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ABSTRACT 

Tuberculosis (Tb) is still a global health problem, especially in developing countries. Several factors contribute to 

this, among them the increasing multidrug resistance strains, the dangerous liaisons with other intracellular pathogens, 

such as HIV, and more recently, SARS-CoV2 pandemics. There are many aspects that remain to understand the bacterial 

molecular mechanism of pathogenicity and the immune response induced by the interaction of M. tuberculosis (MTb) 

with the host. The official and current vaccine based on the attenuated Mycobacterium bovis Bacillus Calmette Guerin 

(BCG) is protective against several forms of Tb meningitis and Miliary TB or disseminated disease in young children. 

However, it fails to protect young and adult individuals. There are several new promising candidates for vaccines to 

replace or boost BCG-induced immunity. Several evidences exist from humans and mice on the role of the trained innate 

memory of monocytes and NK cells, on the second encounter with the same mycobacterial pathogen or other respiratory 

pathogens. This type of immune response is nonspecific and independent of the T and B cells. Thus, BCG vaccination is 

a double immunogen that activate specific immune responses and is also able to stimulate nonspecific immune responses. 

Here, it is outlined the host immunity against MTb, the potential of BCG vaccination and prime boost protocols for routing 

innate and adaptive immune responses in TB. 
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1. Introduction 

Tuberculosis (TB) caused by the intracellular Gram-positive 

bacteria Mycobacterium tuberculosis (MTb) is a chronic infectious 

disease. TB remains a threat and a global health problem because the 

last year were reported around 11 million new active Tb individuals[1,2]. 

Most infected individuals will remain asymptomatic, commonly 

known as latent infection, representing a large reservoir (95%) of 

pathogenic Mtb[3,4]. While only 5% of these latent infected individuals 

will develop active TB. Moreover, the problem is worsened by the 

upraising multidrug resistance strains (MDR) and by COVID-19 

pandemics, especially in low-income countries[1,2,5]. The only 

prophylactic treatment against TB is the attenuated Mycobacterium 

bovis Bacillus Calmette Güerin (BCG) vaccine, which protects against 

Miliary TB, disseminated (TB) associated with meningitis in children. 

However, it fails to protect young and adult people[6–9]. 

Intense efforts have been made for the implementation of novel 

subunits vaccines that can boost BCG-induced immunity, especially 
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the long-lasting immunological memory, or even can replace it (recombinant BCG or attenuated 

Mycobacterium tuberculosis (TB-VAC)[10–16]. Furthermore, several studies have reported that there is a lack 

of correlation between CD4+ T cells IFN-γ producers and the protective immunity induced by the BCG, which 

strongly indicates that there is a missing link in the knowledge and understanding between Mtb and the host 

immune system[17–19].  

Upon interaction of Mtb with the host, mechanisms of the innate and adaptive immune response are 

activated in a manner that allows the coexistence of the bacilli and the human host (latent infection)[20–24]. 

These individuals that remain asymptomatic and vaccinated can also control the bacilli growth by another 

innate mechanisms, such as autophagy, oxygen/nitrogen reactive species, and apoptosis[25–35]. 

The interplay of the innate and adaptive immune response represented by APCs, and in particular, the 

macrophages and the T cellular immune response, is pivotal in the establishment of the MTb infection[18,36–38]. 

Early infection by Mtb leads to active and/or latent stages[39,40]. At level of the cellular function of the host 

immune system, the initial natural crosstalk between Mtb and its host involves two principal events: 1) 

Phagocytosis of MTb by antigen presenting cells (APCs, macrophages and dendritic cells)[23,24], resulting in 

the secretion of selected cytokines that allow clearance, and elimination of Mtb[41]; 2) IFN-gamma (IFN-), 

and TNF-alpha() induction play a role in Mtb mycobacterial growth regulation, granuloma formation, and 

therefore, connection with adaptive immunity[42–45]. 

In addition, granuloma formation allows MTb survival, and the individuals develop chronic, latent 

infection. Interestingly, it seems that latent Mtb can be intracellular located in diverse kind of cells in tissues 

with apparent normal histology, in the lungs and other organs[36,39,43,46–48]. The reactivation of Mtb infection 

depends on several factors[49,50]; among them is the host immunocompetence, and immunotherapies (inhibitors 

of TNF-) interleukin (IL)-17 and interleukin (IL)-23[51]. In immunocompromised individuals, the reactivation 

phase is characterized by increased bacterial growth and symptoms of TB[39,40,52]. Whereas in latent infection, 

the host defense mechanism control M. tb infection. A key point is the granuloma formation because it 

represents the preferred cellular niche of MTb for the dormancy stage. It is in this stage of infection that exists 

an interplay of Mtb with the innate and cellular host immunity[39,40]. The knowledge, the elucidation of the 

mechanism of host-pathogen interaction are involved in the definition of the development and design of 

vaccines and therapeutic interventions[18,48,53–60] (Figure 1A). 

 
(A) 

Figure 1. (Continued). 
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(B) 

Figure 1. (A) Upon infection with Mtb, there are two fates, an individual develops active infection (red) or latent infection (less red), 

depending on the immunocompetence of the individual. For the clearance and elimination of pathogen (active), innate and no innate 
mechanisms are activated and are pivotal. In latent infection, the cellular immune response interplay and crosstalk with the innate 
cells are pivotal. Indeed, this interplay between the immune system and Mtb, it has been proposed is part of the coevolution of Mtb 

and humans, dated thousand years ago
[61]

. Because of this, the eradication of Mtb is a challenge. (B) M. tuberculosis with the host 

innate immune cells. The different molecular components of MTb (immunodominant antigens of the cell wall as LAM, or mycolic 
acids, efflux pumps, and or secretion systems) and the innate cells (macrophages, dendritic and epithelial cells) that interact at the 
front line of local and mucosal sites, leads to activation of several cellular functional outcomes of the host defense like autophagy, 

reactive oxygen production, phagocytosis, inflammasome activation, activation of NF-k (pro-inflammatory cytokines)
[62]

. 

M. tuberculosis chemical and structural composition 

Mtb is a non-sporulating Gram-positive bacillus, slow-growing intracellular pathogen. Structurally, MTb 

distinguishes by the remarkable composition of its cell wall, which constitutes approximately 60% of the dry 

weight[63–65]. The MTb cell wall is a thick layer of hydrophobic mycolic acids that allow the entry of nutrients[65]. 

Mycolic acids are distributed as a thick layer at the external portion of the cell wall, while the internal layers 

of mycobacteria consist of arabinogalactan, phosphatidyl-myo-inositol mannosidase (PIMs), and 

peptidoglycans[63,64]. Next to the mycolic acid layer, other components include mannose-containing 

biomolecules, including mannose-capped lipoarabinomannan (Man-LAM), the related lipomannan (LM), and 

mannoglycoproteins[66]. Mannan and arabinomannan are on the surface forming the outer capsule. Man-LAM, 

LM, and PIMs, all share a conserved mannosyl-phostidyl-myo-inositol (MPI) domain that presumably anchors 

the structures into the plasma membrane[67]. Lipids and carbohydrates play crucial roles in MTb survival and 

infection[68], followed by the layer of Peptidoglycan (PG), Arabinogalactan (AG), Trehalose-5-5’-dymicolate 

(TDM), Mycolic acid (MA) and Muramyl dipeptide (MDP)[65,67] (Figure 1B). 

Regarding to Man-LAM[64], it is considered a virulence factor that is on the cell wall surface. LAM is a 

heterogenous lipoglycan with a characteristic tripartite structure of a carbohydrate core, the MPI anchor and 

various mannose-capping motifs, characteristic of all pathogenic mycobacteria. In addition, the phosphatidyl-

myo-inositol mannosides (PIMs) are divided into two groups dependent on the mannose content, which 

determines its immunogenic effect[66,68,69]. Also present on the cell surface are the main glycoproteins secreted 

during growth[63,65] (Figure 1B). The components of the Mtb cell wall account for interaction with innate 

cells[38,49,51,69,70]. Thus, for example, the efflux pump system of Mtb—another mechanism of the MTb immune 

escape[71–73] is carried out by transporters located on the plasma membrane[72]. Moreover, in the outer layer, the 

arabinan chain is formed by highly branched AG, and the nonreducing end of the glycan chain is connected to 
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the mycolic acid (MA)[63,64]. In another hand, the cell membrane has functions in cell growth, communication, 

and stimulation of the host’s immune response[66,68,69]. 

2. Molecular interaction of M. tuberculosis with the innate immune cells 

The successful molecular interaction of MTb with the host innate immune cells (APCs) results in 

connection with the adaptive immune system[50,74–77]. Tb is a chronic disease that requires the constant 

expression of cellular immunity to limit bacterial growth. This results in chronic inflammation which requires 

regulation. Indeed, inflammatory cytokine systems, as immunomarkers of antimycobacterial protective 

immunity are potential candidates in vaccine design[48,58,59,61,78–80]. 

As a complex mixture of antigens, Mtbs can induce immune responses in the host[79–81]. It starts with the 

initial crosstalk and recognition of bacterial molecules expressed on the surface of APCs (macrophages, 

dendritic cells, epithelial cells) located in the upper airways[40,82,83]. Different PAMPs (pathogens-associated 

molecular patterns) of MTb are recognized in the bacillus cell wall, such as the peptidoglycan, mycolic acids, 

and arabinogalactan[40,81,84–86]. Diverse PRRS (pattern of recognition receptors ) on the APCs surface like Toll-

like receptors (TLR2/TLR4, TLR5), C-type lectin-like receptors (Dectin 1, DC-SIGN, MR), RIG-like 

receptors[83,87–90], and the cytoplasmic receptors TLRS (TLR3, TLR7, TLR9) and NOD-like receptors (NOD1, 

NOD2, NLRP3, NLRS4). For example, lipopolysaccharide (LPD) and lipoarabinomannan (LAM) in the cell 

wall of MTb are recognized by TLR2/TLR1 or TLR2/TLR6 heterodimers expressed on the membrane of host 

immune cells, which in turn activate the expression of NF-k and cytokines that can further leading to host 

cell injury[70]. Mtb can also interact with other cytosolic PRRS like the Nucleotide-binding oligomerization 

domain (NOD)-like receptors (NLRS), NOD1. NOD2[91–93], or with the Dectin, Mannose lectin-like receptors 

(MCS), DC-SIGN (DC-specific intercellular adhesion molecule-3-grabbing nonintegrin)[84,94–101] (Figure 2A). 

The initial molecular signalization through these receptors is to transmit downstream to TIRAP, TRAM, or 

TRIF[102], Myddosome (formed by Myd88, IRRK1, IRK4), and then activate TRAF6, TAK1, and to MAPK, 

IKK/, NEMO for AP-1S, NF-k translocation, resulting in the expression of several genes encoding the 

inflammatory response mediated IL-6, IL1-, TNF, IL4, and chemokines[103–105]. These products attract and 

recruit immune cells to the site of infection, thus, controlling MTb infection[62,93,100,106,107] (Figure 2A). Other 

events that occur is that infected APCs can remain for two weeks, keeping an inflammatory state for clearance 

and elimination of the pathogens by the production of reactive O2 species and activation of the autophagy 

system, as well as activation of the proteosome for antigen processing[35,47,60,74,75,77,108–118]. Moreover, 

maturation, migration of APC, and the expression of the costimulatory molecules are events favored by the 

initial and successful TLRs signalization pathways and translocation of the NF-. 

 
(A) 

Figure 2. (Continued). 
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(B) 

Figure 2. The induction of the innate (A) and adaptive (B) immune response by M. tuberculosis. For the induction of the innate 
primary immune response to MTb, an initial recognition and molecular interaction between PAMPs, (pathogens-associated molecular 

patterns (PAMPS), and the PRRS (pattern of recognition receptors) on host innate cells. It leads to the downstream signalization of 

different adaptors molecules,  and ending with the activation of three main pathways, NF-k, MAPK5 and the PIBk/Akt pathways. 

The translocation of NF-k lead to cytokines, chemokines, and expression of costimulatory molecules. This allow the maturation of 
antigen-presenting cells (APCs) (dendritic cells, macrophages), resulting in further antigen presentation through MHC restricted or 
unrestricted through CD1, CD1, CD1b, or CD1c cells (CD1 family of glycoproteins are MHC class I-like molecules that present a 

wide array of self and foreign lipid antigens to T-cell receptors (TCRs) on T-cells)
[119,120]

, connecting, thus with the adaptive 

immune response. The main actors of this type of cellular immune response are B and T cells are activated and differentiate into 

more specialized cellular and effector functions. T lymphocytes become helpers of the B cell differentiation for antibody production. 
Naïve T cells differentiate into different subsets with effector functions such as TH1, TH2, Th3, and TH17 that can exert a protective 
immune response against Mtb. 

2.1. M. tuberculosis induced adaptive immunity 

It is well known and accepted from several studies about preclinical models and clinical studies, that the 

principal defense against Mtb is IFN- production from the CD4(+) T cells restricted by MHC-II complex 

during early infection; while at chronic or late time point CD8(+) T cells restricted by the histocompatibility 

complex MHC type 1 (MHC-1), producers of granzyme and perforin play a significant role[8,21,22,39]. IFN--

producing CD4+ T helper cells (Th1) are required for control of bacterial growth, initiating and maintaining a 

mononuclear inflammatory response[36,39,43–45,47], other T cell subsets induced by Mtb infection play a role in 

the early stages Mtb infection in animal models[26,43,121]. The protective capacities of both types of lymphocyte 

populations occur through different mechanisms by IFN- and TNF- production, potent activators of 

macrophages[121]. Furthermore, other innate immune cells such as gamma-delta () T cells, NK cells, and 

neutrophils participate actively restricting MTb growth. At this point, it is noteworthy to mention that IL-22 

produced by NK cells in humans and CD4+ T cells in macaques could limit the growth of Mtb in macrophages 

by enhancing the phagolysosomal fusion and autophagy[47,113,114,116,117,122–125]. Another molecule involved in 

this process is melatonin (m3+ gene), a protein that binds Zinc and whose upregulation could indicate 

macrophage activation by IFN-[126,127]. Besides, interleukin 13 (IL-13), a Th2-type cytokine that inhibits 

autophagy[26,44,47], can also function to recruit T cell antigen-specific during vaccination to the lumen of the 

upper airways after Mtb challenge[42,45]. Interestingly, the unconventional route by which the pathogens can 

activate the adaptive immune response, as described recently by Ernst[61] is through an alternative donor un-

restricted T cell population, a population of unconventional T cells (mucosal-associated invariant T cells 

(MAITs), and by gamma- delta (γδ) T cells with TCRc that interact with a set of non-polymorphic antigens 

such as lipids, including the mycobacterial lipids antigens presented by CD1, CD1b, or CD1c cells[119,120,128–

130] (Figure 2B). In addition, in vitro and in vivo studies have shown that for the establishment of MTb in its 
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niche (lung granuloma, macrophages), the interplay of the host immune cellular responses is pivotal[28,42-44,45,52] 

(Figure 2B). The polyfunctional activities of CD4(+), CD8(+) T cells, the NKT cells, and γδ T cell, and the 

cytokines produced, either for maintaining the activated state of macrophages (TNF-a, IL6, IL1)[131–133] 

(Figure 2B) or for the effector and protective functions as IFN-γ, IL17, IL2p70; IL-23, IL22[28,42–44,45,52] 

(Figure 2B). 

The protective role of the TH17 and IL-17 against MTb infection 

Tb is a chronic disease that require the constant expression of cellular immunity to limit bacterial growth, 

resulting in chronic inflammation, which requires regulation. IFN--producing CD4+ T helper cells (Th1) 

control bacterial growth and initiate and maintain a mononuclear inflammatory response. Other T cell subsets 

induced by Mtb infection include subsets that produce IL-17 (TH17)[134]. 

IL-17 is a potent inflammatory cytokine capable of inducing chemokine expression and recruitment of 

cells to parenchymal tissue. Indeed, IL-17 is a cytokine produced by T cells in response to IL-23 that may 

contribute to inflammation[135,136]. 

In mice, it has been shown that IL-17-producing cells play a role in the early stages of Mtb infection[131–

133,138–140]. In several experimental settings in preclinical models it has been found that IL17 is produced and 

correlates with reduced CFUs in lung and in spleen[141]. In naïve mice, as well as during Mtb infection, IL-17 

production is primarily from gamma delta T cells and other non-CD4(+) CD8 (+) rather than CD4 T cells, 

which represent a central innate protective response to pulmonary infection[131–133]. Furthermore, signaling via 

Toll-like receptor (TLR) 2 has an impact on the regulation of p19 (IL-23) expression in response to Mtb and 

on the establishment of TH17 cell response[132,139,142]. IL-17 and IL-22 can induce CXCL13 in mouse primary 

lung fibroblasts, suggesting that these cytokines are likely involved in B cell follicle formation[143]. The absence 

of IL-23 expression compromises the long-term immunity to Tb due to reducing expression of CXCL13 in B 

cell follicles and the reduced ability of T cells to migrate from the vessels and into the lesion. The recall 

response of the IL-17 producing CD4 (+) T cells population occurred concurrently with expression of the 

chemokines CXCL19, CXCL10 and CXCL11[143]. Furthermore, TH1 and TH17 responses cross-regulate each 

other during mycobacterial infection. Tthe absence of memory TH17 cells upon Mtb infection results in loss 

of both the accelerated TH1 response and protection. This may be important for immunopathogenesis 

consequences not only for TB but also for other mycobacterial infections[138,143–145]. Both IL-17 and TH17 

responses to Mtb are dependent upon Interleukin (IL-23). Indeed, IL-23 was essential for the accelerated 

response for early cessation of bacterial growth and establishment of an IL-17-producing CD4(+) T cell 

population in the lung of mice[136,144,145] (Figure 2B).Of note is that IL-1 and IL-6 are crucial for the MTb 

H37Rv induced expansion of IL-17 interferon (IFN)- and IL-17 in CD4(+) T cells, and  from MDR-Tb and 

PPD. It seems that the genetic background of the infecting Mtb strain on the ex vivo TH17 response influences 

the IL17 response[138,142,146]. Interestingly, Toll-like receptor (TLR)-2- signaling mediates the expansion of Il-

17-IFN- cells and the enhancement of latency-associated protein (LAP) expression in CD14 and CD4(+) T 

cells from MDR-TB, which suggest that the MDR strain promotes IL-17 IFN- T cells through a strong TLR-

2 dependent TGF- production by APCs and CD4(+) T cells[145]. Interestingly, in Mtb infected mice, 

measurement of IL17, IL17ra, IL22 and IL23a were not significantly modified as compared to controls. 

Moreover, neutralization of IL-17A or IL-17F did not affect infection control either. Ongoing clinical studies 

with IL-17 neutralizing antibodies show high efficacy in patients with psoriasis without increased incidence 

of TB infection or reactivation. Therefore, both experimental studies in mice and clinical trials in human 

patients suggest no risk of TB infection or reactivation by therapeutic IL-17 antibodies, unlike by TNF-. it is 

also important to consider that repeated BCG vaccination in mice is linked to the production of an intense 

inflammatory response associated to tissue damage in particular necrosis, principally due to the recruitment, 

activation and migration of neutrophils[147]. 
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In humans, recent studies have provided insight into the role of IL-17 and IL-17-producing cells at three 

stages of the Mtb infection spectrum (latently TB infected; reactivated, and active). For example, Mtb-

stimulated CD4(+) T cells from Tb patients secreted lesser IL-17 than did CD4(+) T cells from healthy 

tuberculin reactors (PPD(+). It has been reported that IL-17 play a key role in host defense against M. 

tuberculosis. However, it is also known the immunopathogenic role of this cytokine not in Tb but in other 

autoimmune disease. An example of this, el ongoing clinical studies with IL-17 neutralizing antibodies show 

high efficacy in patients with psoriasis without increased incidence of TB infection or reactivation. Overall. 

These results that no risk of TB reactivation by therapeutic treatment of IL-17 as reported by Sequeni et al.[148]. 

In addition, it has been investigated the role of the IL-17 driven tissue damage in the human lung by IL-17. 

Biopsies of Tb patients, and cytokine determination in patient bronchoalveolar lavage fluid (BALF) measured 

by Luminex assays. Other measurements were also analyzed. The results shown that IL-17 drives airway 

stromal cell-derived MMP-3, which mediates tissue damage in TB, alone or in conjunction with a monocyte-

dependent networks in TB[149]. Furthermore, in HIV+ individuals, with latent and active TB a lower induction 

of IL-17, IL-22, IL-23R, and PD-1(Programmed Death 1), FoxP3+, and IL.10 in response to mycobacterial 

antigens, (CFP1; ESAT-6)[150]. These data suggest the role of IL-17 and IL-22 in different stages of human TB. 

In active TB patients, low IL-17 but high IL-4 induction was found. On the contrary, in latent TB patients, 

high IL-17 and low IL-4 induction[151]. Under this settings, no IL17 driven tissue damage. Furthermore, in 

BCG vaccinated children a dramatic IL-17, IFN- induction were found, suggesting that in adjuvanted subunit 

Tb vaccine, induction of Th17 cells be promoted. 

3. BCG vaccine induced immunity 

In general, vaccination aims to link innate and adaptive immune responses. Tb vaccine design and 

development focus on this. BCG vaccine can induce an anti-mycobacterial immune response after a second 

encounter with the same pathogen (Mtb). Of note is that MTb induces non-specific immune responses[152,153]. 

This last one might be “beneficial for the host upon early infection, and BCG vaccination could eliminate 

diverse pathogens[154–157]. Moreover, under the settings of BCG vaccination, natural or recombinant BCG 

vaccine in conjunction with prime-boost protocols could increase clearance and protection against the same 

pathogen or other respiratory airway pathogens[158,159]. In calves[160], this route leads to a general program of 

APCs activation, maturation, and migration from the systemic compartment to the mucosal sites. Innate cells 

such as macrophages, monocytes, and natural killer cells can contribute to the non-specific immune responses 

and are prone to respond to the external stimulus by expressing recognition patterns of receptors (PRRs) on 

their surfaces that interact with pathogen-associated molecular patterns (PAMPs)[92,93] or DAMPs (danger-

associated molecular patterns)[91,99,160], and thus, downstream transmitting to the nucleus through NFkb, for 

activating the transcription and expression of cytokines genes. The induction of a pro-inflammatory state is 

important and necessary for the cellular anti-mycobacterial immune response. (Figures 2 and 3)[135,136,161]. This 

mode of action of the BCG vaccine resembles a double sword: 1) BCG’s ability to induce and activate specific 

innate and adaptive immune systems. 2) The induction of a nonspecific response, now called trained 

immunity[155,157,158,162]. This type of response might be beneficial to support early clearance of infection to the 

same pathogen, to other nonrelated respiratory pathogens[163], or even against other chronic diseases 

(cancer)[164]. Indeed a specific response follows a nonspecific innate immune response (trained immunity) to 

generate a memory innate-like response independent of T and B cells[162,165,166]. The proposed mechanism of 

the trained immunity induction is that after a second encounter with the pathogen, there is a molecular 

interaction of the TLRS and the different PAMPs of the pathogen. A downstream signal is transmitted to the 

nucleus of the innate cells, resulting in the rearrangements in the pattern of histone methylation and a higher 

expression of the pro-inflammatory cytokines. Thus, is produced an increased and faster second response 

toward other nonrelated pathogens, such as SARS-CoV2 or another chronic noninfectious disease[99,154,156–

158,167]. Specifically, referring to the trained immunity induced by BCG vaccine, several evidences from the 
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literature in human and mice have shown that intradermal BCG vaccination induce epigenetic reprogramming 

in the pattern of histone methylation of regulatory elements of specific pro-inflammatory genes in circulating 

monocytes, leading to a trained state with the pathogen of the complex of Mtb or to another respiratory 

pathogens, including viruses or chronic diseases[165,166,168] (Figure 3A). How does BCG vaccination trigger 

innate and cellular immune responses at a systemic level in M. bovis-immunized mice? It has been proposed 

that BCG vaccination confers cellular immunity through the establishment of the central role of CD4 (+) T 

cells[138,143,144,161,162,169]. Indeed, it has been found that a single systemic BCG vaccination induces distinct 

systemic and mucosal populations of T effector memory (T(EM))(CD4+CD44(hi)CD62(lo) CD27-T cells. 

These expanded cells concomitantly produce a set of proinflammatory cytokines, such as IFN- and TNF- or 

IFN-, IL-12, and TNF- to maintain functionality for periods longer than 16 months in BCG-vaccinated and 

M. bovis-immunized mice. Therefore, persistent mucosal populations of T(EM) cells 

(CD4+CD44(hi)CD62(lo)CD27-T) IFN- and TNF- or IFN-, Il-12, and TNF- are strongly associated with 

protection and are potential targets for vaccine design to increase the number of relevant antigen-specific T(EM) 

in the lung may represent a new generation of TB vaccines[169]. 

 
Figure 3. Mycobacterium bovis Bacillus Calmette Guerin (BCG) vaccine as an antigen induces innate and specific antimycobacterial 
cellular immune. One question to resolve is how to boost long-lasting memory and protective responses for young adults. To this 
end, heterologous prime-boost protocols are a promising strategy for modulating central and effector memory responses and even 

TH17/IL17 responses. Nowadays, the fact that the BCG vaccine acts as a double sword opens the possibility to improve BCG, either 
as recombinant or with adjuvant immune dominant antigens, to target innate nonspecific immune responses (trained 

immunity)
[159,162]

. 

BCG vaccine triggers an accelerated interferon-gamma response by CD4(+) T cells in the lung during 

subsequent Mtb infection. Moreover, in preclinical models, BCG vaccination induces IL-17-producing CD4(+) 

T cells that populate the lung and after MTb aerosol challenge, trigger the production of chemokines that recruit 

CD4(+) T cells producing interferon-gamma, which ultimately restrict bacterial growth[138,143,144]. 

Furthermore, BCG-induced immune T cells generated from knockout mice IL12- or IL-23 were deficient in 

IFN- production but exhibited a robust IL-17 secretion associated with a degree of protection against 

pulmonary infection[170]. In addition, studies in mice have shown that IL-17 plays a role not only in the early 

neutrophil–mediated inflammatory response but also in the T cell-mediated IFN- production and granuloma 

formation in response to pulmonary infection by BCG[161]. IL17 knockout mice produced less IFN- 
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production after one month of BCG vaccination with impaired granuloma formation, suggesting that IL-17 

plays a role in the induction of an optimal TH1 response (IL-12, IL23) and optimal expansion of IFN- 

secreting T cells. Thus, in addition to IFN--producing T cells, IL17-producing T cells (TH17) observed during 

mycobacterial infections contribute to protective immunity[135,136]. In agreement with these data from the 

literature, the question about how BCG vaccination could be harnessing against Mtb? One potential alternative 

is to augment and promote TLR signalization, NF- translocation to the nucleus, and TH17/IL17 cellular 

immune responses. Insights into the alternatives to boost BCG-induced immunity, several pieces of evidence 

have shown that these protocols, either homologous but mostly heterologous, are promising not only to induce 

protection in terms of reduction of bacterial load in the lung but also can tuning the innate and adaptive immune 

responses[171–175,177]. In terms of priming to the different innate cells, activation and differentiation of the B 

and T subsets[176–181]. Under different settings in the animal models, different routes of immunization, different 

doses of antigen, and other pathogenic mycobacteria have been assessed[182,183]. Prime-boost allows to follow 

the course of the infection and the host immune response. Heterologous prime-boost provides a powerful tool 

for TB vaccination strategy to target innate and adaptive immune response at local and mucosal 

sites[42,159,162,184]. Based on several studies in humans and mice, it has been reported that BCG vaccination, 

especially after mucosal route of administration, elicits CD8+T cellular immune responses[160,185] (Figure 3), 

and airway tissue-resident memory T cells are enhanced[42,184]. The induction of IL-17 by gamma delta T cells 

is also promoted[131–133]. In conjunction with these cellular immune responses, other pro-inflammatory 

cytokines (IFN-, IL-4, IL-12, IL-6, IL1-, TNF-, TGF-, IL-10). and chemokines (CXCL9) play a role in 

the specific and non-specific immune responses, mediated by monocytes, macrophages, and NK cells, after 

BCG vaccination[144,159,162,185,186]. 

4. Conclusions 

Upon pathogen infection, an initial recognition and molecular interaction between PAMPs, (pathogens-

associated molecular patterns (PAMPS), and the PRRS (pattern of recognition receptors) on host innate cells. 

It leads to the recruitment of different adaptors, such as Myd88(myeloid differentiation primary response 

protein 88, TRIF (TIR domain. containing adaptor protein inducing IFN-), TIRAP (TIR domain. containing 

adaptor protein), and TRAM (TRIF-related adaptor molecule), for signal transmission to downstream 

molecules resulting s in the activation of three major signaling pathways: NF-k, MAPK5 and the PIBk/Akt 

pathways for the induction and production of inflammatory cytokines. Cytokines, chemokines, and expression 

of costimulatory molecules allow the maturation of antigen-presenting cells (APCs) (dendritic cells, 

macrophages), resulting in further antigen presentation through MHC restricted or unrestricted through CD1, 

leading to the connection with the adaptive immune system. B and T cells are activated and differentiate into 

more specialized cellular and effector functions. T lymphocytes become helpers of the B cell differentiation 

for antibody production. Naïve T cells differentiate into different subsets with effector functions such as TH1, 

TH2, TH3, and TH17. Remarkably T cells become effector and memory T cells (central and peripheric, 

fundamental against intracellular infectious disease and key in the development of vaccines. 

Mycobacterium bovis Bacillus Calmette Guerin (BCG) vaccine as an antigen induces innate and specific 

antimycobacterial cellular immune. One question to resolve is how to boost long-lasting memory and 

protective responses for young adults. Several studies in preclinical models have shown that heterologous 

prime-boost protocols are a promising strategy for modulating central and effector memory responses and 

specially TH17/IL17 responses. Nowadays, the fact that the BCG vaccine acts as a double sword opens the 

possibility to improve and boost BCG protective immunity, including long lasting memory response. This can 

be do it, either as recombinant or with adjuvant immune dominant antigens, to target innate nonspecific 

immune responses.  
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5. Remarks and in perspective 

Cellular immunity is pivotal against M. tuberculosis infection. However, in recent times increasing 

evidence sustains the potential role of the innate memory called “trained immunity” by monocytes and NK 

cells. BCG vaccine can induce specific anti mycobacterial responses and nonspecific immune responses 

against other respiratory pathogens and chronic noninfectious diseases. Thus, trained memory can be effective 

against a second encounter with the same pathogens, producing higher inflammatory mediators (cytokines, 

chemokines) that allow a faster response. A remarkable feature of trained immunity, independent of the T and 

B cellular immune response, is the crosstalk between the innate cells as the first line of defense at the skin and 

mucosal sites. The perspective is to harness the BCG vaccine’s ability to induce specific and nonspecific 

immune responses. BCG vaccine can be natural or recombinant. The tunning and modulation of the outcome 

of the innate and cellular response might be through heterologous boosting with any of the immune dominant 

antigens of M. tuberculosis (Ag85B, nHBHA, or a combination of them). These promising strategies can 

augment specific and nonspecific immunity. Furthermore, a perspective attractive for vaccine design and 

development based on natural BCG or recombinant BCG is to take advantage of the most recent high 

throughput technologies such as biomass. Under different experimental settings in preclinical models to 

approach and dissect the pool of immune markers that correlate with protection following vaccination and 

boosting with heterologous or homologous antigens such as ESAT-6 (active disease) or late time point of 

infection (nHBHA, Ag85B) (latent infection), VitD or even arabinomannan or another factor of virulence of 

Mtb. For enhancing and boosting BCG immunity through genetically engineering BCG for targeting innate 

(augment trained immunity) and cellular immune response (TH1, TH17). 
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