Titanium Oxide Photocatalytic Materials and Their Applications in Ceramics

Zhigang Chen, Hao Liu, Jianwei Su

Abstract


Titanium oxide has the advantages of high activity, good stability, non-toxic and low cost cost effective. It is one of the most widely studied photocatalysts and the most promising material for photocatalytic ceramics. In this paper, the photocatalytic mechanism of TiO2, the influence factors of photocatalytic activity, the preparation of nano-TiO2, the phase change of nano-TiO2, the application of TiO2 photocatalytic materials and the research progress of photocatalytic ceramics were reviewed.


Full Text:

PDF

References


References

Fujishima A., Honda K. Photolysis-decomposition of water at the surface of an irradiated semiconductor [J]. Nature, 1972, 238(5385): 37 - 8.

O’regan B., Grtzeli M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature, 1991,353 737 - 40.

Bach U., Lupo D., Comte P., et al. Solid -state dye-sensitized mesoporous TiO2 solar cells with high photon-to-selectron conversion efficiencies [J]. Nature, 1998, 395 (6702) 583 - 5.

Yu J. C., Yu J., Ho W., et al. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2[J]. Chem Mater, 2002, 14 (9): 3808 - 16.

Ohno T., Mitsui T., Matsumura M. Photocatalytic activity of S-doped TiO2 Photocatalyst under visible light [J]. Chem Lett, 2003, 32 (4): 364-5.

Ito S., Zakeeruddin S. M., Humphry - Baker R., et al. High Efficiency Organic Dye Sensitized Solar Cells Controlled by Nanocrystalline TiO2 Electrode Thickness [J]. Adv Mater, 2006, 18 (9): 1202-5.

Matsumoto T., Iyi N., Kaneko Y., et al. High visible -light photocatalytic activity of nitrogen-doped titania prepared from layered titania/isostearate nanocomposite [J]. Catal Today, 2007, 120 (2): 226 - 32.

Shen H., Mi L., Xu P., et al. Visible-gloss photocatalysis of itrogen-doping TiO2 nanoparticulate films prepared by low - energy ion implantation [J]. Appl Surf Sci, 2007, 253 (17): 7024 - 8.

Irie H., Miura S., Kamiya K., et al. Efficient visible light-sensitive photocatalysts: Grafting Cu (II) ions onto TiO2 and WO3

photocatalysts [J]. Chem Phys Lett, 2008, 457 (1) : 202 - 5.

Carey J. H., Oliver B. G. Intensity effects in the electrochemical photolysis of water at the TiO2 electrode [J].

Paz Y. Application of TiO2 photocatalysis for air treatment: Patents’ overview [J]. Appl Catal, B, 2010, 99 (3): 448 - 60.

Hoffmann M. R., Martin S. T., Choi W., et al Applications of semiconductor photocatalysis [J]. Chem Rev, 1995, 95 (1): 69 - 96.

Hashimoto K., Irie H., Fujishima A. TiO2 Photocatalysis: A Historical Overview and Future Prospects [J]. Japanese Journal of

Applied Physics Part 1 Regular Papers Short Notes and Review Papers, 2005, 44 (12): 8269.

Ochiai T., Fujishima A. Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification[J] .J Photochem Photobiol, C, 2012.

Mills A., Davies R. H., Worsley D. Water purification by semiconductor photocatalysis [J]. Chem Soc Rev, 1993, 22 (6): 417-25.

Chen D., K Ray A. Removal of toxic metal ions from hydropower photocatalysis [J]. Chem Eng Sci, 2001, 56 (4): 1561 - 70.

Robertson P. K. Semiconductor photocatalysis: an levels acceptable alternative production technique and effluent treatment

process [J]. J Cleaner Prod, 1996, 4 (3): 203 - 12.

Zou Z., Ye J., Sayama K., et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst [J]. Nature, 2001, 414 (6864): 625-7.

Fox M. A., Dulay M. T. Heterogeneous photocatalysis [J]. Chem Rev, 1993, 93 (1): 341-57.

Zhang P. -y., Yu G., Jiang Z. -p. Review of semiconductor photocatalyst and its modification [J]. Advances in Environmental Science, 1997, 5 (3): 1 -

Sayama K., Mukasa K., Abe R., et al. A new photocatalytic water splitting system under visible light irradiation mimicking a Z -scheme mechanism in photosynthesis [J]. J Photochem Photobiol, A, 2002, 148 1): 71 to 7.

Choi Y., Umebayashi T., Yoshikawa M. Fabrication and Characterization of C-doped anatase TiO2 photocatalysts [J]. J Mater Sci, 2004, 39 (5): 1837-9.

Wang Y., Cheng H., Hao Y., et al. Preparation, characterization and photoelectrochemicalaviors of Fe (III) -doped TiO2 nanoparticles [J]. J Mater Sci, 1999, 34 (15) 9.

Porter J. F., Li Y.-G., Chan C. K. The effect of calcination on The microstructural characteristics and photoreactivity of Degussa P-25 TiO2 [J]. J Mater Sci, 1999, 34 (7): 1523-31.

Li X., Xiong R., Wei G. S-N Co-doped TiO2 photocatalysts with visible-light activity prepared by sol-gel method [J]. Catal Lett, 2008, 125 (1 - 2): 104 - 9.

Mathews N., Jacome M., Morales ER, et al. Structural and spectroscopic study of the Fe doped TiO2 thin films for applications in photocatalysis [J]. Physica status solidi (c), 2009, 6 (S1): S219 - S23.

Kumar S. G., Devi L. G. Review on modified TiO2 photocatalysis under UV / visible light: selected results and related

processes on interfacial charge carrier transfer dynamics [J]. J Phys ChemA, 2011, 115 (46): 13211 - 41.

Chen Y., Dionysiou D. D. Effect of calcination temperature on the photocatalytic activity and adhesion of TiO2 films prepared by the P-25 powder-modified sol-gel method [J]. J Mol Catal

A: Chem, 2006, 244 (1): 73-82.

Li H., Bian Z., Zhu J., et al. Mesoporous Au / TiO2Nanocomposites with enhanced photocatalytic activity [J]. J Am Chem Soc, 2007, 129 (15): 4538 - 9.

Marcos PS, Marto J., Trindade T., et al. Screen -printing of TiO2 photocatalytic layers on glazed ceramic tiles [J]. J Photochem Photobiol, A, 2008, 197 (2 - 3): 125 - 31 The

Bondioli F., Taurino R., Ferrari A. M. Functionalization of Ceramic tile surface by sol-gel technique [J]. J Colloid Interf Sci, 2009, 334 (2): 195 - 201.

Zeng Z., Peng C., Hong Y., et al. Fabrication of a Photocatalytic Ceramic by Doping Si-, P-, and Zr-Modified TiO2 Nanopowders in Glaze [J]. J Am Ceram Soc, 93 (10): 2948 - 51.

Hofer M., Penner D. Thermally stable and photocatalytically active titania for ceramic surfaces [J]. J Eur Ceram Soc, 2011, 31 (15): 2887 - 96.

Carneiro J., Teixeira V., Azevedo S., et al. Development of photocatalytic ceramic materials via the deposition of TiO2 nanoparticles layers [J]. J Nano Res, 2012, 18 165-76.

Lee C. -S., Kim J., Son J., et al. Photocatalytic functional coatings of TiO2 thin films on polymer substrate by plasma affected atomic layer deposition [J]. Appl Catal, B, 2009, 91 3): 628 - 33.

Lee J. A., Krogman K. C., Ma M., et al. Highly Reactive Multilayer - Assembled TiO2 Coating on Electrospun Polymer Nanofibers [J]. Adv Mater, 2009, 21 (12): 1252-6.

Kajitvichyanukul P., Amornchat P. Effects of diethylene glycol on TiO2 thin film properties prepared by sol-gel process [J]. Sci Technol Adv Mat, 2005, 6 (3): 344-7.

Park S., DiMasi E., Kim Y. -I., Et al. The preparation and Characterization of photocatalytically active TiO2 thin films and nanoparticles using Successive-Ionic-Layer -Adsorption-and - Reaction [J]. Thin Solid Films, 2006, 515 (4): 1250-4.

Habibi MH, Nasr-Esfahani M., Egerton TA Preparation, characterization and photocatalytic activity of TiO2 / Methylcellulose nanocomposite films derived from nanopowder TiO2 and modified sol-gel titania [J]. J Mater Sci, 2007, 42 (15) : 6027 - 35.

Liang S., Chen M., Xue Q. Deposition behaviors and patterning of TiO2 thin films on different SAMs surfaces from titanium sulfate aqueous solution [J]. Colloids Surf, A, 2008, 324 (1): 137 - 42

Tsuge Y., Kim J., Sone Y., et al. Fabrication of transparent TiO2 film with high adhesion by using self-packages processes methods: Application to super-hydrophilic film [J]. Thin Solid Films, 2008, 516 (9): 2463 - 8.

Linsebigler A. L., Lu G., Yates Jr J. T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results [J]. Chem

Rev, 1995, 95 (3): 735-58.

Gao Lian, Zheng Shan, Zhang Qinghong. Nano-titanium oxide photocatalyst and its application [M]. Beijing: Chemical Industry Press, 2002.

Li Xinyong, Li Shuben. Advances in nanometer semiconductors [J]. Progress in Chemistry, 1996, 8 (3): 231 - 9.

Xu A. -W., Gao Y., Liu H. -Q. The Preparation, Characterization, and their photocatalytic Activities of Rare - Earth-Doped TiO2 Nanoparticles [J]. J Catal, 2002, 207 (2): 151 - 7.

Venkatachalam N., Palanichamy M., Arabindoo B., et al. Alkaline earth metal doped nanoporous TiO2 for enhanced photocatalytic mineralisation of bisphenol-A [J]. Catal Commun, 2007, 8 (7): 1088 -

Chen X., Burda C. The electronic origin of the visible -light absorption properties of C-, N-and S-doped TiO2 nanomaterials[J]

.J Am Chem Soc, 2008, 130 (15): 5018-9.

Panagiotopoulou P., Kondarides D. I. Effects of On the physicochemical characteristics and chemisorptive properties of Pt/ TiO2 catalysts [J]. J Catal, 2008, 260 (1): 141 - 9.

Zaleska A. Doped -TiO2: a review [J]. Recent Patents on Engineering, 2008, 2 (3): 157 - 64.

Panagiotopoulou P., Kondarides D. I. Effects of alkali promotion Of TiO2 on the chemisorptive properties and water -gas shift activity of supported noble metal catalysts [J]. J Catal, 2009, 267 (1): 57 - 66.

Choi Y. S., Kim B. W. Photocatalytic disinfection of E. coli in a UV/TiO2 - immobilised optical - fiber reactor [J]. J Chem Technol Biot, 2000, 75 (12): 1145 -

Lee J. C., Kim M. S., Kim B. W. Removal of paraquat dissolved in a photoreactor with TiO2 immobilized on the glass-tubes of UV lamps [J]. Water Res, 2002, 36 (7): 1776 - 82.

Ao C., Lee S. Enhancement effect of TiO2 immobilized on activated carbon fi lter for the photodegradation of pollutants at typical indoor air level [J]. Appl Catal, B, 2003, 44 (3): 191 - 205.

Zan L., Peng Z.-H., Xia Y.-L., et al. Novel route to prepare TiO2-coated ceramic and its photocatalytic function [J]. J Mater Sci, 2004, 39 (2) : 761 - 3.

Lizama C., Bravo C., Caneo C., et al. Photocatalytic degradation of surfactants with immobilized TiO2: comparing two

reaction Systems [J]. Environ Technol, 2005, 26 (8): 909 - 14

Takeuchi M., Deguchi J., Hidaka M., et al. Enhancement of the photocatalytic reactivity of TiO2 nano -particles by a simple mechanical blending with hydrophobic mordenite (MOR) zeolite [J].Appl Catal, B, 2009, 89 (3): 406-10.

Hanaor D. A., Sorrell C. C. Review of the anatase to rutile phase transformation[J]. J Mater Sci, 2011, 46 (4): 855-74.

Gnaser H., Lsch J., Orendorz A., et al. Temperature- depenent grain growth and phase transformation in mixed anatase - rutile nanocrystalline TiO2 films [J]. physica status solidi (a), 2011, 208 (7): 1635-40.

Banfield J. Thermodynamic analysis of phase stability of nanocrystalline titania[J]. J Mater Chem, 1998, 8 (9): 2073-6.

Wang C. -C., Ying J. Y. Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals [J]. Chem Mater, 1999, 11 (11): 3113-20.

Chen P.-L., Kuo C.-T., Pan F.-M., et al. Preparation and phase transformation of highly ordered TiO2 nanodot arrays on sapphire substrates[J]. Appl Phys Lett, 2004, 84 3888.

Reidy D. J., Holmes J. D., Nagle C., et al. A highly thermally stable anatase phase prepared by doping with zirconia and silica coupled to a mesoporous type synthesis technique [J]. J Mater Chem, 2005, 15 (34): 3494-500.

Reidy D., Holmes J., Morris M. The critical size mechanism for the anatase to rutile transformation in TiO2 and doped-TiO2[J]. J Eur Ceram Soc, 2006, 26 (9): 1527-34.

Baiju K., Shukla S., Sandhya K., et al. Photocatalytic activity of sol-gel-derived nanocrystalline titania [J]. The Journal of Physical Chemistry C, 2007, 111 (21): 7612-22.

Li W., Ni C., Lin H., et al. Size dependence of thermal stability of TiO2 nanoparticles[J]. J Appl Phys, 2004, 96 (11): 6663-8.

GhOsh T., Dhabal S., Datta A. On crystallite size dependence of phase stability of nanocrystalline TiO2 [J]. J Appl Phys, 2003, 94 (7): 4577 - 82.

Lee G. H., Zuo J. M. Growth and phase transformation of nanometer-sized titanium oxide powders produced by the precipitation method [J]. J Am Ceram Soc, 2004, 87 (3): 473-9.

Huber B., Brodyanski A., Scheib M., et al. Nanocrystalline anatase TiO2 thin films: preparation and crystallite size - dependent properties [J]. Thin Solid Films, 2005, 472 (1): 114

Pan X., Ma X. Phase transformations in nanocrystalline TiO2 milled in different turbines [J]. J Solid State Chem, 2004, 177 (11): 4098 - 103.

Riyas S., Yasir V. A., Das P. M. Crystal structure transformation Of TiO2 in presence of Fe2O3 and NiO in air atmosphere [J]. B Mater Sci, 2002, 25 (4): 267 - 73.

Robben L., Ismail AA, Lohmeier SJ, et al. Facing synthesis of highly ordered mesoporous and well crystalline TiO2: Impact of different gas atmosphere and calcination temperatures on structural properties [J]. Chem Mater, 2012, 24 (7): 1268 - 75.

Lee D. W., Ihm S.-K., Lee K. H. Mesostructure control using a titania-coated silica nanosphere framework with extremely high thermal stability [J]. Chem Mater, 2005, 17 (17): 4461 - 7.

Okada K., Yamamoto N., Kameshima Y., et al. Effect of silica additive on the anatase-to-rutile phase transition [J]. J Am Ceram Soc, 2001, 84 (7): 1591 - 6.

Schiller R., Weiss C. K., Landfester K. Phase stability and photocatalytic activity of Zr-doped anatase synthesis in miniemulsion [J]. Nanotechnology, 2010, 21 (40): 405 - 603.

Lee J. E., Oh S. M., Park D. W. Synthesis of nano-sized Al doped TiO2 powders using thermal plasma [J]. Thin Solid Films, 2004, 457 (1): 230-4.

Yang J., Huang Y., Ferreira JMF Inhibitory effect of alumina additive on the titania phase transformation of a sol - gel - derived powder [J]. J Mater Sci Lett, 1997, 16 (23): 1933 - 5.

Chen X., Shen S., Guo L., et al. Semiconductor-based photocatalytic hydrogen generation [J]. Chem Rev, 2010, 110 (11): 6503-70.

Kato H., Asakura K., Kudo A. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure [J]. J Am Chem Soc, 2003, 125 (10): 3082

- 9.

Kho YK, Iwase A., Teoh WY, et al. Photocatalytic H2 evolution over TiO2 nanoparticles. The synergistic effect of anatase and rutile [J]. The Journal of Physical Chemistry C, 2010, 114 (6): 2821 - 9.

Kitano M., Tsujimaru K., Anpo M. Decomposition of water in the separate evolution of hydrogen and oxygen using visible light-responsive TiO2 thin film photocatalysts: Effect of the work function of the substrate on the yield of the reaction [J] Appl Catal, A, 2006, 314 (2): 179 - 83.

Shaban Y. A., Khan S. U. Visible light active carbon modified N -TiO2 for efficient hydrogen production by photoelectrochemical splitting of water [J]. Int J Hydrogen Energ, 2008, 33 (4): 1118 - 26.

Tanaka S.-i., Iwatani T., Hirose N., et al. Effect of hydrogen on the formation of porous TiO2 in alkaline solution [J]. J Electrochem Soc, 2002, 149 (12): F186 - F90.

Navarro Yerga R. M., lvarez Galván M. C., Del Valle F., et al. Water Splitting on Semiconductor Catalysts under Visible-Light Irradiation [J]. ChemSusChem, 2009, 2 (6): 471-85.

Han C., Pelaez M., Likodimos V., et al. Innovative visible Light-deactivated sulfur doped TiO2 films for water treatment [J]. Appl Catal, B, 2011, 107 (1): 77 - 87

Obee T. N., Brown R. T. TiO2 photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1, 3-butadiene

[J]. Environ Sci Technol, 1995, 29 (5): 1223-31.

Ao C., Lee S. Indoor air purification by photocatalyst TiO2 immobilized on an activated carbon filter installed in an air Cleaner [J]. Chem Eng Sci, 2005, 60 (1): 103-9.

Ao C., Lee S., Yu JC Photocatalyst TiO2 supported on glass fiber for indoor air purification: effect of NO on the

photodegradation of CO and NO2 [J]. J Photochem Photobiol, A, 2003, 156 (1): 171 - 7.

Tsai T. M., Chang H. H., Chang K. C., et al Study of the bactericidal effect of photocatalytic oxidation by TiO2 on antibiotic - resistant and antibiotic - sensitive bacteria [J]. J Chem Technol Biot, 2010, 85 (12): 1642 - 53.

Fu G., Vary P. S., Lin C. T. Anatase TiO2 nanocomposites for antimicrobial coatings [J]. J Phys Chem B, 2005, 109 (18): 8889

-98.

Keleher J., Bashant J., Heldt N., et al. Photo-Catalytic preparation of silver-coated TiO2 particles for antibacterial applications [J]. World J Microbiol Biotechnol, 2002, 18 (2): 133-9.

Armelao L., Barreca D., Bottaro G., et al. Photocatalytic and antibacterial activity of TiO2 and Au/TiO2 nanosystems [J]. Nanotechnology, 2007, 18 (37): 375709.

Gan W. Y., Lam S. W., Chiang K., et al. Novel TiO2 thin film with non-UV activated superwetting and antifogging behaviours[J]. J Mater Chem, 2007, 17 (10): 952-4.

Zeman P., Takabayashi S. Self-cleaning and antifogging effects of TiO2 films prepared by radio frequency magnetron sputtering[J]. Journal of Vacuum Science u0026 Technology A: Vacuum, Surfaces, and Films, 2002, 20 (2): 388 - 93.

Lai Y., Tang Y., Gong J., et al. Transparent superhydrophobic/superhydrophilic TiO2-based coatings for self -cleaning and anti-fogging [J]. J Mater Chem, 2012, 22 (15): 7420-6.

Guan K. Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2 / SiO2 films [J]. Surf Coat Technol, 2005, 191 (2): 155 - 60.

Bozzi A., Yuranova T., Guasaquillo I., et al. Self -cleaning of modified cotton textiles by TiO2 at low temperatures under daylight irradiation [J]. J Photochem Photobiol, A, 2005, 174 (2): 156 - 64.

Montazer M., Seifollahzadeh S. Enhanced self-cleaning, Antibacterial and UV Protection Properties of Nano TiO2 Treated Textile through Enzymatic Pretreatment [J]. Photochem Photobiol, 2011, 87 (4): 877 - 83.

Yaghoubi H., Taghavinia N., Alamdari E. K. Self cleaning TiO2 coating on polycarbonate: Surface treatment, photocatalytic

and nanomechanical properties [J]. Surf Coat Technol, 2010, 204 (9): 1562-8.

Asahi R., Morikawa T., Ohwaki T., et al. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science, 2001, 293 (5528): 269 - 71.

Khan S. U., Al-Shahry M., Ingler W. B. Efficient photochemical water splitting by a chemically modified n-TiO2[J]. Science, 2002, 297 (5590): 2243-5.

Nakata K., Fujishima A. TiO2 photocatalysis: Design and appli-cations [J]. J Photochem Photobiol, C, 2012, 13 (3): 169 - 89.


Refbacks

  • There are currently no refbacks.




Creative Commons License

This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.