Fractionation of heavy metals in soils cultivated with tobacco in Pinar del Río, Cuba

Alexei Yoan Martínez Robaina, Nelson Moura B. do Amaral Sobrinho, José M. Febles González, Erica Souto Abreu Lima, Mileisys Benítez Odio

Article ID: 1803
Vol 4, Issue 1, 2021

VIEWS - 580 (Abstract) 419 (PDF)

Abstract


Knowledge of the presence of heavy metals in soils of agricultural areas is important to prevent their accumulation in cultivated plants. The objective of the present investigation was to evaluate the total concentrations and fractions of heavy metals Cd, Pb, Zn, Fe, Mn, Ni, Cu, Cr and Co in the tobacco-growing area of Pinar del Río, Cuba and their relationship with the physicochemical properties of soil. For the study, 59 samples of three types of soils were collected at 20 cm depth. The pseudo-total concentrations of metals in the soils are low and lower than the prevention values registered for Cuban soils. In general, the heavy metals studied present a high affinity for the most stable fractions of the soil, which means a low risk of transfer to the tobacco crop or accumulation in groundwater. The pseudo-total concentrations of heavy metals were low, below the alert values established for soils in the region. The heavy metals studied were mainly associated with the residual fraction, the second fraction with the highest association with metals was that linked to manganese and iron oxides. The principal component analysis showed that their main source is pedogenetic and that these elements are closely related to cation exchange capacity and calcium content.


Keywords


Availability; Fractionation; Heavy Metals; Soil; Tobacco

Full Text:

PDF


References


1. Taghipour H, Mosaferi M, Armanfar F, et al. Heavy metals pollution in the soils of suburban areas in big cities: A case study. International Journal of Environmental Science and Technology 2013; 10(2): 243–250.

2. Kabata-Pendias A. Soil-plant transfer of trace elements—An environmental issue. Geoderma 2004; 122(2–4): 143–149.

3. Amaral Sobrinho NMB, Barra CM, Lã OR. Química dos metais pesados no solo (Spanish) [The two heavy goals of chemistry]. In: Melo VF, Alleoni LR (editors). Química e mineralogia do solo: Aplicações. Parte II. Viçosa: Sociedade Brasileira de Ciência do Solo; 2009. p. 249–312.

4. Gasparatos D, Mavromati G, Kotsovilis P, et al. Fractionation of heavy metals and evaluation of the environmental risk for the alkaline soils of the Thriassio plain: A residential, agricultural, and industrial area in Greece. Environmental Earth Sciences 2015; 74(2): 1099–1108.

5. Pérez López Y, Moura do Amaral Sobrinho N, Balbín Arias MI, et al. Contenido de elementos metálicos en suelos característicos del municipio San José de las Lajas (Spanish) [Contents of metal elements in typical soils of San José de las Lajas]. Revista Ciencias Técnicas Agropecuarias 2012; 21(1): 43–46.

6. Hernández A, Pérez J, Bosch D, et al. Clasificación de los suelos de Cuba (Spanish) [Classification of the soils of Cuba]. Ediciones INCA, Mayabeque, Cuba; 2015. p. 93.

7. IUSS Working Group WRB. World Reference Base for Soil Resources 2006, first update 2007. World Soil Resources Reports No. 103. FAO, Rome; 2007.

8. Empresa Brasileira De Pesquisa Agropecuária-EMBRAPA. Manual de métodos de análise de solo. 2nd ed. Rio de Janeiro: MBRAPA/CNPS; 1997. p. 212.

9. International Standards Organization. International standard: Soil quality-extraction of trace elements soluble in aqua regia. 1995. p. 6.

10. Ure AM, Quevauviller PH, Muntau H, et al. Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. International Journal of Environmental Analytical Chemistry 1993; 51(1–4): 135–151.

11. Iwegbue CMA. Chemical fractionation and mobility of heavy metals in soils in the vicinity of asphalt plants in Delta State, Nigeria. Environmental Forensics 2013; 14(3): 248–259.

12. Hair JF, Anderson RE, Tatham RL, et al. Análisis multivariante (Spanish) [Multivariate analysis]. Madrid: Prentice Hall Iberia; 1999. p. 832.

13. Mesa A, Naranjo M, Cancio R, et al. Manual de interpretación de los índices físico-químicos y morfológicos de los suelos cubanos (Spanish) [Manual of interpretation of the physico-chemical and morphological indexes of Cuban soils]. In: Ministerio de la Agricultura (editor). Dirección General de Suelos y Fertilizantes. La Habana: Editorial Científico-Técnica; 1984. p. 136.

14. Carrasco MG, Pita ALD, Sáenz MAV. El mejoramiento de los suelos: Una experiencia desde la agroecología en la Cooperativa de Producción Agropecuaria “Celso Maragoto Lara” (Spanish) [Soil improvement: An experience from agroecology in the Agricultural Production Cooperative “Celso Maragoto Lara”]. Avances 2014; 16(4): 317–328.

15. Amaro-Aroche EJ, Vitoria-Doria JA. Manejo del suelo para una producción sostenible (Spanish) [Soil management for sustainable production]. Avances 2013; 15(2): 156–265.

16. Cánepa Ramos Y, Trémols González AJ, González Mederos A, et al. Situación actual de los suelos tabacaleros de la empresa Lázaro Peña de la provincia Artemisa (Spanish) [Current situation of tobacco soils of the “Lázaro Peña” enterprise in Artemisa province]. Cultivos Tropicales 2015; 36(1): 80–85.

17. Alfaro MR, Montero A, Ugarte OM, et al. Background concentrations and reference values for heavy metals in soils of Cuba. Environmental Monitoring and Assessment 2015; 187(1): 1–10.

18. Fässler E, Robinson BH, Gupta SK, et al. Uptake and allocation of plant nutrients and Cd in maize, sunflower and tobacco growing on contaminated soil and the effect of soil conditioners under field conditions. Nutrient Cycling in Agroecosystems 2010; 87(3): 339–352.

19. Rashid S, Bashir A. Speciative distribution and bioavailability of metals in agricultural soils receiving industrial wastewater tobacco. Environmental Monitoring and Assessment 2012; 184: 4609–4622.

20. Chaignon V, Sanchez-Neira I, Herrmann P, et al. Copper bioavailability and extractability as related to chemical properties of contaminated soils from a vine-growing area. Environmental Pollution 2003; 123(2): 229–238.

21. Li J, Yang X, He Z, et al. Fractionation of lead in paddy soils and its bioavailability to rice plants. Geoderma 2007; 141(3–4): 174–180.

22. Szolnoki Z, Farsang A. Evaluation of metal mobility and bioaccessibility in soils of urban vegetable gardens using sequential extraction. Water, Air, & Soil Pollution 2013; 224(10): 1–16.

23. Martınez CE, Motto HL. Solubility of lead, zinc and copper added to mineral soils. Environmental Pollution 2000; 107(1): 153–158.

24. McLaughlin MJ, Smolders E, Degryse F, et al. Uptake of metals from soil into vegetables. In: Swartjes FA (editor). Dealing with contaminated sites. Dordrecht: Springer; 2011. p. 325–367.

25. Zeng F, Ali S, Zhang H, et al. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution 2011; 159(1): 84–91.

26. Kennou B, El Meray M, Romane A, et al. Assessment of heavy metal availability (Pb, Cu, Cr, Cd, Zn) and speciation in contaminated soils and sediment of discharge by sequential extraction. Environmental Earth Sciences 2015; 74(7): 5849–5858.

27. Houben D. Heavy metal mobility in contaminated soils as affected by plants, amendments and biochar. Implications for phytostabilization [PhD thesis]. Belgium: Universite catholique de Louvain; 2013.

28. Kushwaha A, Hans N, Kumar S, et al. A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicology and Environmental Safety 2018; 147: 1035–1045.

29. Ugarte OM, Alfaro MR, Álvarez AM, et al. El Níquel en suelos y plantas de Cuba (Spanish) [Nickel in soils and plants in Cuba]. Cultivos Tropicales 2015; 36: 25–33.

30. Ortega E, Lozano FJ, Asensio CM, et al. Cadmium distribution in tobacco growing soil fractions: its influence on dried leaf contents. Journal of Environmental Protection 2013; 4(11B): 1–7.

31. Buschle B, Souza LCP, Bonfleur EJ. Reference values for potentially harmful elements in soils from Atlantic Rainforest, Brazil. Journal of Geochemical Exploration 2017; 181: 138–147.

32. Chen Z, Zhao Y, Li Q, et al. Heavy metal contents and chemical speciations in sewage-irrigated soils from the eastern suburb of Beijing, China. Journal of Food, Agriculture and Environment 2009; 7(3–42): 690–695.

33. Sposito G. The chemistry of soils. 2nd Ed. New York: Oxford University Press; 2008. p. 330.




DOI: https://doi.org/10.24294/th.v4i1.1803

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.