Preparation of defect free TFC FO membranes using robust and highly porous ceramic substrate

Jincai Su, Yanyan Wei, Hui Li


In this study, robust and defect-free thin film composite (TFC) forward osmosis (FO) membranes have been successfully fabricated using ceramic hollow fibers as the substrate. Polydopamine (PDA) coating under controlled conditions is effective to reduce the surface pores of the substrate and make the substrate smooth enough for the interfacial polymerization. The pure water permeability (A), solute permeability (B) and structural parameter (S) of the resultant FO membrane are 0.854 L·m-2h-1bar-1 (LMH/Bar) 0.186 L·m-2h-1 (LMH) and 1720 µm, respectively. The water flux and reverse draw solute flux are measured using NaCl and proprietary ferric sodium citrate (FeNaCA) draw solutions at low and high osmotic pressure ranges. With increasing the osmotic pressure, higher water flux is obtained but its increase is not directly proportional to the increase in the osmotic pressure. At the membrane surface, the effect of dilutive concentration polarization is much less serious for FeNaCA draw solutions. At an osmotic pressure of 89.6 bar, the developed TFC membrane generates water fluxes of 11.5 and 30.0 LMH using NaCl and synthesized FeNaCA draw solutions. The corresponding reverse draw solute flux is 7.0 g·m-2h-1 (gMH) for NaCl draw solution but it is not detectable for FeNaCA draw solution. This means that the developed TFC FO membranes are defect free and their surface pores are at molecular level. The performance of the developed TFC FO membranes are also demonstrated for the enrichment of BSA protein.

Full Text:



L.A. Hoover, W.A. Phillip, A. Tiraferri, N.Y. Yip, M. Elimelech, forward with osmosis: emerging applications for greater sustainability, Environ. Sci. Technol. 45 (2011) 9824-9830.

R. McGinnis, M. Elimelech, global challenges in energy and water supply: the promise of engineered osmosis, Environ. Sci. Technol. 42 (2008) 8625-8629.

A. Achilli, T. Cath, E. Marchand, A. Childress, The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes, Desalination 239 (2009) 10-21.

C. Klaysom, T.Y. Cath, T. Depuydt, I.F.J. Vankelecom, Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply, Chem. Soc. Rev. 42 (2013) 6959-5989.

J.T. Arena, S.S. Manickam, K.K. Reimund, P. Brodskiy, J.R. McCutcheon, Characterization and performance relationships for a commercial thin film composite membrane in forward osmosis desalination and pressure retarded osmosis, Ind. Eng. Chem. Res. 54 (2015) 11393-11403.

Y. Cui, Q. Ge, X.Y. Liu, T.S. Chung, Novel forward osmosis process to effectively remove heavy metal ions, J. Membr. Sci. 467 (2014) 188-194.

J.R. McCutcheon, R.L. McGinnis, M. Elimelech, A novel ammonia-carbon dioxide forward (direct) osmosis desalination process, Desalination 174 (2005) 1-11.

Q. Yang, K.Y. Wang, T.S. Chung, A novel dual-layer forward osmosis membrane for protein enrichment and concentration, Sep. Purif. Technol. 69 (2009) 269-274.

Q. Ge, T.S. Chung, Oxalic acid complexes: promising draw solutes for forward osmosis (FO) in protein enrichment, Chem. Commun. 51 (2015) 4854-4857.

E.M. Garcia-Castello, J.R. McCutcheon, M. Elimelech, Performance evaluation of sucrose concentration using forward osmosis, J. Membr. Sci. 338 (2009) 61-66.

Q. Ge, M. Ling, T.S. Chung, Draw solutions for forward osmosis processes: Developments, challenges, and prospects for the future, J. Membr. Sci. 442 (2013) 225-237.

S. Karan, Z. Jiang, A.G. Livingston, Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation, Science 348 (2015) 1347-1351.

J. Su, Q. Yang, J.F. Teo, T.-S. Chung, Cellulose acetate nanofiltration hollow fiber membranes for forward osmosis processes, J. Membr. Sci. 355 (2010) 36-64.

S. Zhang, K.Y. Wang, T.-S. Chung, H. Chen, Y.C. Jean, G. Amy, Well-constructed cellulose acetate membranes for forward osmosis: minimized internal concentration polarization with an ultra-thin selective layer, J. Membr. Sci. 360 (2010) 522-535.

R. Wang, L. Shi, C.Y. Tang, S. Chou, C. Qiu, A.G. Fane, Characterization of novel forward osmosis hollow fiber membranes, J. Membr. Sci. 355 (2010) 158-167.

N.Y. Yip, A. Tiraferri, W.A. Phillip, J.D. Schiffman, M. Elimelech, High performance thin film composite forward osmosis membrane, Envir. Sci. Technol. 44 92010) 3812-3818.

R.C. Ong, T.S. Chung, Fabrication and positron annihilation spectroscopy (PAS) characterization of cellulose triacetate membranes for forward osmosis, J. Membr. Sci. 394-395 (2012) 230-240.

G. Han, S. Zhang, X. Li, N. Widjojo, T.-S. Chung, Thin film composite forward osmosis membranes based on polydopamine modified polysulfone substrates with enhancements in both water flux and slat rejection, Chem. Eng. Sci. 80 (2012) 219-231.

X. Li, S. Zhang, F.J. Fu, T.-S. Chung, Deformation and reinforcement of thin-film composite (TFC) polyamide-imide (PAI) membranes for osmotic power generation, J. Membr. Sci. 434 (2013) 204-217.

J.K. Holt, H.G. Park, Y. Wang, M. Stadermann, A.B. Artyukhin, C.P. Grigoropoulos, A. Noy, O. Bakajin, Fast mass transport through sub-2-nanometer carbon nanotubes, Science 312 (2006) 1034–1037.

M. Elimelech, W.A. Phillip, the future of seawater desalination: energy, technology, and the environment, Science 333 (2011) 712-717.

G. Han, Z.L. Cheng, T.-S. Chung, Thin-film composite (TFC) hollow fiber membrane with double-polyamide active layers for internal concentration polarization and fouling mitigation in osmotic processes, J. Membr. Sci. 523 (2017) 497-504.

T.Y. Cath, A.E. Childress, M. Elimelech, Forward osmosis: Principles, applications, and recent developments, J. Membr. Sci. 281 (2006) 70-87.

Q. Ge, F. Fu, T.-S. Chung, Ferric and cobaltous hydroacid complexes for forward osmosis (FO) processes, Water Res. 58 (2014) 230-238.

A. Tiraferri, Yip, A.P. Straub, S.R.V. Castrillon, M. Elimelech, A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes, J. Membr. Sci. 444 (2013) 523-538.

S. Zhang, P. Wang, X. Fu, T.S. Chung, Sustainable water recovery from oily wastewater via forward osmosis-membrane distillation (FO-MD), Water Res. 52 (2014) 112-121.

G. Han, S.S. Chan, T.-S. Chung, Forward osmosis (FO) for water reclamation from emulsified oil/water solutions: effects of membrane and emulsion characteristics, ACS Sustainable Chem. Eng. 4 (2016) 5021-5032.

J. Su, T.-S. Chung, B.J. Helmer, J.S. de Wit, Understanding of low osmotic efficiency in forward osmosis: Experiments and modeling, Desalination 313 (2013) 156-165.

Q. Ge, J. Su, G.L. Amy, T.-S. Chung, Exploration of polyelectrolytes as draw solutes in forward osmosis processes, Water Res. 46 (2012) 1318-1326.

M. Yasukawa, S. Mishima, M. Shibuya, D. Saeki, T. Takahashi, T. Miyoshi, H. Matsuyama, Preparation of a forward osmosis membrane using a highly porous polyketone microfiltration membrane as a novel support, J. Membr. Sci. 487 (2015) 51-59.

J. Su, T.-S. Chung, Sublayer structure and reflection coefficient and their effects on concentration and membrane performance in FO processes, J. Membr. Sci. 376 (2011) 214-224.

J. Su, T.-S. Chung, B.J. Helmer, J.S. de Wit, Enhanced double-skinned FO membranes with inner dense layer for wastewater treatment and macromolecule recycle using Sucrose as draw solute, J. Membr. Sci. 396 (2012) 92-100.

C.J. Barrow, A. Yasuda, P.T. Kenny, M.G. Zagorski, Solution conformations and aggregational properties of synthetic amyloid beta-peptides of Alzheimer’s disease. Analysis of circular dichroism spectra, J. Mol. Biol. 225 (1992) 1075-1093.

S.M. Kelly, R.J. Jess, N.C. Price, How to study protein by circular dichroism, ‎Biochim. Biophys. Acta 1751 (2005) 119-139.

C.M. Johnson, A.R. Fersht, Protein stability as a function of denaturant concentration: the thermal stability of barnase in the presence of urea, Biochem. 34 (1995) 6795-6804.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License

This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.