Recent advances in self-assembled cyclic peptide-based smart nanostructures
Vol 6, Issue 1, 2023
VIEWS - 967 (Abstract) 277 (PDF)
Abstract
Keywords
Full Text:
PDFReferences
1. Demmer O, Dijkgraaf I, Schottelius M, et al. Introduction of functional groups into peptides via n-alkylation. Organic Letters 2008; 10: 2015–2018. doi: 10.1021/ol800654n.
2. Valeur E, Guéret SM, Adihou H, et al. New modalities for challenging targets in drug discovery. Angewandte Chemie International Edition 2017; 56(35): 10294–10323. doi: 10.1002/anie.201611914.
3. Qi G, Gao Y, Wang L, Wang H. Self-assembled peptide-based nanomaterials for biomedical imaging and therapy. Advanced Materials 2018; 30(22): e1703444. doi: 10.1002/adma.201703444.
4. Wang C, Hong T, Cui P, et al. Antimicrobial peptides towards clinical application: Delivery and formulation. Advanced Drug Delivery Reviews 2021; 175: 113818. doi: 10.1016/j.addr.2021.05.028.
5. Sharma R, Borah SJ, Bhawna, et al. Functionalized peptide-based nanoparticles for targeted cancer nanotherapeutics: A state-of-the-art review. ACS Omega 2022; 7(41): 36092–36107. doi: 10.1021/acsomega.2c03974.
6. Moore TS, Winmill TF. CLXXVII.—The state of amines in aqueous solution. Journal of the Chemical Society, Transactions 1912; 101: 1635–1676. doi: 10.1039/CT9120101635.
7. Buckton LK, Rahimi MN, McAlpine SR. Cyclic peptides as drugs for intracellular targets: The next frontier in peptide therapeutic development. Chemistry—A European Journal 2021; 27(5): 1487–1513. doi: 10.1002/chem.201905385.
8. Abdullah T, Bhatt K, Eggermont LJ, et al. Supramolecular self-assembled peptide-based vaccines: Current state and future perspectives. Frontiers in Chemistry 2020; 8: 598160. doi: 10.3389/fchem.2020.598160.
9. Sato K, Hendricks MP, Palmer LC, Stupp SI. Peptide supramolecular materials for therapeutics. Chemical Society Reviews 2018; 47: 7539–7551. doi: 10.1039/c7cs00735c.
10. McLaughlin CK, Hamblin GD, Sleiman HF. Supramolecular DNA assembly. Chemical Society Reviews 2011; 40: 5647–5656. doi: 10.1039/c1cs15253j.
11. Sharma R, Gupta A, Kumar R, et al. An update on COVID-19: Role of nanotechnology in vaccine development. SMC Bulletin 2020; 11: 88–96.
12. Tran S, DeGiovanni PJ, Piel B, Rai P. Cancer nanomedicine: A review of recent success in drug delivery. Clinical and Translational Medicine 2017; 6: 1–21. doi: 10.1186/s40169-017-0175-0.
13. Kumar S, Sharma R, Bhawna, et al. Prospects of biosensors based on functionalized and nanostructured solitary materials: Detection of viral infections and other risks. ACS Omega 2022; 7(26): 22073–22088. doi: 10.1021/acsomega.2c01033.
14. Kim HS, Hartgerink JD, Ghadiri MR. Oriented self-assembly of cyclic peptide nanotubes in lipid membranes. Journal of the American Chemical Society 1998; 120(18): 4417–4424. doi: 10.1021/ja9735315.
15. Webber MJ, Kessler JA, Stupp SI. Emerging peptide nanomedicine to regenerate tissues and organs. Journal of Internal Medicine 2010; 267: 71–88. doi: 10.1111/j.1365-2796.2009.02184.x.
16. Yu C, Huang W, Li Z, et al. Progress in self-assembling peptide-based nanomaterials for biomedical applications. Current Topics in Medicinal Chemistry 2015; 16(3): 281–290. doi: 10.2174/1568026615666150701114527.
17. Song Q, Cheng Z, Kariuki M, et al. Molecular self-assembly and supramolecular chemistry of cyclic peptides. Chemical Reviews 2021; 121(22): 13936–13995. doi: 10.1021/acs.chemrev.0c01291.
18. Zhao X, Zhang S. Self-assembling nanopeptides become a new type of biomaterial. Advances in Polymer Science 2006; 203: 145–170. doi: 10.1007/12_088.
19. Rovero P, Quartara L, Fabbri G. Synthesis of cyclic peptides on solid support. Tetrahedron Letters 1991; 32(23): 2639–2642. doi: 10.1016/S0040-4039(00)78806-X.
20. Chow HY, Zhang Y, Matheson E, Li X. Ligation technologies for the synthesis of cyclic peptides. Chemical Reviews 2019; 119(17): 9971–10001. doi: 10.1021/acs.chemrev.8b00657.
21. Mandal D, Shirazi AN, Parang K. Cell-penetrating homochiral cyclic peptides as nuclear-targeting molecular transporters. Angewandte Chemie International Edition 2011; 50: 9633–9637. doi: 10.1002/anie.201102572.
22. Panigrahi B, Singh RK, Suryakant U, et al. Cyclic peptides nanospheres: A ‘2-in-1’ self-assembled delivery system for targeting nucleus and cytoplasm. European Journal of Pharmaceutical Sciences 2022; 171: 106125. doi: 10.1016/j.ejps.2022.106125.
23. Kumar V, Van Rensburg W, Snoep JL, et al. Antimicrobial nano-assemblies of tryptocidine C, a tryptophan-rich cyclic decapeptide, from ethanolic solutions. Biochimie 2023; 204: 22–32. doi: 10.1016/j.biochi.2022.08.017.
24. Shimizu T, Ding W, Kameta N. Soft-matter nanotubes: A platform for diverse functions and applications. Chemical Reviews 2020; 120(4): 2347–2407. doi: 10.1021/acs.chemrev.9b00509.
25. Hamley IW. Peptide nanotubes. Angewandte Chemie International Edition 2014; 53(27): 6866–6881. doi: 10.1002/anie.201310006.
26. Priegue JM, Louzao I, Gallego I, et al. 1D alignment of proteins and other nanoparticles by using reversible covalent bonds on cyclic peptide nanotubes. Organic Chemistry Frontiers 2022; 9: 1226–1233. doi: 10.1039/d1qo01349a.
27. Katouzian I, Jafari SM. Protein nanotubes as state-of-the-art nanocarriers: Synthesis methods, simulation and applications. Journal of Controlled Release 2019; 303: 302–318. doi: 10.1016/j.jconrel.2019.04.026.
28. Ghadiri MR, Granja JR, Milligan RA, et al. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 1993; 366: 324–327.
29. Garcia-Fandino R, Amorin M, Castedo L, Granja JR. Transmembrane ion transport by self-assembling α,γ-peptide nanotubes. Chemical Science 2012; 3: 3280–3285.
30. Yang NJ, Hinner MJ. Getting across the cell membrane: An overview for small molecules, peptides, and proteins. In: Site-specific protein labeling: Methods and protocols. Totowa: Humana Press; 2015. p. 29–53.
31. Surís-Valls R, Hogervorst TP, Schoenmakers SMC, et al. Inhibition of ice recrystallization by nanotube-forming cyclic peptides. Biomacromolecules 2022; 23: 520–529. doi: 10.1021/acs.biomac.1c01267.
32. Konda M, Bhowmik S, Mobin SM, et al. Modulating hydrogen bonded self-assembled patterns and morphological features by a change in side chain of third amino acid of synthetic γ- Amino acid based tripeptides. ChemistrySelect 2016; 1(11): 2586–2593. doi: 10.1002/slct.201600557.
33. Zhao K, Xing R, Yan X. Cyclic dipeptides: Biological activities and self-assembled materials. Journal of Peptide Science 2021; 113: e24202. doi: 10.1002/pep2.24202.
34. Tao K, Fan Z, Sun L, et al. Quantum confined peptide assemblies with tunable visible to near-infrared spectral range. Nature Communications 2018; 9: 3217. doi: 10.1038/s41467-018-05568-9.
35. Blunden BM, Chapman R, Danial M, et al. Drug conjugation to cyclic peptide-polymer self-assembling nanotubes. Chemistry–A European Journal 2014; 20(40): 12745–12749. doi: 10.1002/chem.201403130.
36. Mendive-Tapia L, Wang J, Vendrell M. Fluorescent cyclic peptides for cell imaging. Journal of Peptide Science 2021; 113: e24181. doi: 10.1002/pep2.24181.
37. Dougherty PG, Sahni A, Pei D. Understanding cell penetration of cyclic peptides. Chemical Reviews 2019; 119(17): 10241–10287. doi: 10.1021/acs.chemrev.9b00008.
38. Abriouel H, Lucas R, Omar NB, et al. Potential applications of the cyclic peptide enterocin AS–48 in the preservation of vegetable foods and beverages. Probiotics and Antimicrobial Proteins 2010; 2: 77–89. doi: 10.1007/s12602-009-9030-y.
39. Thorstholm L, Craik DJ. Discovery and applications of naturally occurring cyclic peptides. Drug Discovery Today: Technologies 2012; 9(1): e13–e21. doi: 10.1016/j.ddtec.2011.07.005.
40. Gran L. On the effect of a polypeptide isolated from “Kalata-Kalata” (Oldenlandia affinis DC) on the oestrogen dominated uterus. Acta Pharmacologica et Toxicologica 1973; 33(5): 400–408. doi: 10.1111/j.1600-0773.1973.tb01541.x.
41. Tam JP, Lu YA, Yang JL, Chiu KW. An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides. Proceedings of the National Academy of Sciences of the United States of America 1999; 96(16): 8913–8918. doi: 10.1073/pnas.96.16.8913.
42. Gerlach SL, Rathinakumar R, Chakravarty G, et al. Anticancer and chemosensitizing abilities of cycloviolacin O2 from Viola odorata and psyle cyclotides from Psychotria leptothyrsa. Biopolymers 2010; 94: 617–625. doi: 10.1002/bip.21435.
43. Pränting M, Lööv C, Burman R, et al. The cyclotide cycloviolacin O2 from Viola odorata has potent bactericidal activity against Gram-negative bacteria. Journal of Antimicrobial Chemotherapy 2010; 65: 1964–1971. doi: 10.1093/jac/dkq220.
44. Pinto MEF, Batista J, Koehbach J, et al. Ribifolin, an orbitide from jatropha ribifolia, and its potential antimalarial activity. Journal of Natural Products 2015; 78: 374–380. doi: 10.1021/np5007668.
45. Lázár V, Martins A, Spohn R, et al. Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides. Nature Microbiology 2018; 3: 718–731. doi: 10.1038/s41564-018-0164-0.
46. Bechinger B, Gorr SU. Antimicrobial peptides: Mechanisms of action and resistance. Journal of Dental Research 2017; 96(3): 254–260. doi: 10.1177/0022034516679973.
47. Ribeiro R, Pinto E, Fernandes C, Sousa E. Marine cyclic peptides: Antimicrobial activity and synthetic strategies. Marine Drugs 2022; 20(6): 397. doi: 10.3390/md20060397.
48. Han H, Gao Y, Chai M, et al. Biofilm microenvironment activated supramolecular nanoparticles for enhanced photodynamic therapy of bacterial keratitis. Journal of Controlled Release 2020; 327: 676–687. doi: 10.1016/j.jconrel.2020.09.014.
49. Sulthana R, Archer AC. Bacteriocin nanoconjugates: Boon to medical and food industry. Journal of Applied Microbiology 2021; 131(3): 1056–1071. doi: 10.1111/jam.14982.
50. Shimomura Y, Ito M. Human hair keratin-associated proteins. Journal of Investigative Dermatology Symposium Proceedings 2005; 10(3): 230–233. doi: 10.1111/j.1087-0024.2005.10112.x.
51. Kung B, Anderson GH, Paré S, et al. Effect of milk protein intake and casein-to-whey ratio in breakfast meals on postprandial glucose, satiety ratings, and subsequent meal intake. Journal of Dairy Science 2018; 101(10): 8688–8701. doi: 10.3168/jds.2018-14419.
52. Winder SJ, Ayscough KR. Actin-binding proteins. Journal of Cell Science 2005; 118: 651–654. doi: 10.1242/jcs.01670.
DOI: https://doi.org/10.24294/ace.v6i1.1989
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.