Guiding questions for the synthesis of catalyst and its application in selective catalytic oxidation reactions

William G. Cortés-Ortiz, Carlos A. Guerrero-Fajardo

Article ID: 1451
Vol 5, Issue 1, 2022

VIEWS - 447 (Abstract) 230 (PDF)

Abstract


This paper presents a brief history of catalysis, as well as the processes of selective oxidation of hydrocarbons. On the other hand, the basic concepts involved in heterogeneous catalysis are mentioned, emphasizing the role of catalytic materials in chemical oxidation processes and posing a series of guiding questions to be followed when approaching a process catalyzed by solid materials. In the same way, the methods of synthesis of catalysts known in the literature as sol-gel and impregnation are shown, identifying the influence of each stage of preparation with the physical and chemical properties of the materials. Finally, a case study applied to the selective catalytic oxidation of methane and methanol using iron, molybdenum, and vanadium catalytic materials synthesized by the sol-gel method is presented.


Keywords


Heterogeneous Catalysis; Guiding Questions; Selective Oxidation; Methane; Methanol; Formaldehyde; Sol-Gel; Impregnation; Catalyst Synthesis; Calcination

Full Text:

PDF


References


1. Burtron D. Development of the science of catalysis. In: Ertl G, Knözinger H, Schüth F, et al. (editors). Handbook of heterogeneous catalysis. Weinheim: Wiley VCH Verlag GmbH; 2008. p. 17–38. doi: 10.1002/9783527610044.hetcat0002.

2. Somorjai G. Surfaces—An introduction. In: Introduction to surface chemistry and catalysis. Wiley; 1994. p. 1–36.

3. Nieken U, Watzenberger O. Periodic operation of the deacon process. Chemical Engineering Science 1999; 54(13–14): 2619–2626. doi: 10.1016/S0009–2509(98)00490-4

4. Gómez–García MÁ, Dobrosz–Gómez I, GilPavas E, et al. Simulation of an industrial adiabatic multi–bed catalytic reactor for sulfur dioxide oxidation using the Maxwell–Stefan model. Chemical Engineering Journal 2015; 282: 101–107. doi: 10.1016/J.CEJ.2015.02.013

5. Hu YH, Ruckenstein E. Catalytic conversion of methane to synthesis gas by partial oxidation and CO2 reforming. Advances in Catalysis 2004; 48: 297–345. doi: 10.1016/S0360-0564(04)48004-3

6. Sadykov V. Oxide catalysts for ammonia oxidation in nitric acid production: Properties and perspectives. Applied Catalysis A: General 2000; 204(1): 59–87. doi: 10.1016/S0926-860X(00)00506-8

7. Lattes A. From catalytic hydrogenation to the chemical theory of catalysis: Paul Sabatier, genius chemist, apostle of decentralization (in Spanish). Comptes Rendus de l’Académie des Sciences-Series IIC-Chemistry 2000; 3(9): 705–709. doi: 10.1016/S1387-1609(00)01184-1

8. Zimdahl R. Nitrogen. In: Six chemicals that changed agriculture. Colorado, CO, USA: Elsevier; 2015. p. 55–72.

9. López Nieto JM, Solsona B. Gas phase heterogeneous partial oxidation reactions. In: Jacques C, Védrine JC (editors). Metal oxides in heterogeneous catalysis. Amsterdam, Netherlands: Elsevier; 2018. p. 211–286.

10. Grasselli RK. Fundamental principles of selective heterogeneous oxidation catalysis. Topics in Catalysis 2002; 21(1–3): 79–88. doi: 10.1023/A:1020556131984.

11. Mars P, Van Krevelen DW. Oxidations carried out by means of vanadium oxide catalysts. Chemical Engineering Science 1954; 3: 41–59. doi: 10.1016/S0009-2509(54)80005-4.

12. Reddy BM. Redox properties of metal oxides. In: Metal oxides: Chemistry and applications. USA, Boca Raton: CRC Press Taylor & Francis; 2005. p. 215–246.

13. Hodnett BK. Heterogeneous catalytic oxidation. London, United Kingdom: John Wiley & Sons Inc.; 2000.

14. Medford AJ. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. Journal of Catalysis. 2015; 328: 36–42. doi: 10.1016/j.jcat.2014.12.033.

15. Andrew SPS. Theory and practice of the formulation of heterogeneous catalysts. Chemical Engineering Science 1981; 36(9): 1431–1445. doi: 10.1016/0009-2509(81)85106-8.

16. Perego C, Villa P. Catalyst preparation methods. Catalysis Today 1997; 34: 281–305. doi: 10.1016/S0920-5861(96)00055-7.

17. Heinrichs B, Lambert S, Job N, et al. Sol-Gel synthesis of supported metals. In: Regalbuto J (editors). Catalyst Preparation Science and Engineering. Boca Raton, USA: CRC Press, Taylor& Francis Group; 2007. p. 163–208.

18. Hunter NR, Gesser HD, Morton LA, et al. Methanol formation at high pressure by the catalyzed oxidation of natural gas and by the sensitized oxidation of methane. Applied Catalysis 1990; 57: 45–54. doi: 10.1016/S0166-9834(00)80722-8.

19. Teichner S, Gardes G. Methods for the manufacture of composite catalysts containing a composition of a transition metal on a support. US3963646A.

20. Astier M. Preparation and catalytic properties of supported metal or metal-oxide on inorganic oxide aerogels. Studies in Surface Science and Catalysis 1976; 1(3): 315–330. doi: 10.1016/S0167-2991(08)63961-0.

21. Kistler S. Coherent expanded-aerogels. Journal of Physical Chemistry 1931; 36(1): 52–64. doi: 10.1021/j150331a003.

22. Kaiser A, Gorsmann C, Schubert C. Influence of the metal complexation on size and composition of Cu/Ni nano-particles prepared by sol-gel processing. Journal of Sol-Gel Science and Technology 1997; 8(1–3): 795–799. doi: 10.1007/BF02436940.

23. Heinrichs B, Noville F, Pirard JP. Pd/SiO2-Cogelled aerogel catalysts and impregnated aerogel and xerogel catalysts: Synthesis and characterization. Journal of Catalysis 1997; 170(2): 366–376. doi: 10.1006/jcat.1997.1772.

24. Lambert S, Cellier C, Grange P, et al. Synthesis of Pd/SiO2, Ag/SiO2, and Cu/SiO2 cogelled xerogel catalysts: Study of metal dispersion and catalytic activity. Journal of Catalysis 2004; 221(2): 335–346. doi: 10.1016/j.jcat.2003.07.014.

25. Brinker CJ, Scherer G. Sol-gel science the physics and chemistry of sol-gel processing. San Diego, USA: Academy Press. Inc; 1990.

26. Ward D, Ko E. Preparing catalytic materials by the sol-gel method. Industrial & Engineering Chemistry Research 1995; 34(2): 421–433. doi: 10.1021/ie00041a001.

27. Schneider M, Baiker A. Titania-based aerogels. Catalysis Today 1997; 35: 339–365. doi: 10.1016/S0920-5861(96)00164-2.

28. Brinker CJ. Hydrolysis and condensation of silicates: Effects on structure. Journal of Non-Crystalline Solids 1988; 100(1–3): 31–50. doi: 10.1016/0022-3093(88)90005-1.

29. Lecloux AJ, Pirard JP. High-temperature catalysts through sol-gel synthesis. Journal of Non-Crystalline Solids 1998; 225: 146–152. doi: 10.1016/S0022-3093(98)00034-9.

30. Dutoit D, Scheneider M, Baiker A. Titania-Silica mixed oxides: I. influence of sol-gel and drying conditions on structural properties. Journal of Catalysis 1995; 153(1): 165–176. doi: 10.1006/jcat.1995.1118.

31. Cortés Ortiz WG, Baena Novoa A, Guerrero Fajardo CA. Structuring-agent role in physical and chemical properties of Mo/SiO2 catalysts by sol–gel method. Journal of Sol-Gel Science and Technology 2019; 89(2): 416–425. doi: 10.1007/s10971-018-4892-7.

32. Geus J. Production of supported catalysts by impregnation and (viscous) drying. Catalyst Preparation Science and Engineering 2007: 341–370. doi: 10.1201/9781420006506.

33. Weisz PB. Sorption-diffusion in heterogeneous systems part 1. Transactions of the Faraday Society 1967; 63: 1801–1806. doi: 10.1016/j.leukres.2014.12.005.

34. Weisz PB. Sorption-diffusion in heterogeneous systems part 2. Transactions of the Faraday Society 1967; 63: 1807–1814. doi: 10.1039/TF9676301807.

35. Weisz PB. Sorption-diffusion in heterogeneous systems part 3. Transactions of the Faraday Society 1967; 63: 1815–1823. doi: 10.1039/TF9676301815.

36. Lee S, Aris R. The distribution of active ingredients in supported catalysts prepared by impregnation. Catalysis Reviews - Science and Engineering 1985; 27(2): 207–340. doi: 10.1080/01614948508064737.

37. Gaigneaux E, Vos DE, Jacobs P, et al. Scientific bases for the preparation of heterogeneous catalysts. Belgica: Elsevier Science; 2002.

38. Richardson J, Harker J. Crystallisation. In: Coulson and Richardson’s chemical engineering. 5th ed. Reino Unido: Elsevier Science; 2002. p. 827–897.

39. Ai M. Catalytic activity for the oxidation of methanol and the acid-base properties of metal oxides. Journal of Catalysis 1978; 54(3): 426–435. doi: 10.1016/0021-9517(78)90090-8.

40. Pernicone N, Lazzerin F, Liberti G, et al. On the mechanism of CH3OH oxidation to CH2O over MoO3–Fe2(MoO4)3 catalyst. Journal of Catalysis 1969; 14(4): 293–302. doi: 10.1016/0021-9517(69)90319-4.

41. Delgado D. Influence of phase composition of bulk tungsten vanadium oxides on the aerobic transformation of methanol and glycerol. European Journal of Inorganic Chemistry 2018; 10: 1204–1211. doi: 10.1002/ejic.201800059.

42. Navarro RM, Peña MA, Fierro JLG. Methane oxidation on metal oxides. In: Fierro JLG (editors). Metal oxides chemistry and applications. New York, USA: Taylor & Francis Group; 2006. p. 463–482.

43. Tatibouët JM. Methanol oxidation as a catalytic surface probe. Applied Catalysis A: General 1997; 148(2): 213–252. doi: 10.1016/S0926-860X(96)00236-0.

44. Hu H, Wachs IE. Catalytic properties of supported molybdenum oxide catalysts: In situ Raman and methanol oxidation studies. Journal of Physical Chemistry 1995; 99(27): 10911–10922. doi: 10.1021/j100027a035.

45. Liu YC, Griffin GL, Chan SS, et al. Photo–oxidation of methanol using MoO3TiO2: Catalyst structure and reaction selectivity. Journal of Catalysis 1985; 94(1): 108–119. doi: 10.1016/0021-9517(85)90086-7.

46. Chung JS, Miranda R, Bennett CO. Mechanism of partial oxidation of methanol over MoO3. Journal of Catalysis 1988; 114(2): 398–410. doi: 10.1016/0021-9517(88)90043-7.

47. Wachs IE, Deo G, Juskelis MV, et al. Methanol oxidation over supported vanadium oxide catalysts: New fundamental insights about oxidation reactions over metal oxide catalysts from transient and steady state kinetics. Studies in Surface Science and Catalysis 1997; 109: 305–314. doi: 10.1016/S0167-2991(97)80417-X.

48. Cortés Ortiz WG. Partial oxidation of methane and methanol on FeOx– , MoOx– and FeMoOx–SiO2 catalysts prepared by sol-gel method: A comparative study. Molecular Catalysis 2020; 491: 110982. doi: 10.1016/j.mcat.2020.110982.

49. Parkinson GS. Iron oxide surfaces. Surface Science Reports 2016; 71(1): 272–365. doi: 10.1016/j.surfrep.2016.02.001.

50. Weckhuysen BM, Keller DE. Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis. Catalysis Today 2003; 78: 25–46. doi: 10.1016/S0920-5861(02)00323-1.

51. Kong L. Green and rapid synthesis of iron molybdate catalyst by mechanochemistry and their catalytic performance for the oxidation of methanol to formaldehyde. Chemical Engineering Journal 2019; 364: 390–400. doi. 10.1016/J.CEJ.2019.01.164.

52. Yeo BR. The surface of iron molybdate catalysts used for the selective oxidation of methanol. Surface Science 2016; 648: 163–169. doi: 10.1016/j.susc.2015.11.010.

53. Brown M, Parkyns N. Progress in the partial oxidation of methane to methanol and formaldehyde. Catalysis Today 1991; 8: 305–335. doi: 10.1016/0920-5861(91)80056-F.

54. Arutyunov V. Direct methane to methanol: Historical and kinetics aspects. In: Methanol: Science and engineering. Reino Unido: Elsevier; 2018. p. 129–172.




DOI: https://doi.org/10.24294/ace.v5i1.1451

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.