, J.G., Stupak, M., García, M., Pérez, M., Blustein, G., 2013. Antifouling paints based on marine natural products from Colombian Caribbean. J. Internat. Biodet. Biodeg. 83, 97-104.doi:10.1016/j.ibiod.2013.05.002.

Albuquerque, C.C., Camara, T.R., Mariano, R.L.R., Willadino, L., Junior, C.M., Ulisses, C., 2006. Antimicrobial action of the essential oil of Lippia gracilis Schauer. Brazilian Archiv. of Biol. and Techn. 49, 527-535. doi:10.1590/S1516-89132006000500001.

Bakkalli, F., Averbeck, S., Averbeck, D., Idaomar, M., 2008. Biological effects of essential oils – A review. Food and Chem. Toxicology 46, 446-475. doi:10.1016/j.fct.2007.09.106.

Barloy, F., Delécluse, A., Nicolas, L., Lecadet, M-M., 1996. Cloning and expression of the first anaerobic toxin gene from Clostridium bifermentans subsp. malaysia, encoding a new mosquitocidal protein with homologies to Bacillus thuringiensis delta-endotoxins. J. Bacter. 11, 3099-3105. doi:10.1128/jb.178.11.3099-3105.

Biswas, K., Taylor, M.W., Turner, S.J., 2013. Successional development of biofilms in moving bed biofilm reactor (MBBR) systems treating municipal wastewater. Appl. Microb. Biotec. 13, 5082-5088. doi: 10.1007/s00253-013-5082-8.

Dewick, P.M., 2011. Medicinal Natural Products: A Biosynthetic Approach. John Wiley & Sons LTDA, University of Nottingham, UK.

Duque, Z., Ibars, J.R., Sarro, M.I., Moreno, D.A., 2011. Comparison of sulphite corrosivity of sulphate- and non-sulphate-reducing prokaryotes isolated of oilfield injection water. Material and Corrosion. 62, 6291-6298. doi:10.1002/maco.201106298.

Fadel, F., Ben Hmamou1, D., Salghi1, R., Chebli1, B., Benali, O., Zarrouk, A., Ebenso, E.E., Chakir5, A., Hammouti, B., 2013. Antifungal activity and anti-corrosion inhibition of Origanum compactum extracts. Internat. J. Electrochem. Sci. 8, 11019-11032.doi:80911019.

Ferreira, R.S., Napoleão, T.H., Santos, A.F.S., Sá, R.A., Carneiro-da-Cunha, M.G., Morais, M.M.C., Silva-Lucca, R.A., Oliva, M.L.V., Coelho, L.C.B.B., Paiva, P.M.G., 2011. Coagulant and antibacterial activities of the water-soluble seed lectin from Moringa oleifera. Letters Appl. Microb. 53,186-192. doi: 10.1111/j.1472-765X.2011.03089.x.

GenBank. Disponível em: , acessado em Março de 2009.

Gentil, V., 2011. Corrosão, 6ª ed., LTC, Rio de Janeiro.

Gu, J., 2012. New understandings of biocorrosion mechanisms and their classifications. J. Microb. Biochem. Technol. 4, 3-4. doi:10.4172/1948-5948.1000e107.

Gu, J., 2014. Theoretical modeling of the possibility of acid producing bacteria causing fast pitting biocorrosion. J. Microb. Biochem. Technol. 6, 2. doi:10.4172/1948-5948.1000124.

Jan-Roblero, J., Romero, J., Amaya, J.M., Le Borgne, M., 2008. Phylogenetic characterization of a corrosive consortium isolated from a sour gas pipeline. Appl. Microbial Biotechnology. 64, 862-867. doi:10.1007/s00253-004-1613-7.

Khelifi, E., Bouallagui, H., Fardeau, M.L., Touhami, Y., Godon, J.J., Cayol, J.L., Ollivier, B., Hamdi, M., 2009. Fermentative and sulphate-reducing bacteria associated with treatment of an industrial dye effluent in an up-flow anaerobic fixed bed bioreactor. Bioch. Engin. J. 45, 136-144. doi:10.1016/j.bej.2009.03.006.

Lanneluc, I., Langumier M., Sabot, R., Jeannin, M., Refait, P., Sablé, S., 2015. On the bacterial communities associated with the corrosion product layer during the early stages of marine corrosion of carbon steel. J. Biodet. Biodeg. 99, 55-65. doi:10.1016/j.ibiod.2015.01.003.

Larsen, L.M., Nielsen, T.H., Ploger, A., Sorensen, H., 1988. Rapid and efficient method for the isolation and characterization of plant aromatic choline enterases. J. Chromat. 450, 121-131. doi:10.1016/S0021-9673(00)90723-4.

Leja, K., Czaczyk, K., Myszka, K., 2013. The ability of Clostridium bifermentans strains to lactic acid biosynthesis in various environmental conditions. SpringerPlus 2, 44. doi:10.1186/2193-1801-2-44.

Lieser, M.J., Stek, C., 2010. Composite and the Future of Society: preventing a legacy of costly corrosion with modern materials. Owens Corning, 1-17.

Little, B.J., Lee, J.S., 2007. Microbiologically Influenced Corrosion. Inc. John Wiley & Sons. 10: 22p.

Magot, M., 2000. Microbiology of petroleum reservoirs. Antonie van Leeuwenhoek. 77, 103-116. doi:10.1023/A:1002434330514.

Marques, J.M., Almeida, F.P., Lins, U., Seldin, L., Korenblum, E., 2012. Nitrate treatment effects on bacterial community biofilm formed on carbon steel in produced water stirred tank bioreactor. World J. Microb. Biotechn. 28, 2355-2363. doi:10.1007/s11274-012-1043-0.

Marreto, R.N., Almeida, E.E.C.V., Alves, P.B., Niculau, E.S., Nunes, R.S., Matos, C.R.S., Araujo, A. A. S., 2008. Thermal analysis and gas chromatography coupled mass spectrometry analyses of hydroxypropyl-β-cyclodextrin inclusion complex containing Lippia gracilis essential oil. Thermoc. Acta 475, 53-58.doi:10.1016/j.tca.2008.06.015.

Mattos, F.J.A., Machado, M.I.L., Craveiro, A.A., Alencar, J.W., Silva, M.G.V., 1999. Medicinal plants Northeast Brazil containing thymol and carvacrol - Lippia sidoides Cham. and L. gracilis H. B. K (Verbeneacea). J. Essent. Oils Resear. 11, 666-668.doi:10.1080/10412905.1999.9711990.

Moraes, V.R.S., Nogueira, P.C.L., Gomes, S.V.F., 2011. Aspectos químicos e biológicos do gênero Lippia enfatizando Lippia gracilis Schauer. Eclética Química. 36, 64-77. doi:10.1590/S0100-46702011000100005.

Moura, M.C., Pontual, E.V., Paiva, P.M.G., Coelho, L.C.B.B., 2013. Na outline to corrosive bacteria. In Microbial pathogens and strategies for combating them: science, technology and education. Ed. A. Méndez-Vilas, FORMATEX.

NACE, 2000. Laboratory Corrosion Testing of Metals in Static Chemical Cleaning Solution at Tempera, Document number TM-0193.

Oliveira, O.R., Terao, D., Carvalho, A.C.P.P, Innecco, R., Albuquerque, C.C., 2008. Efeito do óleo essencial de plantas do gênero Lippia sobre fungos contaminantes encontrados na micropropagação de plantas. Revista Ciência Agronômica 39, 94-100.doi:953/195317606014.

Palaniappan, B., Toleti, S.R., 2016. Characterization of microfouling and corrosive bacterial community of a firewater distribution system. J. Biosc. Bioeng. 4, 435-441. doi:10.1016/j.jbiosc.2015.08.009.

Pimenta, M., Fernandes, L.S., Pereira, U.J., Garcia, L.S., Leal, S.R., Leitão, S.G., Salimena, F.R.G., Viccini, L.F., Peixoto, P.H., 2007. Floração, germinação e estaquia em espécies de Lippia L. (Verbenaceae). Rev. Brasileira de Botânica 30, 211-220.doi:10.1590/S0100-84042007000200006.

Silva, J.P.L., Duarte-Almeida, J.M., Perez, D.V., Franco, B.D.G.M., 2010. Óleo essencial de orégano: interferência da composição química na atividade frente a Salmonella Enteritidis. Ciência e Tecnologia de Alimentos 30, 136-141. doi:10.1590/S0101-20612010000500021.

Usher, K.M., Kaksonen, A.H., Cole, I., Marney, D., 2014. Critical review: Microbially influenced corrosion of buried carbon steel pipes. J. Internat. Biodet. Biodeg. 93, 84-106. doi:10.1016/j.ibiod.2014.05.007.

Van D. L. H.; Kratz, P. H., 1963. J. Chromat. A 11, 463.doi:10.1016/S0021-9673(01)80947-X.

Videla, H.A., Herrera, L.K., 2009. Understanding microbial inhibition of corrosion. A comprehensive overview. Internat. Biodet. & Biodegrad. 63, 896–900. doi:10.1016/j.ibiod.2009.02.002.

Zaferani, S.H., Sharifi, M., Zaarei, D., Shishesaz, M.R., 2013. Application of eco-friendly products as corrosion inhibitors for metals in acid pickling processes – a review. J. Environ. Chem. Engin. 1, 652-657. doi:10.1016/j.jece.2013.09.019.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License

This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.