Topological entropies of all 2907 convex 4- to 9-atomic polyhedral clusters
Vol 2, Issue 1, 2019, Article identifier:
VIEWS - 101 (Abstract) 2 (PDF)
Abstract
Keywords
Full Text:
PDFReferences
Grünbau B. Convex Polytopes. New York: Springer, 1967.
Halphen E. L’analyse intrinsèque des distributions de probabilité // Publ. Inst. Stat. Univ. Paris 6. 1957; 2, 77-159.
Shannon СE. The mathematical theory of communication // Bell Syst. Tech. J. 1948; 27, 379-423, 623-656.
Voytekhovsky YL. E.S. Fedorov’s algorithm of the generation of the combinatorial diversity of convex polyhedra: the latest results and applications // J. Struct. Chem 2014; 55. 1293-1307.
Voytekhovsky YL. How to name and order convex polyhedral // Acta Cryst. A 2016; 72, 582-585.
Voytekhovsky YL. Convex polyhedra with minimum and maximum names // Acta Cryst. A 2017; 73, 271-273.
Voytekhovsky YL. Accelerated scattering of convex polyhedral // Acta Cryst. A 2017; 73, 423-425.
Voytekhovsky YL., Stepenshchikov DG. Combinatorial Crystal Morphology. Book 4: Convex Polyhedra. Vol. 1: 4- to 12-hedra. Apatity: Kola Sci. Centre of RAS. Available at http://geoksc.apatity.ru/images/stories/Print/ monob /%D0%9A%D0%BD%D0%B8%D0%B3%D0%B0%20IV%20%D0%A2%D0%BE%D0%BC%20I.pdf 2008.
DOI: http://dx.doi.org/10.24294/ace.v1i3.514
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.