NMR spectroscopy based configurational and compositional analysis of isobornyl methacrylate—Acrylonitrile copolymers

Deepika Khandelwal, Vikrant Kumar, Neeti Misra, Shallu Sachdeva, Sanjeeta Rani, Manisha Verma, Ishwar Prasad Sahu, Sunita Hooda

Article ID: 1999
Vol 6, Issue 1, 2023

VIEWS - 210 (Abstract) 174 (PDF)

Abstract


The authors conducted free radical polymerization using an initiator to synthesize a copolymer of isobornyl methacrylate—Acrylonitrile (I/A). The reactivity ratios of I (r1) and A (r2) monomers were determined as r1 = 1.63 ± 0.14, r2 = 0.61 ± 0.06 for linear KT (Kelen–Tudos) method and r1 = 1.58, r2 = 0.60 for the EVM (Error-in-Variable Method). We interpreted 1H and 13C{1H} NMR spectra of the I/A copolymers using DEPT-135 and 2D HSQC spectra. The α-CH3 carbon in the I-unit was identified and confirmed using a 2D HSQC NMR spectrum, up to the level of triad of compositional and configurational sequences. The CH (C14) and β-CH2 carbon peaks were also identified up to the triad level and higher, respectively. A 2D TOCSY spectrum revealed geminal and vicinal interactions within various CH and β-CH2 protons. A 2D HMBC NMR spectrum provided a complete assignment of the coupling between nitrile, carbonyl, and quaternary carbons with CH3 and CH2 protons.


Keywords


Isobornyl Methacrylate; Compositional Sequence; Configurational Sequence; Copolymer; 2D-NMR; Reactivity Ratio

Full Text:

PDF


References


1. Hadjichristidis N, Mays J, Ferry W, et al. Properties and chain flexibility of poly (dl-isobornyl methacrylate). Journal of Polymer Science Part B: Polymer Physics 1984; 22(10): 1745–1751. doi: 10.1002/pol.1984.180221004.

2. Matsumoto A, Mizuta K, Otsu T. Synthesis and thermal properties of poly(cycloalkyl methacrylate)s bearing bridged- and fused-ring structures. Journal of Polymer Science Part A: Polymer Chemistry 1993; 31: 2531–2539. doi: 10.1002/pola.1993.080311014.

3. Jozaghkar MR, Ziaee F, Azar AS. Investigation of poly(α-methyl styrene) tacticity synthesized by photo-polymerization. Polymer Bulletin 2021; 78: 5303–5314. doi: 10.1007/s00289-021-03823-6.

4. Qu J, Cheng J, Wang Z, et al. Synthesis, thermal and optical properties of crosslinked poly (isobornyl methacrylate-co-butyl acrylate) copolymer films. Optical Materials 2014; 36(4): 804–808. doi: 10.1016/j.optmat.2013.11.030.

5. Koleske JV. Paint and coating testing manual: Fourteenth edition of the Gardner-Sward handbook. Philadelphia: Astm; 1995.

6. Farcet C (inventor). L’Oréal (assignee). Novel block (Co)polymers composition containing them, method of treatment and method of preparation. US Patent. 20080181859A1. 2008 Jul 31.

7. Fang C, Zhu X, Cao Y, et al. Toward replacement of methyl methacrylate by sustainable bio-based isobornyl methacrylate in latex pressure sensitive adhesive. International Journal of Adhesion and Adhesives 2020; 100: 102623. doi: 10.1016/j.ijadhadh.2020.102623.

8. Xu J, Zhai Z, Yan X, et al. Improvement of water resistance and mechanical properties of fast-growing poplar with bio-based isobornyl methacrylate monomer. BioResources 2020; 15(2): 2356–2370. doi: 10.15376/biores.15.2.2356-2370.

9. Pirman T, Ocepek M, Likozar M. Radical polymerization of acrylates, methacrylates, and styrene: Biobased approaches, mechanism, kinetics, secondary reactions, and modeling. Industrial & Engineering Chemistry Research 2021; 60(26): 9347–9367. doi: 10.1021/acs.iecr.1c01649.

10. Ko KY, Hwang SH. Monomer composition effects on thermal properties of transparent poly(methyl methacrylate-co-isobornyl methacrylate-co-cyclohexyl maleimide) terpolymers. Journal of Industrial and Engineering Chemistry 2018; 59: 50–55. doi: 10.1016/j.jiec.2017.10.004.

11. Khandelwal D, Hooda S, Brar AS, et al. Poly(isobornyl methacrylate-co-methyl acrylate): Synthesis and stereo sequence distribution analysis by NMR spectroscopy. Journal of Polymer Science Part A: Polymer Chemistry 2012; 50(16): 3350–3362. doi: 10.1002/pola.26122.

12. Sridevi S, Rao PR. Thermal and dielectric studies of acrylonitrile with isobornyl acrylate and methacrylate copolymers. Oriental Journal of Chemistry 2008; 24(1): 157–162.

13. Hajiali F, Métafiot A, Benitez Ek L, et al. Nitroxide mediated polymerization of sustainably sourced isobornyl methacrylate and tridecyl methacrylate with acrylonitrile co-monomer. Journal of Polymer Science Part A: Polymer Chemistry 2018; 56: 2422–2436. doi: 10.1002/pola.29216.

14. Metafiot A, Gagnon L, Pruvost S, et al. β-Myrcene/isobornyl methacrylate SG1 nitroxide-mediated controlled radical polymerization: Synthesis and characterization of gradient, diblock and triblock copolymers. RSC Advances 2019; 9: 3377–3395. doi: 10.1039/C8RA09192G.

15. Bajaj P, Paliwal DK, Gupta AK. Acrylonitrile—Acrylic acids copolymers. I. Synthesis and characterization. Journal of Applied Polymer Science 1993; 49(5): 823–833. doi: 10.1002/app.1993.070490508.

16. Borbley JD, Hill DJT, Lang AP, et al. Copolymerization of acrylonitrile and methacrylic acid. An assessment of the copolymerization mechanism. Macromolecules 1991; 24(9): 2208–2211. doi: 10.1021/ma00009a012.

17. Dhar A, Singh U, Koiry BP, et al. Investigation of microstructure in poly(methyl methacrylate) prepared via ambient temperature ARGET-ATRP: A combined approach of 1D and 2D NMR spectroscopy. Journal of Polymer Research 2020; 27: 174. doi: 10.1007/s10965-020-02153-x.

18. Brar AS, Kaur J. 2D NMR studies of acrylonitrile-methyl acrylate copolymers. European Polymer Journal 2005; 41(10): 2278–2289. doi: 10.1016/j.eurpolymj.2005.05.003.

19. Hooda S, Goyal AK, Brar AS. Microstructure determination of poly(acrylonitrile-co-methyl methacrylate-co-methyl acrylate) terpolymers by 2D HMBC. Journal of Molecular Structure 2005; 920(1–3): 424–429. doi: 10.1016/j.molstruc.2008.11.042.

20. Brar AS, Saini T. Atom transfer radical copolymerization of acrylonitrile/n-butyl acrylate: Microstructure determination by two-dimensional nuclear magnetic resonance spectroscopy. Journal of Polymer Science Part A: Polymer Chemistry 2005; 43(13): 2810–2825. doi: 10.1016/j.molstruc.2008.11.042.

21. Brar AS, Sunita. Compositional sequence determination of acrylonitrile-butyl acrylate copolymers by 13C n.m.r. spectroscopy. Polymer 1993; 34(16): 3391–3396. doi: 10.1016/0032-3861(93)90466-N.

22. Wang A, Bao Y, Weng Z, et al. Synthesis and characterization of a novel polymer electrolyte based on acrylonitrile/N-[4-(aminosulfonyl)phenyl]acrylamide copolymers. Chinese Journal of Polymer Science 2010; 28: 129–135. doi: 10.1007/s10118-010-9057-2.

23. Huang Z, Chen J, Zhang L, et al. ICAR ATRP of acrylonitrile under ambient and high pressure. Polymers 2016; 8(3): 59. doi: 10.3390/polym8030059.

24. Ji Y, Catazaro J, Jiang Q, et al. Characterization of styrene—Vinyl alcohol copolymers by CP-MAS NMR spectroscopy. Macromolecules 2022; 55(16): 7032–7038. doi: 10.1021/acs.macromol.2c01009.

25. Budnikov SY, Smirnov AA, Vorozhtsov DL, et al. Copolymers of isobornyl acrylate with methylmethacrylate or acrylonitrile and its optical properties. Journal of Polymer Research 2020; 27: 59. doi: 10.1007/s10965-019-1904-4.

26. Ziegler MJ, Matyjaszewski K. Atom transfer radical copolymerization of methyl methacrylate and n-butyl acrylate. Macromolecules 2001; 34(3): 415–424. doi: 10.1021/ma001182k.

27. Matyjaszewski K, Ziegler MJ, Arehart SV, et al. Gradient copolymers by atom transfer radical copolymerization. Journal of Physical Organic Chemistry 2000; 13: 775–786. doi: 10.1002/1099-1395(200012)13:12<775:AID-POC314>3.0.CO;2-D.

28. Chen EYX. Stereospecific polymerization of methacrylates by metallocene and related catalysts. Journal of Polymer Science Part A: Polymer Chemistry 2004; 42(14): 3395–3403. doi: 10.1002/pola.20184.

29. Bovey FA. Chain structure and conformation of macromolecules. 1st ed. New York: Academic Press; 1982.

30. Matsuzaki K, Uryu T, Asakura T. NMR spectroscopy and stereoregularity of polymers. Tokyo: Japan Scientific Societies Press; 1996.

31. Long YY, Lv J, Li BX, et al. Speedy quantitative microstructure determination of Poly(ethylene-co-1-hexene) at triads by 1H–13C two-dimensional NMR. Polymer 2021; 229: 123993. doi: 10.1016/j.polymer.2021.123993.

32. Escher FFN, Galland GB. 13Carbon nuclear magnetic resonance of ethylene-propylene-1-hexene terpolymers. Journal of Polymer Science Part A: Polymer Chemistry 2004; 42: 2474–2482. doi: 10.1002/pola.20097.

33. Dube M, Sanayei PA, Penlidis A, et al. A microcomputer program for estimation of copolymerization reactivity ratios. Journal of Polymer Science Part A: Polymer Chemistry 1991; 29(5): 703–708. doi: 10.1002/pola.1991.080290512.

34. Kelen T, Tudos F. Analysis of the linear methods for determining copolymerization reactivity ratios. I. A new improved linear graphic method. Journal of Macromolecular Science: Part A–Chemistry 1975; 9(1): 1–27. doi: 10.1080/00222337508068644.

35. Khandelwal D, Hooda S, Brar AS, et al. Microstructure determination of isobornyl methacrylate—Styrene copolymer by NMR spectroscopy. Journal of Polymer Research 2014; 21: 377. doi: 0.1007/s10965-014-0377-8.




DOI: https://doi.org/10.24294/ace.v6i1.1999

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.