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Abstract: This paper aims to study how the increase in vaccination rate in Israel affect to the 

behavior of COVID-19 reproduction rate, from 19 December 2020, to 25 April 2021. Multiple 

advanced econometrics methodologies are used to analyze the degree of persistence, to 

understand the relationship between these two times series and the long-term behavior. The 

results of our study indicate that the vaccinations cause long-run effects to COVID-19 

reproduction rate and the vaccination provides useful information to predict the COVID-19 

reproduction rate. Also, we determine whatever exogenous shocks related with the virus 

reproduction will have a very short impact over time. The first change in trend occurs on 13 

January 2021, with 24.37% of the population vaccinated and when it can be seen that the 

increased rate of vaccinations causes the infection rate to decrease. 

Keywords: COVID-19 reproduction rate; vaccination rate; fractional integration; FCVAR 

model; wavelet analysis 

1. Introduction 

Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) is a member of 

the Coronaviridae (COVID) family and caused a public health emergency of 

international concern [1]. It became the most serious public health crisis in recent 

times, with significant impact on geopolitics and the global economy [2]. This virus is 

transmitted from person to person and is extremely infectious [2]. It has spread rapidly 

due to aerosol exposure [1]. In addition, the virus can cause multi-organ failure [3], 

which can be fatal for a large number of infected persons [4]. 

Globally, this virus spread rapidly [5]. Because of this, COVID-19 was 

considered a pandemic by the World Health Organization (WHO) on 11 March 2020 

[6]. Following the onset of this pandemic and its global spread, disastrous impacts 

took place in a variety of domains, mainly those related to health and lifestyles. 

Although COVID-19 can affect populations of all ages, it is noteworthy that older 

people are more sensitive to the virus and are more likely to suffer a higher mortality 

rate [1,7,8]. 

In an unprecedented attempt to find viable vaccines in time to limit the COVID-

19 pandemic, the scientific community worked incredibly hard [9]. 

It usually takes five to ten years to develop a vaccine [10], but since lives and 

health were at risk, the world’s population could not afford to wait that long. 

Unfortunately, many people contracted the disease and died day after day. As a result, 

according to a recently proposed paradigm for vaccine development, the development 

period was shortened from ten to fifteen years to one to two years [11]. However, in 

this particular case, the vaccine was developed in a matter of months rather than years. 

Thus, pharmaceutical companies have been able to offer several COVID-19 vaccines 

CITATION 

Monge M. Influence of vaccination 

on COVID-19 reproduction rate: 

Time trends and persistence analysis. 

Trends in Immunotherapy. 2024; 

8(2): 7788. 

https://doi.org/10.24294/ti.v8.i2.7788 

ARTICLE INFO 

Received: 4 July 2024 

Accepted: 24 July 2024 

Available online: 30 September 2024 

COPYRIGHT 

 

Copyright © 2024 by author(s). 

Trends in Immunotherapy is 

published by EnPress Publisher, 

LLC. This work is licensed under the 

Creative Commons Attribution (CC 

BY) license. 

https://creativecommons.org/licenses/

by/4.0/ 

mailto:manuel.monge@ufv.es


Trends in Immunotherapy 2024, 8(2), 7788. 
 

2 

in as little as 12 months since the first cases were discovered, thanks to the 

extraordinary efforts of the scientific community [12]. 

The FDA authorized the COVID-19 vaccine manufactured by Pfizer and 

BioNTech on 11 December 2020. This kind of vaccination is a messenger ribonucleic 

acid (mRNA) vaccine that has been changed by nucleotides and is made with lipid 

nanoparticles (BNT162-2 mRNA). For this vaccination, there will be two 

intramuscular doses (30 μg, 0.3 mL each), spaced 21 days apart from one another [13]. 

The first country to carry out mass vaccination against COVID-19 was Israel. On 

Sunday, 20 December 2020, the Israeli population received the first dosage of the 

vaccine [14–16], resulting in a vaccination rate of 60% of adults and those in at-risk 

categories. 

Kulhánek [17] claimed that a great deal of research has been done on the COVID-

19 pandemic; many of these studies have concentrated on the impact the virus has had 

on society rather than vaccination [18–20]. 

From the point of view of the analysis of the effects of vaccination on the virus, 

Toharudin et al. [21] examined the influence of vaccination on the spread of the 

pandemic and examined if stringent public restrictions had a mitigating effect on the 

COVID-19 outbreak in Jakarta. The authors’ findings regarding vaccination were 

ambiguous and inconsistent. They claimed that immunization had caused the COVID-

19 trend to decline, but they later clarified that limits were the reason for the decline 

in new cases. Furthermore, the claim that 0.7% of vaccinated individuals may stop the 

pandemic is wildly speculative, thus there is insufficient vaccination data to draw firm 

conclusions regarding the effectiveness of vaccinations. The analysis conducted by 

Rustagi et al. [22] focuses on the impact of immunization in Asian nations. They used 

support vector machines, polynomial regression, and linear regression techniques. 

They say that after the initial vaccination dosage, there is a drop in overall fatalities 

and cases; however, the reduction increases to 75% with a second dose. Chen et al. 

[23] endeavored to quantify the impact of immunization on the progression of 

COVID-19 in the United States. Hospitalizations and the total number of cases were 

the dependent variables in their OLS regressions. They concluded that vaccination 

slowed the expansion of the two dependent variables. The number of illnesses and 

fatalities that the immunization campaign avoided was modeled by Kayano et al. [24]. 

They assert that their study resulted in an almost 30% decrease in overall cases and a 

nearly 70% decrease in mortality. In addition, they note that a significant impact of 

the vaccination variable is the number of cases and fatalities averted. Watson et al. 

[25] estimated the number of cases and fatalities saved using the Metropolis-Hastings 

Markov Chain technique. Jain et al. [26] examined the effectiveness of the COVID-

19 vaccine in 32 European nations against the Omicron strain of the virus. The Poisson 

regression model with fixed effects was selected by the authors. They discovered a 

really significant finding: a percentage increase in complete immunization 

corresponds to an almost 17% drop in overall cases. Some other studies suggested 

vaccine efficacy against COVID-19 [14,27,28]. 

Israel has been among the top nations in the world during the SARS-CoV-2 

pandemic for its ability to develop organizational planning for emergency response 

and its capacity for calm reaction. This has led to an incredibly successful vaccination 

program, largely because of effective deployment at the health services level and a 
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sizable financial investment in the purchase of vaccines, specifically those developed 

by Pfizer-Biotech laboratories (BNT162b2). This allowed for the population to attain 

a state of partial immunity and a greater percentage of vaccinated individuals [29]. 

His vaccination distribution organization aimed to stop or at least mitigate the 

severe effects of COVID-19 on public health by immunizing as many people as 

possible with a single dose. 

The BNT162b2 vaccine was administered to 86,601 participants in a research 

conducted recently in Israel [30], and it was shown that the immunizations were 

effective 14–20 days after the first dosage. Hassan-Smith et al. [31] conducted 

additional studies of BNT162b2 vaccination data and assessed vaccine effectiveness 

to be between 89% and 91% in the 15–28 days period following the first dose. Levine-

Tiefenbrun et al. [32] achieved very similar results. 

After examining 4081 Israeli healthcare professionals, Amit et al. [33] found that, 

in the first ten days following vaccination, only 22 of them contracted the virus, and 

only 13 of them experienced COVID-19 symptoms. 

In the literature, several studies such as Broutin et al. [34], Xiao et al. [35], 

Althouse and Scarpino [36], Shioda et al. [37] used wavelet analysis to observe the 

behavior of vaccines against different infections that have caused a serious public 

health problem. 

Other researchers such as Biswas et al. [38], Wang et al. [39], Bohdanovet al. 

[40], among others used models such as SARIMA, ARIMA or ARISA to understand 

and forecast the behavior of various infectious diseases. 

But in none of the cases, to analyze the COVID-19 virus. 

To our knowledge, this research work is the first to use time series techniques as 

fractional integration and fractional cointegration models to measure the degree of 

persistence and the long-term relationship of total vaccination and infection rate for 

the case of Israel. It also uses methodologies based on Bai and Perron’s [41] analysis 

and the continuous wavelet transform (CWT) to identify the structural break in which 

vaccination changes the trend of virus infection, being able to identify the effective 

percentage of vaccinated persons needed to change the trend of infection. 

The paper is organized as follows. Section 2 and 3 data source and methodology 

applied in the paper are shown. Section 4 presents the main empirical results, while 

the final section shows the main conclusions of this research work. 

2. Data 

The data used to carry out this study have been obtained from Ritchie et al. [42] 

which is published and managed by researchers at the Blavatnik School of 

Government at the University of Oxford. The data used in this research paper have a 

daily frequency and the sample period is from 19 December 2020 to 25 April 2021. 

The time series we have used refer to: 1) COVID-19 reproduction number to see 

the pattern or trajectory of the average number of people to whom a single infected 

person will transmit the virus; and 2) total (accumulated) vaccinations in the case of 

Israel. The data used in this study is represented in Figure 1 to show the behavior of 

both. 
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Figure 1. Daily data for total vaccinations and COVID-19 reproduction rate in 

Israel. 

3. Methodology 

3.1. Unit roots 

Unit roots can be tested in many different ways. To this research we use ADF test 

based on Dickey and Fuller [43]. There are many other tests available to calculate unit 

roots that have a greater power such as Phillips and Perron [44] in which a non-

parametric estimate of the spectral density of 𝑢𝑡 at the zero frequency is used. Also, 

considering deterministic trends, we use the methodology based on Kwiatkowski et 

al. [45] and Elliot et al. [46], producing all essentially the same results. 

3.2. ARFIMA (p, d, q) model 

Following authors such as Diebold and Rudebusch [47], Hassler and Wolters 

[48], Lee and Schmidt [49] and others, it is now a well stylized fact that all unit root 

methods have very low power if the true data generating process displays long memory 

or if it is fractionally integrated. Thus, in what follows, fractional orders of 

differentiation are allowed. 

For this reason, we use the ARFIMA (p, d, q) model where the mathematical 

notation is: 

(1 − 𝐿)𝑑𝑥𝑡 = 𝑢𝑡, 𝑡 = 1, 2, (1) 

In Equation (1), 𝑥𝑡 refers to the time series that has an integrated process of order 

𝑑  (𝑥𝑡 ≈ 𝐼(𝑑)) , 𝑑  refers to any real value, 𝐿  is the lag-operator (𝐿𝑥𝑡 = 𝑥𝑡−1) and 

𝑢𝑡 refers to I(0). The Akaike information criterion [50] and Bayesian information 

criterion [51] were used to select the appropriate AR and MA orders in the models. 

The 𝑑 parameter has been estimated considering all combinations of AR and MA 

terms (𝑝; 𝑞 ≤ 2) for the time-series and for the subsamples taking into account their 

confidence bands at 95%. 
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3.3. Breitung-candelon test 

The causality test proposed by Breitung and Candelon [52] contributes to 

providing an idea about whether the relationship between both time series is temporary 

or permanent [53–55]. Because it interprets Granger causality across several frequency 

domains, this test has an advantage over other frequently used causality tests. To this 

end, two-time series—one based on coherence and the other on the bivariate spectral-

density matrix—are categorized according to their spectral associations. An overall 

count of immediate forward and backward causality mechanisms is then obtained from 

the categorization. 

According to Breitung and Candelon [52], the VAR(p) model below can be used 

to specify the interdependence between two variables, x and y: 

𝑥𝑡 = 𝛼1𝑥𝑡–1 + 𝛼𝑝𝑥𝑡–𝑝 + 𝛽1𝑦𝑡−1 + ⋯ + 𝛽𝑝𝑦𝑡−𝑝 + 𝛽1𝑡 (2) 

The null hypothesis, 𝐻0: 𝑀𝑦→𝑥(𝑤) = 0, as tested by Geweke [56], matches the 

null hypothesis of linear restriction given as: 

𝑅(𝑤)𝛽 = 0 (3) 

where 𝛽 denotes the coefficient vector of 𝑦. 𝑅(𝑤) is defined as: 

𝑅(𝑤) = [
cos(𝑤) cos(2𝑤) … cos(𝑝𝑤)

sin(𝑤) sin(2𝑤) … sin(𝑝𝑤)
] (4) 

The F-statistics for the null hypothesis in Equation (3) has an approximated 

distribution of 𝐹(2, 𝑇 − 2𝑃)  for 𝐹𝑤 ∈ (0, π) . Furthermore, co-integration is 

frequently used as a framework for examining the frequency-based Granger causality 

test. Therefore, Breitung and Candelon [52] substitute 𝑥𝑡 in Equation (2) for Δ𝑥𝑡. As 

a result, the existence of cointegration between the series suggests that the primary 

long-term causation and zero-frequency causality share conceptual similarities. 

However, if there is no long-term link in the stationary case, the evidence of a causal 

association at a low frequency implies that the variable under consideration’s 

frequency element can be predicted by a different variable. 

3.4. FCVAR model 

Following Johansen and Nielsen [57], we use their multivariate Fractional 

Cointegration Vector Autoregressive (FCVAR) model to check the relationship of the 

variables in the long term. The FCVAR model is notated in the next equation: 

∆𝑑𝑋𝑡 = 𝛼𝛽′𝐿𝑏∆𝑑−𝑏𝑋𝑡 + ∑ Γ𝑖

𝑘

𝑖=1

Δ𝑏𝐿𝑏
𝑖 𝑌𝑡 + 𝜀𝑡 (5) 

where 𝜀𝑡  is a term with mean zero and variance-covariance matrix Ω  that is p-

dimensional independent and identically distributed; 𝛼 and 𝛽 are 𝑝 × 𝑟 matrices where 

0 ≤ 𝑟 ≤ 𝑝. The relationship in the long-term equilibria in terms of cointegration in the 

system is due to the matrix 𝛽. Controlling the short-term behavior of the variables is due 

to parameter Γ𝑖 . Finally, the deviations from the equilibria and their speed in the 

adjustment is due to parameter 𝛼. 

3.5. Continuous Wavelet Transform (CWT) 

Time series are an aggregation of components operating on different frequencies. 

So, the most outstanding information is hidden in the frequency content of the signal. 
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For this reason, this methodology makes a lot of sense. 

Wavelet coherence and wavelet phase difference have been used to deepen this 

research in the time-frequency domain. This study allows to analyze the interaction of 

the time series in the time domain and revealing structural changes without the need 

for it to comply with the stationarity characteristic [58,59]. 

To identify hidden patterns and/or information, we use the wavelet coherency 

plot that measure the correlation between the time series in the time-frequency domain. 

To get this result, we calculate the 𝑊𝑇𝑥(𝑎, 𝜏) that is the wavelet transform of a time 

series 𝑥(𝑡), projecting the mother wavelet 𝜓 to map the original time series onto a 

function of 𝜏 and 𝑎: 

𝑊𝑇𝑥(𝑎, 𝜏) = ∫ 𝑥(𝑡)
1

√𝑎
𝜓∗ (

𝑡 − 𝜏

𝑎
) 𝑑𝑡

+∞

−∞

 (6) 

We choose Morlet wavelet as the mother wavelet because it is a complex sine 

wave within a Gaussian envelope, so we will be able to measure the synchronism 

between time series (see [59]). 

Taking into account the results that we get using Wavelet Transform, Wavelet 

COherence helps us understand how one time series interacts with respect to the other. 

We can define this term as: 

𝑊𝐶𝑂𝑥𝑦 =
𝑆𝑂(𝑊𝑇𝑥(𝑎, 𝜏)𝑊𝑇𝑦(𝑎, 𝜏)∗)

√𝑆𝑂(|𝑊𝑇𝑥(𝑎, 𝜏)|2)𝑆𝑂 (|𝑊𝑇𝑦(𝑎, 𝜏)|
2

)

 
(7) 

The SO parameter represents the smoothing operator in time, being relevant since 

if it were dispensed with, the wavelet coherence for all scales and times would be one 

(see [60]). It is possible to find the codes developed with MATLAB for the CWT 

solution on the Aguiar-Conraria website. 

4. Empirical results 

4.1. Unit roots 

We start with the use of Unit Root tests (ADF, PP and KPSS) to determine 

whether a series is stationary I(0) or non-stationary I(1). In data analysis this is very 

important as it allows a more consistent interpretation of the model parameters.  A 

trend or seasonal variation can distort the results and lead to erroneous conclusions 

about the underlying relationships in the data. The results are displayed in Table 1. 

We have obtained the results using the Augmented Dickey-Fuller (ADF) test, the 

Phillips Perron (PP) test and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test 

displayed in Table 1, which suggest that the total vaccination rate is stationary I(0). In 

the case of the COVID-19 spread rate we conclude that the time series are non-

stationary I(1). Thus, we have to calculate the first differences to make this time series 

stationary I(0) (see Table 1). 
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Table 1. Unit root tests. 

 ADF PP KPSS 

 (i) (ii) (iii) (i) (ii) (iii) (ii) (iii) 

Original Data and First Differences in total vaccinations rate 

Total Vaccination Rate −3.1534* −3.7529* −5.3104* −382.2684* −414.7715* −490.6638* 0.3670* 0.1432* 

d Total Vaccination - - - - - - - - 

Original Data and First Differences in COVID−19 reproduction rate 

Reproduction Rate −2.1438* −1.7209 −1.0642 −2.1852* −1.6399 −0.8765 1.1968 0.1631 

d Reproduction Rate −4.8185* −5.1280* −5.3382* −4.7607* −5.1275* −5.2919* 0.2456* 0.0799* 

(i) No deterministic components; (ii) intercept, (iii) linear time trend. * Statistic significant at the 5% 

level. 

The results suggest that the total vaccination rate is stationary I(0). In the case of 

the COVID-19 reproduction rate we conclude that the time series are non-stationary 

I(1). Therefore, for the case of reproduction rate time series presents a trend that is not 

deterministic but stochastic. This means that deviations from the mean are not 

automatically corrected over time. Each future value depends on the previous value 

plus an error term, thus accumulating the impact of all past errors. Once we apply to 

this latter time series the first differences, we get a stationary behavior I(0). 

4.2. Fractional integration 

Following the results obtained in Table 1 and due to the lower power of the unit 

root methods under fractional alternatives, we also employed ARFIMA (p, d, q) 

models to study the persistence of the time series related to total vaccination and 

COVID-19 spread rate in Israel. 

The advantages of using the ARFIMA (p, d, q) model over any Unit Root tests 

are several; 1) They allow fractional values for 𝑑 providing greater flexibility in how 

the series is modeled; 2) They capture long-term dependence; 3) They offer a complete 

framework for modeling and predicting time series. 

Table 2 displays the fractional parameter 𝑑 and the AR and MA terms obtained 

using Sowell’s [61] maximum likelihood estimator of various ARFIMA (p, d, q) 

specifications with all combinations of p, q ≤ 2, for each time series. 

Table 2. Results of long memory tests. 

Long memory test 

Data analyzed Sample size (weeks) Model Selected d Std. Error Interval I(d) 

Total Vaccination Rate 128 ARFIMA (2, d, 1) 0.32 0.0691 [0.21, 0.43] I(d) 

Reproduction Rate 128 ARFIMA (1, d, 0) 0.59 0.0982 [0.43, 0.75] I(d) 

We observe from Table 2 that the estimates of 𝑑 that we get focusing on the total 

vaccination rate and the COVID-19 reproduction rate is lower than 1 in both cases 

(𝑑 < 1). Also, we conclude that the results obtained are fractional 𝐼(𝑑) because are 

in the range (0, 1), that implies fractional integration. Therefore, these results suggest 

that both time series are expected to be mean reverting and the exogenous shocks will 

have a very short impact over time and the trends of the series analyzed will recover 
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in a short period of time. 

4.3. Frequency causality test based on Breitung and Candelon 

Once we have studied the statistical properties of each time series, we use the 

frequency causality test to examine the interactions between both time series in the 

short, mid and long-term. 

Performing a bivariate causality analysis allows us to identify the influences that 

one variable or time series exerts on the other. Also, past values of the causal variable 

provide useful information that can be exploited to predict future values of the 

dependent variable. 

Using the full-time series to estimate the causality in frequency domain, we find 

different results. Focusing on the results of the Wald test statistics and the p-value (in 

parentheses) shown in Table 3, we find the vaccinations (Vacc) causes long-run 

effects to COVID-19 reproduction rate (Repr) and the result is statistically significant 

at 10% in the long-run. These results indicate that vaccination provides useful 

information to predict the COVID-19 reproduction rate. 

Table 3. Breitung and Candelon frequency domain causality test results. 

Hypothesis Lag 
Long Term 

(𝝎 = 𝟎. 𝟎𝟓) 

Medium Term 

(𝝎 = 𝟏. 𝟓) 

Short Term 

(𝝎 = 𝟐. 𝟓) 

Original Time Series 

Repr → Vacc 
4 

1.21 (0.56) 0.58 (0.75) 1.09 (0.58) 

Vacc → Repr 5.60* (0.06) 1.52 (0.47) 1.79 (0.41) 

4.4. Results of FCVAR 

Once we have determined that the relationship exists between vaccination and 

reproduction rate and is not spurious (the relationship between both is significant), we 

want to determine the long-run equilibrium relationship of the two variables jointly 

and their co-movements. To do so, we use Fractional Cointegration VAR model (see 

[57]). The results are summarized in Table 4. 

Table 4. Results FCVAR model. 

 𝒅 ≠ 𝒃 
Cointegrating equation beta 

Total Vaccination Rate Reproduction Rate 

Panel I: Total Vaccination 

Rate and COVID-19 

Reproduction Rate 

𝑑 = 0.864 (0.081) 

𝑏 = 0.864 (0.072) 
1.000 −61.818 

∆𝑑 ([
Total Vaccination Rate

COVID − 19 Reproduction Rate
] − [

0.000
0.000

])

= 𝐿𝑑 [
−0.878
−0.000

] 𝜈𝑡 + ∑ Γ̂𝑖Δ𝑑𝐿𝑑
𝑖 (𝑋𝑡 − 𝜇

2

𝑖=1

) + 𝜀𝑡 

According to the results that we get using FCVAR model, we are going to focus 

in two terms. In the integrating and cointegrating part (𝑑 ≠ 𝑏) and the beta term to 

analyze the behavior of the time series. 

From Panel I, where we analyze the long-term relationship between both time 

series, we observe that the order of integration of the individual series is 0.864 (𝑑 =
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0.864) getting the same magnitude in the reduction in the degree of integration (𝑏 =

0.864) in the cointegration regression. This result implies I(0) cointegration errors. 

So, we cannot reject the hypothesis where the shock duration is short-lived due to the 

error correction term shows short-run stationary behavior. 

On the other hand, we observe from the cointegrating equation beta that a one-

point increase in the total vaccination rate in Israel imply a decrease in the COVID-19 

reproduction rate (around 62 points). 

4.5. Structural breaks and continuous wavelet transform 

In order to verify whether the total number of people vaccinated in Israel has 

brought about a change in the trend of the COVID-19 spread rate and when this change 

in trend has occurred, we use Perron and Vogelsan [62] and Bai and Perron [41] 

approaches. The break dates, for the daily case are reported in Table 5. 

Table 5. Structural breaks. 

Time Series Structural break dates at significance level 5% 

COVID-19 Reproduction Rate 

13 January 2021 

5 February 2021 

12 March 2021 

To see if this is verified, we use multivariate analysis based on time-frequency 

domain to understand the correlation that exists between both variables during the 

structural break dates identified previously. 

From Figure 2, we can get several results. Wavelet Coherency is represented in 

section (a) of Figure 2 and tell us when and at which frequencies the interrelations 

between time series occur and when they are the strongest, identifying the main 

regions with statistically significant coherency (5% of significance level). To identify 

the regions we used Monte Carlo simulations (n = 1000). We observed that the main 

regions with statistically significant consistency coincide with the structural changes 

cited above, finding that the impact of vaccines on the rate of COVID-19 spread is 

significant. 

 

Figure 2. Wavelet coherency and phase difference between total vaccination and reproduction rate. 
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Once we have identified the regions that corresponds to the high coherency, we 

have to look the results obtained in section (b), that is the partial difference in the 1–

12 frequency band. This result allows us to determine the impact and importance of 

the shock of one variable in relation to the other. On the results previously obtained, 

the phase difference is between [π/2, π]. This means that an increase in vaccination 

causes the infection rate to decrease. According with these results, we conclude that 

the contraction of the virus is confirmed 26 days after the start of the vaccination 

rollout in Israel, with 24.37% of people vaccinated. 

5. Concluding comments 

The first country to carry out mass vaccination against COVID-19 was Israel. 

Starting in December 2020, Israel implemented a rapid and efficient vaccination 

campaign, managing to vaccinate a large proportion of its population in a short period 

of time. This effort included procuring a sufficient quantity of vaccines and mobilizing 

its health system to ensure rapid and effective distribution of doses. Israel’s strategy 

served as a model for other countries in terms of speed and vaccination coverage. His 

vaccination distribution organization aimed to stop or at least mitigate the severe 

effects of COVID-19 on public health by immunizing as many people as possible with 

a single dose. 

In order to understand the behavior of the COVID-19 reproduction rate 

depending on total vaccine distributed per day in Israel, we conduct this research paper 

using the database provides by Ritchie et al. [42] which is published and managed by 

researchers at the Blavatnik School of Government at the University of Oxford. The 

period analyzed is 19 December 2020, to 25 April 2021. 

Our first focus has been to analyze the statistical properties of these time series 

using several unit root methods, including ADF [43], PP [44], and KPSS [45]. The 

results suggest that the total vaccination rate is stationary I(0). In the case of the 

COVID-19 spread rate we conclude that the time series are non-stationary I(1). Thus, 

we have to calculate the first differences to make this time series stationary I(0). We 

also used techniques based on fractional integration, and the results indicated that the 

values of d in the ARFIMA model are below 1, where an exogenous shock in the 

vaccination or in the infection trend rate of the virus is not going to be significant and 

does not cause a change in the trend in the future. 

Once we have studied the statistical properties of each time series, and in order 

to understand the interactions between both time series in the short, mid and long-

term, we perform a bivariate frequency causality test. The results indicate that 

vaccination provides useful information to predict the COVID-19 reproduction rate. 

With the analysis we performed with the FCVAR model, we observed that the 

combination of both variables in the long term presents a degree of cointegration I(0), 

that is, a stable and long term relationship. On the other hand, we observe from the 

cointegrating equation beta that a one-point increase in the total vaccination rate in 

Israel imply a decrease in the COVID-19 reproduction rate (around 62 points). 

Finally, using Bai and Perron [41] we found three structural changes that we also 

observed using wavelet analysis. In addition, with this last methodology we 

demonstrate that vaccination begins to affect the transmission of the virus between 4 
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and 16 days from the administration of the doses and the first change in trend occurs 

on 13 January 2021 with 24.37% of the population vaccinated and when it is apparent 

that the increased vaccination has caused the infection rate to decrease. 
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