Bacterial nanocellulose-Robust preparation and application—A literature review
Vol 6, Issue 3, 2023
VIEWS - 1001 (Abstract) 238 (PDF)
Abstract
Increasing attention is being paid to bacterial nanocellulose (BNC) because of its environment-friendly properties. Researchers investigated the role of microbial hosts in BNC production due to the benefits of cellulose produced by microbes. Several research groups have developed techniques to make BNC on a large scale with the goal of developing new methods. A 3D network of micro and nanofibrils in BNC synthesized from several bacterial strains makes these BNC useful for reinforcing nanostructured composites that have increased Young’s modulus, tensile strength, purity, crystallinity, and water holding capacity. To overcome the barriers associated with the industrial scale production of BNC, different production techniques will be used, including static culture, cell-free production, agitated/shaking culture, using a variety of receptors for fermentation, and low-cost substrates as carbon sources. By in-situ and ex-situ fermentation processes, metal/metal oxide nanoparticle composites are among the most widely used materials in diagnostic and regenerative medicine. The purpose of the review is to update the researchers regarding the lucid production process and versatile applications of bacterial nanocellulose in biomedical field. We shall mainly discuss about the different methods for bacterial cellulose production and some of its applications in this mini-review.
Keywords
Full Text:
PDFReferences
1. Tayeb AH, Amini E, Ghasemi S, et al. Cellulose nanomaterials—Binding properties and applications: A review. Molecules 2018; 23(10): 2684. doi: 10.3390/molecules23102684
2. Randhawa A, Dutta SD, Ganguly K, et al. A review of properties of nanocellulose, its synthesis, and potential in biomedical applications. Applied Sciences 2022; 12(14): 7090. doi: 10.3390/app12147090
3. Xiong R, Grant AM, Ma R, et al. Naturally-derived biopolymer nanocomposites: Interfacial design, properties and emerging applications. Materials Science and Engineering: R: Reports 2018; 125: 1–41. doi: 10.1016/j.mser.2018.01.002
4. Gregory DA, Tripathi L, Fricker ATR, et al. Bacterial cellulose: A smart biomaterial with diverse applications. Materials Science and Engineering: R: Reports 2021; 145: 100623. doi: 10.1016/j.mser.2021.100623
5. Yang X, Biswas SK, Han J, et al. Surface and interface engineering for nanocellulosic advanced materials. Advanced Materials 2021; 33(28): 2002264. doi: 10.1002/adma.202002264
6. Nascimento DM, Nunes YL, Figueirêdo MCB, et al. Nanocellulose nanocomposite hydrogels: technological and environmental issues. Green Chemistry 2018; 20(11): 2428–2448. doi: 10.1039/C8GC00205C
7. Bangar SP, Whiteside WS. Nano-cellulose reinforced starch bio composite films—A review on green composites. International Journal of Biological Macromolecules 2021; 185: 849–860. doi: 10.1016/j.ijbiomac.2021.07.017
8. Dutta S, Kim J, Ide Y, et al. 3D network of cellulose-based energy storage devices and related emerging applications. Materials Horizons 2017; 4: 522–545. doi: 10.1039/C6MH00500D
9. Liu Y, Liu H, Shen Z. Nanocellulose based filtration membrane in industrial waste water treatment: A review. Materials 2021; 14(18): 5398. doi: 10.3390/ma14185398
10. Reshmy R, Philip E, Thomas D, et al. Bacterial nanocellulose: Engineering, production, and applications. Bioengineered 2021; 12(2): 11463–11483. doi: 10.1080/21655979.2021.2009753
11. Shavyrkina NA, Budaeva VV, Skiba EA, et al. Scale-up of biosynthesis process of bacterial nanocellulose. Polymers 2021; 13(12): 1920. doi: 10.3390/polym13121920
12. McNamara JT, Morgan JLW, Zimmer J. A molecular description of cellulose biosynthesis. Annual review of biochemistry 2015; 84: 895–921. doi: 10.1146/annurev-biochem-060614-033930
13. Khattak WA, Ul-Islam M, Ullah MW, et al. Endogenous Hydrolyzing Enzymes: Isolation, Characterization, and Applications in Biological Processes. Springer; 2014.
14. Felgueiras C, Azoia NG, Gonçalves C, et al. Trends on the cellulose-based textiles: Raw materials and technologies. Frontiers in Bioengineering and Biotechnology 2021; 9: 608826. doi: 10.3389/fbioe.2021.608826
15. Fortunati E, Luzi F, Puglia D, et al. Extraction of lignocellulosic materials from waste products. Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements 2016; 1–38. doi: 10.1016/B978-0-323-44248-0.00001-8
16. Sharma A, Thakur M, Bhattacharya M, et al. Commercial application of cellulose nano-composites—A review. Biotechnology Reports 2019; 21: e00316. doi: 10.1016/j.btre.2019.e00316
17. Rånby BG. Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles. Discussions of the Faraday Society 1951; 11: 158–164. doi: 10.1039/DF9511100158
18. Habibi Y. Key advances in the chemical modification of nanocelluloses. Chemical Society Reviews 2014; 43: 1519–1542. doi: 10.1039/C3CS60204D
19. Gopi S, Balakrishnan P, Chandradhara D, et al. General scenarios of cellulose and its use in the biomedical field. Materials Today Chemistry 2019; 13: 59–78. doi: 10.1016/j.mtchem.2019.04.012
20. Carere CR, Sparling R, Cicek N, et al. Third generation biofuels via direct cellulose fermentation. International Journal of Molecular Sciences 2008; 9(7): 1342–1360. doi: 10.3390/ijms9071342
21. Ninan N, Muthiah M, Park IK, et al. Pectin/carboxymethyl cellulose/microfibrillated cellulose composite scaffolds for tissue engineering. Carbohydrate Polymers 2013; 98(1): 877–885. doi: 10.1016/j.carbpol.2013.06.067
22. Qing Y, Sabo R, Zhu JY, et al. A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydrate Polymers 2013; 97(1): 226–234. doi: 10.1016/j.carbpol.2013.04.086
23. Khalil HPSA, Bhat AH, Yusra AFI. Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate Polymers 2012; 87(2): 963–979. doi: 10.1016/j.carbpol.2011.08.078
24. Yousefi H, Faezipour M, Hedjazi S, et al. Comparative study of paper and nanopaper properties prepared from bacterial cellulose nanofibers and fibers/ground cellulose nanofibers of canola straw. Industrial Crops and Products 2013; 43: 732–737. doi: 10.1016/j.indcrop.2012.08.030
25. Sheikhi A, Hayashi J, Eichenbaum J, et al. Recent advances in nanoengineering cellulose for cargo delivery. Journal of Controlled Release 2019; 294: 53–76. doi: 10.1016/j.jconrel.2018.11.024
26. Conley KM, Godbout L, Whitehead MA, et al. Reversing the structural chirality of cellulosic nanomaterials. Cellulose 2017; 24: 5455–5462. doi: 10.1007/s10570-017-1533-1
27. Reiniati I, Hrymak AN, Margaritis A. Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals. Critical Reviews in Biotechnology 2017; 37(4): 510–524. doi: 10.1080/07388551.2016.1189871
28. Rol F, Belgacem MN, Gandini A, et al. Recent advances in surface-modified cellulose nanofibrils. Progress in Polymer Science 2019; 88: 241–264. doi: 10.1016/j.progpolymsci.2018.09.002
29. Donini Í, De Salvi DTB, Fukumoto FK, et al. Biosynthesis and recent advances in bacterial cellulose production. Eclética Química 2010; 35: 165–178. doi: 10.1590/S0100-46702010000400021
30. Fu L, Zhang J, Yang G. Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydrate Polymers 2013; 92(2): 1432–1442. doi: 10.1016/j.carbpol.2012.10.071
31. Jang WD, Hwang JH, Kim HU, et al. Bacterial cellulose as an example product for sustainable production and consumption. Microbial Biotechnology 2017; 10(5): 1181–1185. doi: 10.1111/1751-7915.12744
32. Poddar MK, Dikshit PK. Recent development in bacterial cellulose production and synthesis of cellulose based conductive polymer nanocomposites. Nano Select 2021; 2(9): 1605–1628. doi: 10.1002/nano.202100044
33. Islam MU, Ullah MW, Khan S, et al. Strategies for cost-effective and enhanced production of bacterial cellulose. International Journal of Biological Macromolecules 2017; 102: 1166–1173. doi: 10.1016/j.ijbiomac.2017.04.110
34. Mishra PK, Pavelek O, Rasticova M, et al. Nanocellulose-based biomedical scaffolds in future bioeconomy: A techno-legal assessment of the state-of-the-art. Frontiers in Bioengineering and Biotechnology 2022; 9: 789603. doi: 10.3389/fbioe.2021.789603
35. Zimmermann MV, Borsoi C, Lavoratti A, et al. Drying techniques applied to cellulose nanofibers. Journal of Reinforced Plastics and Composites 2016; 35(8): 628–643. doi: 10.1177/0731684415626286
36. Kumar A, Han SS. Efficacy of bacterial nanocellulose in hard tissue regeneration: A review. Materials 2021; 14(17): 4777. doi: 10.3390/ma14174777
37. Moradpoor H, Mohammadi H, Safaei M, et al. Recent advances on bacterial cellulose-based wound management: Promises and challenges. International Journal of Polymer Science 2022; 2022: 1214734. doi: 10.1155/2022/1214734
38. Kreplak L, Bär H, Leterrier JF, et al. Exploring the mechanical behavior of single intermediate filaments. Journal of Molecular Biology 2005; 354(3): 569–577. doi: 10.1016/j.jmb.2005.09.092
39. Brown EE, Laborie MPG, Zhang J. Glutaraldehyde treatment of bacterial cellulose/fibrin composites: Impact on morphology, tensile and viscoelastic properties. Cellulose 2012; 19: 127–137. doi: 10.1007/s10570-011-9617-9
40. Li Z, Wang L, Hua J, et al. Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum. Carbohydrate Polymers 2015; 120: 115–119. doi: 10.1016/j.carbpol.2014.11.061
41. Huang C, Guo HJ, Xiong L, et al. Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus. Carbohydrate Polymers 2016; 136: 198–202. doi: 10.1016/j.carbpol.2015.09.043
42. Bilgi E, Bayir E, Sendemir-Urkmez A, et al. Optimization of bacterial cellulose production by Gluconacetobacter xylinus using carob and haricot bean. International Journal of Biological Macromolecules 2016; 90: 2–10. doi: 10.1016/j.ijbiomac.2016.02.052
43. Pacheco G, Nogueira CR, Meneguin AB, et al. Development and characterization of bacterial cellulose produced by cashew tree residues as alternative carbon source. Industrial Crops and Products 2017; 107: 13–19. doi: 10.1016/j.indcrop.2017.05.026
44. Suwannarat Y, Ninlanon W, Suwannarat R, Muisee K. Production of bacterial cellulose from acetobacter xylinum by using rambutan juice as a carbon source. International Journal of Agricultural Technology 2017; 13: 1361–1369.
45. Cheng Z, Yang R, Liu X, et al. Green synthesis of bacterial cellulose via acetic acid pre-hydrolysis liquor of agricultural corn stalk used as carbon source. Bioresource Technology 2017; 234: 8–14. doi: 10.1016/j.biortech.2017.02.131
46. Revin V, Liyaskina E, Nazarkina M, et al. Cost-effective production of bacterial cellulose using acidic food industry by-products. Brazilian Journal of Microbiology 2018; 49: 151–159. doi: 10.1016/j.bjm.2017.12.012
47. Thorat MN, Dastager SG. High yield production of cellulose by a Komagataeibacter rhaeticus PG2 strain isolated from pomegranate as a new host. RSC Advances 2018; 8(52): 29797–29805. doi: 10.1039/C8RA05295F
48. Rodrigues AC, Fontão AI, Coelho A, et al. Response surface statistical optimization of bacterial nanocellulose fermentation in static culture using a low-cost medium. New Biotechnology 2019; 49: 19–27. doi: 10.1016/j.nbt.2018.12.002
49. Yang HJ, Lee T, Kim JR, et al. Improved production of bacterial cellulose from waste glycerol through investigation of inhibitory effects of crude glycerol-derived compounds by Gluconacetobacter xylinus. Journal of Industrial and Engineering Chemistry 2019; 75: 158–163. doi: 10.1016/j.jiec.2019.03.017
50. Barshan S, Rezazadeh-Bari M, Almasi H, et al. Optimization and characterization of bacterial cellulose produced by Komagatacibacter xylinus PTCC 1734 using vinasse as a cheap cultivation medium. International journal of biological macromolecules 2019; 136: 1188–1195. doi: 10.1016/j.ijbiomac.2019.06.192
51. Güzel M, Akpınar Ö. Production and characterization of bacterial cellulose from citrus peels. Waste and Biomass Valorization 2019; 10: 2165–2175. doi: 10.1007/s12649-018-0241-x
52. Abdelraof M, Hasanin MS, El-Saied H. Ecofriendly green conversion of potato peel wastes to high productivity bacterial cellulose. Carbohydrate Polymers 2019; 211: 75–83. doi: 10.1016/j.carbpol.2019.01.095
53. Wu M, Chen W, Hu J, et al. Valorizing kitchen waste through bacterial cellulose production towards a more sustainable biorefinery. Science of the Total Environment 2019; 695: 133898. doi: 10.1016/j.scitotenv.2019.133898
54. Dikshit PK, Kim BS. Bacterial cellulose production from biodiesel–derived crude glycerol, magnetic functionalization, and its application as carrier for lipase immobilization. International Journal of Biological Macromolecules 2020; 153: 902–911. doi: 10.1016/j.ijbiomac.2020.03.047
55. Wang J, Tavakoli J, Tang Y. Bacterial cellulose production, properties and applications with different culture methods—A review. Carbohydrate Polymers 2019; 219: 63–76. doi: 10.1016/j.carbpol.2019.05.008
56. Kargarzadeh H, Mariano M, Gopakumar D, et al. Advances in cellulose nanomaterials. Cellulose 2018; 25: 2151–2189. doi: 10.1007/s10570-018-1723-5
57. Pang M, Huang Y, Meng F, et al. Application of bacterial cellulose in skin and bone tissue engineering. European Polymer Journal 2020; 122: 109365. doi: 10.1016/j.eurpolymj.2019.109365
58. Shrivastav P, Pramanik S, Vaidya G, et al. Bacterial cellulose as a potential biopolymer in biomedical applications: A state-of-the-art review. Journal of Materials Chemistry B 2022; 10(17): 3199–3241. doi: 10.1039/D1TB02709C
59. Blanco Parte FG, Santoso SP, Chou CC, et al. Current progress on the production, modification, and applications of bacterial cellulose. Critical Reviews in Biotechnology 2020; 40(3): 397–414. doi: 10.1080/07388551.2020.1713721
60. Campano C, Balea A, Blanco A, Negro C. Enhancement of the fermentation process and properties of bacterial cellulose: A review. Cellulose 2016; 23: 57–91. doi: 10.1007/s10570-015-0802-0
61. Lu Z, Zhang Y, Chi Y, et al. Effects of alcohols on bacterial cellulose production by Acetobacter xylinum 186. World Journal of Microbiology and Biotechnology 2011; 27: 2281–2285. doi: 10.1007/s11274-011-0692-8
62. Cacicedo ML, Castro MC, Servetas I, et al. Progress in bacterial cellulose matrices for biotechnological applications. Bioresource technology 2016; 213: 172–180. doi: 10.1016/j.biortech.2016.02.071
63. Fatima A, Yasir S, Qahoor N, et al. Bacterial Cellulose: History, Synthesis, and Structural Modifications for Advanced Applications. In: Bacterial Cellulose. CRC Press; 2021. pp. 1–26.
64. Jozala AF, de Lencastre-Novaes LC, Lopes AM, et al. Bacterial nanocellulose production and application: A 10-year overview. Applied Microbiology and Biotechnology 2016; 100(5): 2063–2072. doi: 10.1007/s00253-015-7243-4
65. Campano C, Merayo N, Negro C, Blanco A. In situ production of bacterial cellulose to economically improve recycled paper properties. International Journal of Biological Macromolecules 2018; 118: 1532–1541. doi: 10.1016/j.ijbiomac.2018.06.201
66. Stumpf TR, Yang X, Zhang J, Cao X. In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering. Materials Science and Engineering: C 2018; 82: 372–383. doi: 10.1016/j.msec.2016.11.121
67. Muhamad II, Pa’e N, Yusof AHM. Bacterial nanocellulose and its application in wastewater treatment. In: Sustainable Nanocellulose and Nanohydrogels from Natural Sources. Elsevier; 2020. pp. 299–314.
68. Akhtar N, Metkar SK, Girigoswami A, et al. ZnO nanoflower based sensitive nano-biosensor for amyloid detection. Materials Science and Engineering: C 2017; 78: 960–968. doi: 10.1016/j.msec.2017.04.118
69. Girigoswami A, Ghosh MM, Pallavi P, et al. Nanotechnology in detection of food toxins—Focus on the dairy products. Biointerface Research in Applied Chemistry 2021; 11(6): 14155–14172. doi: 10.33263/BRIAC116.1415514172
70. Girigoswami K, Akhtar N. Nanobiosensors and fluorescence based biosensors: An overview. International Journal of Nano Dimension 2019; 10(1): 1–17.
71. Metkar SK, Girigoswami K. Diagnostic biosensors in medicine—A review. Biocatalysis and Agricultural Biotechnology 2019; 17: 271–283. doi: 10.1016/j.bcab.2018.11.029
72. Sharmiladevi P, Akhtar N, Haribabu V, et al. Excitation wavelength independent carbon-decorated ferrite nanodots for multimodal diagnosis and stimuli responsive therapy. ACS Applied Bio Materials 2019; 2(4): 1634–1642. doi: 10.1021/acsabm.9b00039
73. Haribabu V, Girigoswami K, Sharmiladevi P, et al. Water—Nanomaterial interaction to escalate twin-mode magnetic resonance imaging. ACS Biomaterials Science & Engineering 2020; 6(8): 4377–4389. doi: 10.1021/acsbiomaterials.0c00409
74. Gowtham P, Girigoswami K, Pallavi P, et al. Alginate-derivative encapsulated carbon coated manganese-ferrite nanodots for multimodal medical imaging. Pharmaceutics 2022; 14(12): 2550. doi: 10.3390/pharmaceutics14122550
75. Jagannathan NR. Potential of Magnetic Resonance (MR) methods in clinical cancer research. In: Biomedical Translational Research. Springer; 2022. pp. 339–360.
76. Haribabu V, Girigoswami K, Girigoswami A. Magneto-silver core—shell nanohybrids for theragnosis. Nano-Structures & Nano-Objects 2021; 25: 100636. doi: 10.1016/j.nanoso.2020.100636
77. Pallavi P, Harini K, Alshehri S, et al. From synthetic route of silica nanoparticles to theranostic applications. Processes 2022; 10(12): 2595. doi: 10.3390/pr10122595
78. Chatterjee S, Harini K, Girigoswami A, et al. Nanodecoys: A quintessential candidate to augment theranostic applications for a plethora of diseases. Pharmaceutics 2023; 15(1): 73. doi: 10.3390/pharmaceutics15010073
79. Sakthi Devi R, Girigoswami A, Siddharth M, et al. Applications of gold and silver nanoparticles in theranostics. Applied Biochemistry and Biotechnology 2022; 194(9): 4187–4219. doi: 10.1007/s12010-022-03963-z
80. Agraharam G, Saravanan N, Girigoswami A, et al. Future of Alzheimer’s disease: Nanotechnology-based diagnostics and therapeutic approach. BioNanoScience 2022; 12: 1002–1017. doi: 10.1007/s12668-022-00998-8
81. Balasubramanian D, Girigoswami A, Girigoswami K. Nano resveratrol and its anticancer activity. Current Applied Science and Technology 2023; 23(3). doi: 10.55003/cast.2022.03.23.010
82. Balasubramanian D, Girigoswami A, Girigoswami K. Antimicrobial, pesticidal and food preservative applications of lemongrass oil nanoemulsion: A mini-review. Recent Advances in Food Nutrition & Agriculture 2022; 13(1): 51–58. doi: 10.2174/2212798412666220527154707
83. Gowtham P, Pallavi P, Karthick H, et al. Hydrogelated virus nanoparticles in tissue engineering. Current Nanoscience 2023; 18(2): 258–269. doi: 10.2174/1573413718666220520094933
84. Deepika B, Gopikrishna A, Girigoswami A, et al. Applications of nanoscaffolds in tissue engineering. Current Pharmacology Reports 2022; 8: 171–187. doi: 10.1007/s40495-022-00284-x
85. Girigoswami K, Pallavi P, Girigoswami A. Targeting cancer stem cells by nanoenabled drug delivery. In: Cancer Stem Cells: New Horizons in Cancer Therapies. Springer; 2020. pp. 313–337.
86. Thirumalai A, Harini K, Pallavi P, et al. Nanotechnology driven improvement of smart food packaging. Materials Research Innovations 2022; 27(4): 223–232. doi: 10.1080/14328917.2022.2114667
87. Garg H, Patial S, Raizada P, et al. Hexagonal-borocarbonitride (h-BCN) based heterostructure photocatalyst for energy and environmental applications: A review. Chemosphere 2022; 313: 137610. doi: 10.1016/j.chemosphere.2022.137610
88. Roig-Sanchez S, Jungstedt E, Anton-Sales I, et al. Nanocellulose films with multiple functional nanoparticles in confined spatial distribution. Nanoscale Horizons 2019; 4(3): 634–641. doi: 10.1039/C8NH00310F
89. Thach-Nguyen R, Dang-Bao T. Noble metal nanoparticles dispersed on nanocellulose: A green platform for catalytic organic transformations. Proceedings of the IOP Conference Series: Materials Science and Engineering 2022; 1258: 012014. doi: 10.1088/1757-899X/1258/1/012014
90. Deshmukh AR, Dikshit PK, Kim BS. Green in situ immobilization of gold and silver nanoparticles on bacterial nanocellulose film using Punica granatum peels extract and their application as reusable catalysts. International Journal of Biological Macromolecules 2022; 205: 169–177. doi: 10.1016/j.ijbiomac.2022.02.064
91. Harini K, Girigoswami K, Pallavi P, et al. MoS2 nanocomposites for biomolecular sensing, disease monitoring, and therapeutic applications. Nano Futures 2023; 7(3): 032001. doi: 10.1088/2399-1984/ace178
92. Ferreira-Neto EP, Ullah S, Da Silva TCA, et al. Bacterial nanocellulose/MoS2 hybrid aerogels as bifunctional adsorbent/photocatalyst membranes for in-flow water decontamination. ACS Applied Materials & Interfaces 2020; 12(37): 41627–41643. doi: 10.1021/acsami.0c14137
93. Lokhande PE, Singh PP, Vo DVN, et al. Bacterial nanocellulose: Green polymer materials for high performance energy storage applications. Journal of Environmental Chemical Engineering 2022; 10(5): 108176. doi: 10.1016/j.jece.2022.108176
94. Ponjavic M, Stevanovic S, Nikodinovic-Runic J, et al. Bacterial nanocellulose as green support of platinum nanoparticles for effective methanol oxidation. International Journal of Biological Macromolecules 2022; 223: 1474–1484. doi: 10.1016/j.ijbiomac.2022.10.278
95. Ji SM, Kumar A. Cellulose-derived nanostructures as sustainable biomass for supercapacitors: A review. Polymers 2022; 14(1): 169. doi: 10.3390/polym14010169
96. Napavichayanun S, Yamdech R, Aramwit P. The safety and efficacy of bacterial nanocellulose wound dressing incorporating sericin and polyhexamethylene biguanide: In vitro, in vivo and clinical studies. Archives of Dermatological Research 2016; 308(2): 123–132. doi: 10.1007/s00403-016-1621-3
97. Saska S, Barud HS, Gaspar AMM, et al. Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration. International Journal of Biomaterials 2011; 2011: 175362. doi: 10.1155/2011/175362
98. Almeida IF, Pereira T, Silva NHCS, et al. Bacterial cellulose membranes as drug delivery systems: An in vivo skin compatibility study. European Journal of Pharmaceutics and Biopharmaceutics 2014; 86(3): 332–336. doi: 10.1016/j.ejpb.2013.08.008
99. Bacakova L, Pajorova J, Bacakova M, et al. Versatile application of nanocellulose: From industry to skin tissue engineering and wound healing. Nanomaterials 2019; 9(2): 164. doi: 10.3390/nano9020164
100. Fontana JD, De Souza AM, Fontana CK, et al. Acetobacter cellulose pellicle as a temporary skin substitute. Applied Biochemistry and Biotechnology 1990; 24: 253–264. doi: 10.1007/BF02920250
101. Klemm D, Schumann D, Udhardt U, et al. Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Progress in Polymer Science 2001; 26(9): 1561–1603. doi: 10.1016/S0079-6700(01)00021-1
102. Sharma C, Bhardwaj NK. Bacterial nanocellulose: Present status, biomedical applications and future perspectives. Materials Science and Engineering: C 2019; 104: 109963. doi: 10.1016/j.msec.2019.109963
103. de Oliveira Barud HG, da Silva RR, da Silva Barud H, et al. A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose. Carbohydrate Polymers 2016; 153: 406–420. doi: 10.1016/j.carbpol.2016.07.059
104. Vatankhah E, Prabhakaran MP, Jin G, et al. Development of nanofibrous cellulose acetate/gelatin skin substitutes for variety wound treatment applications. Journal of Biomaterials Applications 2014; 28(6): 909–921. doi: 10.1177/0885328213486527
105. Torgbo S, Sukyai P. Bacterial cellulose-based scaffold materials for bone tissue engineering. Applied Materials Today 2018; 11: 34–49. doi: 10.1016/j.apmt.2018.01.004
106. Gao C, Wan Y, Yang C, et al. Preparation and characterization of bacterial cellulose sponge with hierarchical pore structure as tissue engineering scaffold. Journal of Porous Materials 2011; 18: 139–145. doi: 10.1007/s10934-010-9364-6
107. Li G, Nandgaonkar AG, Habibi Y, et al. An environmentally benign approach to achieving vectorial alignment and high microporosity in bacterial cellulose/chitosan scaffolds. RSC advances 2017; 7(23): 13678–13688. doi: 10.1039/C6RA26049G
108. Jacek P, Ryngajłło M, Bielecki S. Structural changes of bacterial nanocellulose pellicles induced by genetic modification of Komagataeibacter hansenii ATCC 23769. Applied Microbiology and Biotechnology 2019; 103: 5339–5353. doi: 10.1007/s00253-019-09846-4
109. Hu Y, Catchmark JM. Effect of freeze-drying behavior on the density and structure of bacterial cellulosic films by different acidic and alkaline treatments. In: Proceedings of the American Society of Agricultural and Biological Engineers Annual International Meeting 2009; 21–24 June 2009; Reno, NV, United States. pp. 5274–5288.
110. Wei Z, Hong FF, Cao Z, et al. In situ fabrication of nerve growth factor encapsulated chitosan nanoparticles in oxidized bacterial nanocellulose for rat sciatic nerve regeneration. Biomacromolecules 2021; 22(12): 4988–4999. doi: 10.1021/acs.biomac.1c00947
111. Bao L, Hong FF, Li G, et al. Improved performance of bacterial nanocellulose conduits by the introduction of silk fibroin nanoparticles and heparin for small-caliber vascular graft applications. Biomacromolecules 2020; 22(2): 353–364. doi: 10.1021/acs.biomac.0c01211
112. Mira-Cuenca C, Meslier T, Roig-Sanchez S, et al. Patterning bacterial cellulose films with iron oxide nanoparticles and magnetic resonance imaging monitoring. ACS Applied Polymer Materials 2021; 3(10): 4959–4965. doi: 10.1021/acsapm.1c00723
113. Tavakolian M, Jafari SM, van de Ven TG. A review on surface-functionalized cellulosic nanostructures as biocompatible antibacterial materials. Nano-Micro Letters 2020; 12: 73. doi: 10.1007/s40820-020-0408-4
114. Kousheh SA, Moradi M, Tajik H, et al. Preparation of antimicrobial/ultraviolet protective bacterial nanocellulose film with carbon dots synthesized from lactic acid bacteria. International Journal of Biological Macromolecules 2020; 155: 216–225. doi: 10.1016/j.ijbiomac.2020.03.230
115. Wei Z, Pan P, Hong FF, et al. A novel approach for efficient fabrication of chitosan nanoparticles-embedded bacterial nanocellulose conduits. Carbohydrate Polymers 2021; 264: 118002. doi: 10.1016/j.carbpol.2021.118002
116. Wang W, Yu Z, Alsammarraie FK, et al. Properties and antimicrobial activity of polyvinyl alcohol-modified bacterial nanocellulose packaging films incorporated with silver nanoparticles. Food Hydrocolloids 2020; 100: 105411. doi: 10.1016/j.foodhyd.2019.105411
117. Huo D, Chen B, Meng G, et al. Ag-nanoparticles@bacterial nanocellulose as a 3D flexible and robust surface-enhanced Raman scattering substrate. ACS Applied Materials & Interfaces 2020; 12(45): 50713–50720. doi: 10.1021/acsami.0c13828
118. Zhang S, Xu J, Liu Z, et al. Facile, ecofriendly, and efficient preparation of flexible gold nanoparticles@bacterial nanocellulose surface-enhanced raman scattering sensors by magnetron sputtering for trace detection of hazardous materials. ACS Sustainable Chemistry & Engineering 2022; 10(39): 13059–13069. doi: 10.1021/acssuschemeng.2c03220
DOI: https://doi.org/10.24294/ace.v6i3.2170
Refbacks
- There are currently no refbacks.
License URL: https://creativecommons.org/licenses/by-nc/4.0/