Morphology based catalytic oxidation of phenylpropyne into 1,2-diketones, aldehyde and acid using Cu(II) complex

Prashant Kaushik, Nidhi Malik, Prashant Tevatia, Vinod Kumar, Prasanta Kumar Sahu, Ravinder Kumar

Article ID: 2009
Vol 6, Issue 3, 2023

VIEWS - 1523 (Abstract) 90 (PDF)

Abstract


Aldehyde, 1,2-diketones, and acid were prepared by copper-catalyzed oxidation of phenyl propyne, using t-BuOOH as the oxidant, heterogeneously. Aldehyde is formed as a major product under neutral conditions. Under mild conditions, catalysis was carried out using catalytic amounts of [Cu(L)Br] with N-methyl benzimidazolyl Schiff base ligand and stoichiometric amounts of oxidant in CH3CN. The several properties of the catalyst were characterized by using UV-Vis, FT-IR, PXRD, CV, and Electron paramagnetic resonance techniques. Comparative SEM measurement of catalyst before and after the catalysis shows that the morphology and size of rods affect the catalytic efficiency. The percentage yields of products were determined by GC-MS.


Keywords


Copper complex; N-methyl benzimidazolyl Schiff base; phenylproyne; heterogeneous catalysis

Full Text:

PDF


References


1. Verma DK, Al-Sahlany ST, Niamah AK, et al. Recent trends in microbial flavour Compounds: A review on Chemistry, synthesis mechanism and their application in food. Saudi Journal of Biological Sciences 2022; 29(3): 1565–1576. doi: 10.1016/j.sjbs.2021.11.010

2. KR R, Gopi S, Balakrishnan P. Introduction to flavor and fragrance in food processing. In: Flavors and Fragrances in Food Processing: Preparation and Characterization Methods. American Chemical Society; 2022. pp. 1–19.

3. Maurya R, Patel H, Bhatt D, et al. Microbial production of natural flavors and fragrances. In: Recent Advances in Food Biotechnology. Springer, Singapore; 2022. pp. 139–159.

4. Shen D, Wang H, Zheng Y, et al. Catalyst-free and transition-metal-free approach to 1, 2-diketones via aerobic alkyne oxidation. The Journal of Organic Chemistry 2021; 86(7): 5354–5361. doi: 10.1021/acs.joc.0c03010

5. Kaushik P, Rawat BS, Kumar R. Various approaches for the synthesis of benzimidazole derivatives and their catalytic application for organic transformation. Applied Chemical Engineering 2023; 6(2): 2003. doi: 10.24294/ace.v6i2.2003

6. Bakshi R, Kumar R, Mathur P. Bis-benzimidazole diamide iron (III) complexes as mimics of phenoxazinone synthase. Catalysis Communications 2012; 17: 140–145. doi: 10.1016/j.catcom.2011.10.017

7. Kumar R, Mathur P. Aerobic oxidation of 1, 10-phenanthroline to phen-dione catalyzed by copper (II) complexes of a benzimidazolyl Schiff base. RSC Advances 2014; 4(63): 33190. doi: 10.1039/c4ra03651d

8. Mahiya K, Kumar R, Lloret F, Mathur P. Oxidation of substituted phenols using copper (II) metallatriangles formed through ligand sharing. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014; 133: 663–668. doi: 10.1016/j.saa.2014.06.026

9. Ni Z, Padilla R, dos Santos Mello L, Nielsen M. Tuning Ethanol Upgrading toward Primary or Secondary Alcohols by Homogeneous Catalysis. ACS Catal. 2023; 13(8): 5449–55. doi: 10.1021/acscatal.2c06322

10. Tyagi N, Kumar R, Mahiya K, Mathur P. Copper (II) complexes of a new tetradentate bis-benzimidazolyl diamide ligand with disulfanediyl linker: synthesis, characterization, and oxidation of some pyridyl, napthyl, and benzyl alcohols. Journal of Coordination Chemistry 2013; 66(19): 3335–3348. doi: 10.1080/00958972.2013.835403

11. Liu YP, Guo JM, Yan G, et al. Anti-inflammatory and antiproliferative prenylated isoflavone derivatives from the fruits of Ficus carica. Journal of Agricultural and Food Chemistry 2019; 67(17): 4817–4823. doi: 10.1021/acs.jafc.9b00865

12. Zhang J, Zhang C, Xu FC, et al. Cholinesterase inhibitory isoquinoline alkaloids from Corydalis mucronifera. Phytochemistry 2019; 159: 199–207. doi: 10.1016/j.phytochem.2018.11.019

13. Wu C, Liang Z, Yan D, He W, Xiang. Straightforward and highly efficient synthesis of α-acetoxy ketones through gold-catalyzed intermolecular oxidation of terminal alkynes. Synthesis 2013; 45(18): 2605–2611. doi: 10.1055/s-0033-1338513

14. Jiang HF, Tang JY, Wang AZ, et al. Cu (II)-promoted oxidative homocoupling reaction of terminal alkynes in supercritical carbon dioxide. Synthesis 2006; (7): 1155–1161. doi: 10.1055/s-2006-926372

15. Worayuthakarn R, Boonya-Udtayan S, Ruchirawat S, Thasana N. Total synthesis of unsymmetrical benzils, scandione and calophione A. European Journal of Organic Chemistry 2014; 2014(12): 2496–2507. doi: 10.1002/ejoc.201301722

16. Richter MJR, Schneider M, Brandstätter M, et al. Total synthesis of (−)-Mitrephorone A. Journal of the American Chemical Society 2018; 140(48): 16704–16710. doi: 10.1021/jacs.8b09685

17. Hyatt JL, Stacy V, Wadkins RM, et al. Inhibition of carboxylesterases by benzil (diphenylethane-1,2-dione) and heterocyclic analogues is dependent upon the aromaticity of the ring and the flexibility of the dione moiety. Journal of Medicinal Chemistry 2005; 48(17): 5543–5550. doi: 10.1021/jm0504196

18. Ganapaty S, Srilakshmi GVK, Pannakal ST, et al. Cytotoxic benzil and coumestan derivatives from tephrosia calophylla. Phytochemistry 2009; 70(1): 95–99. doi: 10.1016/j.phytochem.2008.10.009

19. Babudri F, Fiandanese V, Marchese G, Punzi A. A direct access to α-diones from oxalyl chloride. Tetrahedron Letters 1995; 36(40): 7305–7308. doi: 10.1016/0040-4039(95)01471-S

20. Singh SK, Saibaba V, Ravikumar V, et al. Synthesis and biological evaluation of 2,3-diarylpyrazines and quinoxalines as selective COX-2 inhibitors. Bioorganic & Medicinal Chemistry 2004; 12(8): 1881–1893. doi: 10.1016/j.bmc.2004.01.033

21. De Luca L, Mezzetti A. Base-free asymmetric transfer hydrogenation of 1,2-di- and monoketones catalyzed by a (NH)2P2-macrocyclic iron(II) hydride. Angewandte Chemie 2017; 56(39): 11949–11953. doi: 10.1002/anie.201706261

22. Dove AP, Li H, Pratt RC, et al. Stereoselective polymerization of rac- and meso-lactide catalyzed by sterically encumbered N-heterocyclic carbenes. Chemical Communications 2006; (27): 2881–2883. doi: 10.1039/b601393g

23. Guo L, Gao H, Guan Q, et al. Substituent effects of the backbone in α diimine palladium catalysts on homo- and copolymerization of ethylene with methyl acrylate. Organometallics 2012; 31(17): 6054–6062. doi: 10.1021/om300380b

24. Chen S, Liu Z, Shi E, et al. Ruthenium-catalyzed oxidation of alkenes at room temperature: A practical and concise approach to α-diketones. Organic Letters 2011; 13(9): 2274–2277. doi: 10.1021/ol200716d

25. Gao A, Yang F, Li L, Wu Y. Pd/Cu-catalyzed oxidation of alkynes into 1,2-diketones using DMSO as the oxidant. Tetrahedron 2012; 68(25): 4950–4954. doi: 10.1016/j.tet.2012.04.069

26. Ren W, Xia Y, Ji SJ, et al. Wacker-type oxidation of alkynes into 1,2-diketones using molecular oxygen. Organic Letters 2009; 11(8): 1841–1844. doi: 10.1021/ol900344g

27. Zhao Q, Bai C, Zhang W, et al. Catalytic epoxidation of olefins with graphene oxide supported copper (salen) complex. Industrial & Engineering Chemistry Research 2014; 53(11): 4232–4238. doi: 10.1021/ie500017z

28. Shul’pin GB, Mishra GS, Shul’pina LS, et al. Oxidation of hydrocarbons with hydrogen peroxide catalyzed by maltolato vanadium complexes covalently bonded to silica gel. Catalysis Communications 2007; 8(10): 1516–1520. doi: 10.1016/j.catcom.2006.12.022

29. Nam W, Kim HJ, Kim SH, et al. Metal complex-catalyzed epoxidation of olefins by dioxygen with co-oxidation of aldehydes. A mechanistic study. Inorganic Chemistry 1996; 35(4): 1045–1049. doi: 10.1021/ic950782a

30. Hamilton DE, Drago RS, Zombeck A. Mechanistics Studies on the cobalt (II) Schiff base catalyzed oxidation of olefins by O2. Journal of the American Chemical Society 1987; 109(2): 374–379. doi: 10.1021/ja00236a014

31. Mi C, Meng XG, Liao XH, Peng X. Selective oxidative cleavage of terminal olefins into aldehydes catalyzed by copper (II) complex. RSC Advances 2015; 5(85): 69487–69492. doi: 10.1039/c5ra14093e

32. Singla M, Mathur P, Gupta M, Hundal MS. Oxidation of electron deficient olefins using a copper(II) complex based on a bis-benzimidazole diamide ligand. Transition Metal Chemistry 2008; 33(2): 175–182. doi: 10.1007/s11243-007-9029-8

33. Wei L, You S, Tuo Y, Cai M. A highly efficient heterogeneous copper-catalyzed oxidative cyclization of benzylamines and 1,3-dicarbonyl compounds to give trisubstituted oxazoles. Synthesis 2019; 51(16): 3091–3100. doi: 10.1055/s-0037-1610710

34. Xia J, Huang X, Cai M. Heterogeneous copper(I)-catalyzed cascade addition–oxidative cyclization of nitriles with 2-aminopyridines or amidines: Efficient and practical synthesis of 1,2,4-triazoles. Synthesis 2019; 51(09): 2014–2022. doi: 10.1055/s-0037-1611712

35. Dehbanipour Z, Zarnegaryan A. Oxidation of alcohols to carbonyl compounds over graphene oxide functionalized with copper-thiazole as a catalyst. Inorganic Chemistry Communications 2023; 155: 110961. doi: 10.1016/j.inoche.2023.110961

36. Lashanizadegan M, Gorgannejad Z, Sarkheil M. Cu (II) Schiff base complex on magnetic support: An efficient nano-catalyst for oxidation of olefins using H2O2 as an eco-friendly oxidant. Inorganic Chemistry Communications 2021; 125: 108373. doi: 10.1016/j.inoche.2020.108373

37. Kumar R, Mathur P. Oxidation of phenyl propyne catalyzed by copper (II) complexes of a benzimidazolyl Schiff base ligand: Effect of acid/base, oxidant, surfactant and morphology. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2015; 136: 818–823. doi: 10.1016/j.saa.2014.09.099

38. Zhang G, Yi H, Zhang G, et al. Direct observation of reduction of Cu (II) to Cu (I) by terminal alkynes. Journal of the American Chemical Society 2014; 136(3): 924–926. doi: 10.1021/ja410756b

39. Lei J, Sha W, Xie X, Weng WT. Copper-catalyzed C (sp)–H bond hydrazidation. Organic Letters 2023; 25(2): 320–324. doi: 10.1021/acs.orglett.2c03876

40. Alvarez LX, Christ ML, Sorokin AB. Selective oxidation of alkenes and alkynes catalyzed by copper complexes. Applied Catalysis A: General 2007; 325(2): 303–308. doi: 10.1016/j.apcata.2007.02.045

41. Baiker A, Mallat T. Towards environmentally benign catalytic oxidation. Catalysis Science & Technology 2013; 3(2): 267. doi: 10.1039/c2cy90058k

42. Hülsey MJ, Lim CW, Yan N. Promoting heterogeneous catalysis beyond catalyst design. Chemical Science 2020; 11(6): 1456–1468. doi: 10.1039/c9sc05947d

43. Kumar R, Mahiya K, Mathur P. Dimeric copper (II) complex of a new Schiff base ligand: Effect of morphology on the catalytic oxidation of aromatic alcohol. Dalton Transactions 2013; 42(24): 8553–8557. doi: 10.1039/c3dt50348h

44. Le Bail A, Duroy H, Fourquet JL. Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Materials Research Bulletin 1988; 23(3): 447–452. doi: 10.1016/0025-5408(88)90019-0.

45. Ma Z, Chu Y, Fu C, et al. The effects of coordinated molecules of two gly-Schiff base copper complexes on their oxygen reduction reaction performance. Catalysts 2018; 8(4): 156. doi: 10.3390/catal8040156

46. Kannappan R, Tanase S, Mutikainen I, et al. Square-planar copper (II) halide complexes of tridentate ligands with π–π stacking interactions and alternating short and long Cu⋯ Cu distances. Inorganica Chimica Acta 2005; 358(2): 383–388. doi: 10.1016/j.ica.2004.09.003

47. Kumar R, Kumar R, Mahiya K, Mathur P. Oxidation of substituted benzyl amines using a phenoxo-bridged dimeric nickel (II) complex: Synthesis, crystal structure and catalytic activity. Transition Metal Chemistry 2015; 40(2): 189–195. doi: 10.1007/s11243-014-9905-y

48. Al-Shamry AA, Khalaf MM, El-Lateef HMA, et al. Development of new azomethine metal chelates derived from isatin: DFT and Pharmaceutical Studies. Materials 2022; 16(1): 83. doi: 10.3390/ma16010083

49. Abu-Dief AM, El-Khatib RM, Aljohani FS, et al. Synthesis, structural elucidation, DFT calculation, biological studies and DNA interaction of some aryl hydrazone Cr3+, Fe3+, and Cu2+ chelates. Computational Biology and Chemistry 2022; 97: 107643. doi: 10.1016/j.compbiolchem.2022.107643

50. Abu-Dief AM, Alotaibi NH, Al-Farraj ES, et al. Fabrication, structural elucidation, theoretical, TD-DFT, vibrational calculation and molecular docking studies of some novel adenine imine chelates for biomedical applications. Journal of Molecular Liquids 2022; 365: 119961. doi: 10.1016/j.molliq.2022.119961

51. Abu‐Dief AM, El‐Sagher HM, Shehata MR. Fabrication, spectroscopic characterization, calf thymus DNA binding investigation, antioxidant and anticancer activities of some antibiotic azomethine Cu(II), Pd(II), Zn(II) and Cr(III) complexes. Applied Organometallic Chemistry 2019; 33(8): e4943. doi: 10.1002/aoc.4943

52. Adam MSS, Abdel-Rahman LH, Abu-Dief AM, Hashem NA. Synthesis, catalysis, antimicrobial activity, and DNA interactions of new Cu(II)-Schiff base complexes. Inorganic and Nano-Metal Chemistry 2019; 50(3): 136–150. doi: 10.1080/24701556.2019.1672735

53. Ahuja G, Kumar R, Mathur P. Oxidation of olefins catalyzed by Iron (III) complexes of bis-benzimidazolyl diamide ligands. Journal of Molecular Structure 2012; 1011: 166–171. doi: 10.1016/j.molstruc.2011.12.047

54. Bakshi R, Kumar R, Mathur P. Oxidation of substituted alkynes catalyzed by a non-heme iron (III) bis benzimidazole diamide complex as catalyst under ambient conditions. Indian Journal of Chemistry 2011; 50A(5): 658–663.

55. Kneubühl FK. Line shapes of electron paramagnetic resonance signals produced by powders, glasses, and viscous liquids. The Journal of Chemical Physics 1960; 33(4): 1074–1078. doi: 10.1063/1.1731336

56. Roessler MM, Salvadori E. Principles and applications of EPR spectroscopy in the chemical sciences. Chemical Society Reviews 2018; 47(8): 2534–2553. doi: 10.1039/c6cs00565a

57. Jeong J, Yoon B, Kwon YW, et al. Singly and doubly occupied higher quantum states in nanocrystals. Nano Letters 2017; 17(2): 1187–1193. doi: 10.1021/acs.nanolett.6b04915

58. Kumar R, Yadav A, Mahiya K, Mathur P. Copper(II) complexes with box or flower type morphology: Sustainability versus perishability upon catalytic recycling. Inorganica Chimica Acta 2016; 450: 279–284. doi: 10.1016/j.ica.2016.06.012

59. Cheula R, Maestri M, Mpourmpakis G. Modeling morphology and catalytic activity of nanoparticle ensembles under reaction conditions. ACS Catalysis 2020; 10(11): 6149–6158. doi: 10.1021/acscatal.0c01005

60. Dong F, Meng Y, Han W, et al. Morphology effects on surface chemical properties and lattice defects of Cu/CeO2 catalysts applied for low-temperature CO oxidation. Scientific Reports 2019; 9(1): 12056. doi: 10.1038/s41598-019-48606-2

61. Li Z, Guo X, Tao F, Zhou R. New insights into the effect of morphology on catalytic properties of MnOx–CeO2 mixed oxides for chlorobenzene degradation. RSC Advances 2018; 8(45): 25283–25291. doi: 10.1039/c8ra04010a




DOI: https://doi.org/10.24294/ace.v6i3.2009

Refbacks

  • There are currently no refbacks.


License URL: https://creativecommons.org/licenses/by-nc/4.0/