Topological Entropies of All 2907 Convex 4- to 9-atomic Polyhedral Clusters
Vol 2, Issue 1, 2019
VIEWS - 388 (Abstract) 162 (PDF)
Abstract
Keywords
Full Text:
PDFReferences
1. Grünbaum B. Convex polytopes. New York: Springer; 1967.
2. Voytekhovsky YL, Stepenshchikov DG. Combinatorial crystal morphology. Book 4: Convex polyhedra. Vol. 1: 4- to 12-hedra [Internet]. Apatity: Kola Sci. Centre of RAS. Available at: http://geoksc.apatity.ru/images/stories/Print/ monob /%D0%9A%D0%BD%D0%B8%D0%B3%D0%B0%20IV%20%D0%A2%D0%BE%D0%BC%20I.pdf
3. Voytekhovsky YL. How to name and order convex polyhedral. Acta Crystallographica Section A: Foundations and Advances 2016; 72: 582–585.
4. Voytekhovsky YL. Convex polyhedra with minimum and maximum names. Acta Crystallographica Section A: Foundations and Advances 2017; 73: 271–273.
5. Voytekhovsky YL. Accelerated scattering of convex polyhedral. Acta Crystallographica Section A: Foundations and Advances 2017; 73: 423–425.
6. Shannon СE. The mathematical theory of communication. The Bell System Technical Journal 1948; 27: 379–423, 623–656.
7. Halphen E. L’analyse intrinsèque des distributions de probabilité. Publications de l'Institut Statistique de l'Université de Paris 1957; 2: 77–159.
DOI: https://doi.org/10.24294/ace.v2i1.514
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.