The Nobel Prize in Physiology or Medicine 2023 was awarded for discoveries concerning base modifications that enabled the development of effective mRNA vaccines against COVID-19

Fukumi Furukawa

1 Takatsuki Red Cross Hospital, Takatsuki City, Osaka 569-1096, Japan; ffurukawa@takatsuki.jrc.or.jp, h7gygyff@gmail.com
2 Department of Forensic Medicine, Wakayama Medical University, Wakayama City, Wakayama 641-0012, Japan

The Nobel Prize in Physiology or Medicine 2023 was awarded to two outstanding scientists for their discoveries concerning base modifications that enabled the development of effective mRNA vaccines against COVID-19\(^\text{[1,2]}\). They are Dr. Katalin Karikó and Dr. Drew Weissman.

It is very well known that the reason for this award was for the basic research results and discoveries underpinning the development of effective mRNA vaccines against COVID-19, during the pandemic that began in early 2020\(^\text{[3–5]}\). When the COVID-19 outbreak began, it was thought that at least two or more years would be required to develop a completely effective conventional vaccine. However, an effective vaccine was developed much sooner than expected. After the outbreak of the COVID-19 pandemic, two base-modified mRNA vaccines, encoding the SARS-CoV-2 surface protein, were developed in record time. Protective effects of around 95% were reported, and vaccines were approved as early as December 2020.

These vaccines have had a large beneficial effect on people. Recently Nishiura and his group reported that the vaccination led to substantial reductions in the numbers of COVID-19 cases and deaths (33% and 67%, respectively)\(^\text{[6]}\). The preventive effect will be further amplified during future pandemic waves caused by variants with shared antigenicity\(^\text{[6]}\). However, just as any excellent medical treatment has its pros and cons, there are also reports of downsides to this vaccine therapy\(^\text{[7–9]}\). In this issue, Ishikawa provided a detailed explanation of inflammatory skin reactions\(^\text{[10]}\). The skin is the organ where side effects are most likely to occur and various skin side effects have been reported, including erythema multiforme\(^\text{[11]}\). Regarding side effects, it is necessary to accumulate detailed case studies to clarify causal relationships.

Trends in Immunotherapy is a journal that aims to broadly and deeply learn about the pros and cons of treatments, including for cancer, and share this knowledge and experience among us. In 2018, we introduced the Nobel Prize for Dr. Allison and Dr. Honjo\(^\text{[12]}\). The
mission of this journal is to be extremely innovative and highly scientific. I hope that future Nobel Prize
winners will be selected from the manuscripts in Trends in Immunotherapy.

We would like to thank Editage (www.editage.jp) for English language editing.

Conflict of interest

The author declares no conflict of interest.

References

Nucleoside Modification and the Evolutionary Origin of RNA. Immunity. 2005, 23(2): 165-175. doi:
10.1016/j.immuni.2005.06.008
Nonimmunogenic Vector With Increased Translational Capacity and Biological Stability. Molecular Therapy.
5. Anderson BR, Muramatsu H, Nallagatla SR, et al. Incorporation of pseudouridine into mRNA enhances
translation by diminishing PKR activation. Nucleic Acids Research. 2010, 38(17): 5884-5892. doi:
10.1093/nar/gkq347
6. Kayano T, Sasanami M, Kobayashi T, et al. Number of averted COVID-19 cases and deaths attributable to
reduced risk in vaccinated individuals in Japan. The Lancet Regional Health - Western Pacific. 2022, 28: 100571.
doi: 10.1016/j.lanwpc.2022.100571
8. Ogata AF, Cheng CA, Desjardins M, et al. Circulating Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2) Vaccine Antigen Detected in the Plasma of mRNA-1273 Vaccine Recipients. Clinical Infectious Diseases.
10. Ishikawa O. The pathophysiology and clinical phenotypes of COVID-19 mRNA vaccine-related cutaneous
the administration of immune checkpoint inhibitors. Trends in Immunotherapy. 2023, 7(2): 2683. doi:
10.24294/ti.v7.i2.2683
12. Furukawa F. The Nobel Prize in Physiology or Medicine 2018 was awarded to Cancer Therapy by Inhibition of