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ABSTRACT
Pulmonary fibrosis is a diverse group of lung disorders defined by varying degrees of fibrosis and inflammation in 

the pulmonary parenchyma. While it may be caused by a known disease, e.g., autoimmune or connective tissue disorder, 
drugs, hypersensitivity to inhaled organic antigens, or sarcoidosis, it also occurs to be idiopathic. When we examine the 
pathogenesis of lung fibrosis, we see that cellular aging plays a major role. Lung fibroblasts play an active role in the 
regeneration process. However, despite all the information, the pathogenesis of lung fibrosis is not clearly understood. It 
is not yet clear how senescent cells in the lung mingle and cause fibrosis. The pathogenesis of lung fibrosis will be un-
derstood more clearly following future studies.
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1. Introduction
Here, first lung fibrosis is briefly defined and the elements

playing in the pathogenesis of this disorder are discussed one by 
one (Figures 1–3, Table 1).

2. Lung fibrosis
Lung fibrosis is a rare disease that occurs with fibrosis and

inflammation of the lung tissues. It can be observed as idiopathic 
or secondary. Secondary causes include connective tissue disease, 
autoimmune diseases, drugs, and sarcoidosis. Idiopathic Pulmo-
nary Fibrosis (IPF) is the most mortal lung disease with overall 2–3 
year survival. Chronic and progressive fibrosis is observed in IPF 
with rapid loss of lung function. It is usually seen in the elderly. 
IPF is based on the extensive deposition of extracellular matrix 
(ECM) and irregular collagen with the formation of fibroblastic 
foci and heterogeneous fibrosis, both transiently and locally. Due 
to these, the loss of lung tissue occurs. The mechanism described 
in IPF is an abnormal response to recurrent alveolar epithelial 
damage when there is a genetic predisposition in aging individu-
als[1–3].

3. Elements playing in the pathogenesis of
lung fibrosis

3.1 Cellular senescence
In cellular aging, a progressive loss of pulmonary function 

occurs. In studies conducted so far, it is known that cellular senes-
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cence plays a role in the pathogenesis of diseases 
together with an age-related decrease in paren-
chymal repair size and IPF. Cellular senescence is 
defined as a cellular condition in which the prolif-
eration of senescent or damaged cells is irreversibly 
stopped. Senescent cells have marked phenotypic 
changes with decreased mitophagy, genomic insta-
bility, metabolic reprogramming, telomere erosion, 
increased autophagy, chromatin remodeling, and a 
complex proinflammatory secretome[4–7].

In the aging process, replicative senescence 
(RS) is observed first, which is the termination of 
the cell cycle after intense proliferation. However, 
although these cellular processes are defined in 
this way, they can be defined as ionizing radiation/
IRIS, chromatin disruptions, DNA damage caused 
by strong genotoxic stress, oxidative agents/OSIS, 
telomere erosion, topoisomerase inhibitors and 
oncogene activation. These factors trigger aging 
programs. In this process, triggers can also use the 

Figure 1. Elements of lung fibrosis pathogenesis.

Table 1. Tasks of the elements of the pathogenesis of lung fibrosis

Cellular senescence It is defined as a cellular condition in which the proliferation of elderly or damaged cells is stopped 
and irreversible.

Regulatory paths In the pathogenesis of lung fibrosis, many regulators are involved.
Basal cells Airway basal and basal-like cells are involved in the process of bronchiolization observed in lung 

fibrosis.
Lung fibroblasts Fibroblasts have a very important role in wound healing in response to lung damage.
SASP SASP contributes to cell proliferation, differentiation and idiopathic pulmonary fibrosis pathology 

during wound repair.
Mitochondrial dysfunction Mitochondrial dysfunction seems to have effects on cellular stress incompatible reactions, increasing 

sensitivity to injury and pulmonary fibrosis development.
Autophagy During cellular aging, decreased autophagia is observed and accelerated aging is attributed to 

decreasing autophagy.
Apoptosis resistance Apoptosis resistance induced by the stress of aged fibroblasts will result in the permanence of the 

“damaged” cells that will be suffered from apoptosis and be cleaned from the wound repair zone.
MPCs In fibrotic lung diseases, the aging environment seems to have an advanced feeding cycle between the 

pathogenic behavior of MPCs and cells.
Immune cells Aging cells physiologically activate adaptive immune systems to maintain tissue and organ 

homeostasis.
B-MSCs These cells are multipotent cells that can differentiate to various cell types and therefore have an 

important role in reshaping and repair of tissue.
*MPCs: Mesenchymal progenitor cells. **B-MSCs: Bone marrow mesenchymal stem cells.
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p53–p21 and/or p16INK4a—pRB pathways that 
cause cell cycle arrest[8,9].

3.2 Regulatory paths
The senescence-associated secretory pheno-

type (SASP) and cell cycle regulatory pathways are 
major molecular signaling cascades. Cells use at 
least one of these two ways. But considering that 
almost all lung cells use SASP, it shows that these 
cells are closely interconnected in modulating lung 
fibrosis through cellular senescence[10–12].

The senescence centers of cell life are medi-
ated by classical cell signaling components such as 
DNA damage responses (DDR), MKK3/MMK6-
p38MAPK and ARF-body, oncogenic signaling 
(PI3K, MYC and RAS), and TGF-β. These sig-
naling components activate cell waste including 
p14, p15, p16, p17, p21 and p27 as they transport 
inhibitors directly and via TP53. Cell cycle inhibi-
tors then impede cyclins (CDK1/cyclin B, CDK2/
cyclin A/B/E and CDK4/6/cyclin D.) by cyclin-de-
pendent protein kinase (CDK). This inhibition is 
external to the phosphorylation of Rb. Phosphoryl-
ated Rb is restricted to E2F1-3, a cell proliferative 
transcriptional factor, thereby knocking out normal 
cell transport. Some common expansions, telomere 
development or telomerase reverse transcriptase 
(TERT) mutation, and expansions of the Sin3a gene 
channel, p53/p21 WAF1/CIP1 in AT2 cells, cause 
spontaneous scanning fibrosis. Likewise, plasmino-
gen activator inhibitor-1 (serpin 1) plays a role in 
AT2 senescence. Cigarette smoke causes autophagy 
by activating negative feedback on mTOR distrib-
uted via the Ras/PI3K signaling pathway. PTEN 
causes AT2 senescence. PTEN/Akt is formed by un-
damaged Akt residues of PTEN. Chronic chains of 
Wnt/β catenin chain in AT2 cells delay senescence 
by directly inhibiting cyclin-dependent protein ki-
nases[10–20].

SASP occurs as a result of protein expres-
sion and secretion of senescent cells, and has also 
been identified in the senescent cell type in the 
lung. SASP contributes to cellular aging through 
autocrine and paracrine. CCAAT/enhancer-bind-
ing protein-β (C/EBP-β), TP53 and nuclear factor 
kappa-light chain enhancer (NF-κB) of activated B 
cells act as primary regulators of SASPs[10–13]. IL-6 
regulates aging through SASPs, TNF-α and TGF-β, 
TP53 and NF-kB, which are prominent in fibropro-

liferative lung diseases[24]. Apart from these, PAI-
1/TGF-β1, released from aging AT2, plays a role 
in alveolar macrophage activation in lung fibrosis 
through IL-4 and IL-13[25]. C/EBP-β also plays an 
important role in experimental lung fibrosis[21–26].

3.3 Basal cells
Since basal and similar cells in the airway ex-

pand abnormally in IPF, they are prominent in the 
pathogenesis of pulmonary fibrosis. This is consist-
ent with the “bronchiolization” process observed in 
the end-stage of pulmonary fibrosis[27]. Abnormal 
increase in proliferation of airway basal cells such 
as classical murine KRT5 ＋ TRP63 ＋ and human 
KRT5 ＋ p63 ＋ cells, human KRT5 ＋ KRT14 ＋ 
KRT15 ＋ KRT17 ＋ and p63 ＋ has been implicat-
ed in the lung repair stage[28–31].

3.4 Lung fibroblasts
Fibroblasts play a very important role in 

wound healing after lung injury. After epithelial 
damage, fibroblasts proliferate. After this stage, the 
ECM is activated to navigate to injury locations to 
rebuild the scaffold. Fibroblasts here transform into 
myofibroblasts that produce ECM components. As 
the repair process continues, myofibroblasts age 
and reduce ECM deposition and fibroblast activa-
tion, limiting the progression of fibrosis. As a result, 
cellular aging has an important role in stopping the 
accumulation of fibrotic tissue and facilitating the 
resolution of fibrosis[32–35].

Studies have shown that fibroblast aging is 
increased and permanent in IPF lungs. Fibroblasts 
from IPF lungs also exhibit insufficient autophagy, 
mitochondrial dysfunction, metabolic reprogram-
ming, and reduced apoptosis. Many of the senescent 
fibroblasts have been associated with the pathogen-
esis of the disease[36–39].

3.5 SASP
Although SASP plays an important role during 

wound repair, it may also contribute to IPF pathol-
ogy. Aged IPF fibroblasts secrete numerous proin-
flammatory cytokines/chemokines, reactive oxygen 
and profibrotic factors. These biological molecules 
can profoundly affect neighboring cells (paracrine 
action) or themselves (autocrine action). SASP pro-
motes persistent inflammation, tissue remodeling, 
and profibrotic phenotypic changes of surrounding 
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macrophages and/or fibroblasts[36–41].

3.6 Mitochondrial dysfunction
Mitochondria are central to signaling path-

ways that regulate mitophagy, ROS production, 
biogenesis, mitochondrial energies, maintenance 
and repair of mitochondrial DNA (mtDNA). Altered 
mitochondrial homeostasis is found in different 
cells in diseased and healthy aging pulmonary tis-
sues. Mitochondrial dysfunction and cellular aging 
are linked to the influx. The coexistence of loss of 
mitochondrial homeostasis and aging is implicated 
in the development of lung fibrosis, maladaptive 
responses to cellular stress, and increased suscepti-
bility to injury. Dysregulation of various regulatory 
mechanisms controlling mitochondrial function in 
IPF has been described in fibroblasts[39,42–47].

There is an overall reduction in mitochondrial 
mass and function in IPF lung fibroblasts. The re-
sulting reduction in mitochondrial mass observed 
is associated with an abnormality in mitochon-
drial biogenesis and mitophagy. Mitochondrial 
biogenesis is the process of creating additional 
mitochondria and associated cellular energy pro-
duction capacity. In addition, selective mitophagy 
of damaged mitochondria occurs via PINK1—
Parkin signaling. PINK1 primarily functions as a 
mitochondrial membrane depolarization sensor, 
activating Parkin, which tags dysfunctional mito-
chondria for post-function autophagosome traffic. 
Damage to parkin deficiency-mediated mitophagy 
in IPF pulmonary tissue fibroblasts is associated 
with increased TGF-β—Mediated accumulation of 
the extracellular matrix. Defects in autophagy and 
mitophagy result in increased ROS production and 
activation of platelet-derived growth factor receptor 
(PDGFR)/mammalian rapamycin target (mTOR) 
signaling pathways that increase fibroblast-myofi-
broblast conversion[39,48,49].

3.7 Autophagy
Autophagy is a lysosomal self-degradation 

process that contributes to the maintenance of ho-
meostatic balance in the synthesis, degradation 
and recycling of organelles and proteins in the cell 
(Figure 2). Studies show that autophagy plays an 
important role in the cellular aging process. Aging 
is accelerated due to decreased autophagy. In addi-
tion, the reduction of autophagy in IPF also resulted 

in senescence of fibroblasts. Beclin1, the master 
regulator of autophagy in IPF lung fibroblasts, was 
downregulated compared to normal lung fibroblasts. 
Fibroblasts in fibroblastic foci express both p62 and 
ubiquitin, which are also indicative of decreased au-
tophagy[50–55].

Figure 2. Autophagy stage in lung fibrosis.

Autophagy is also involved in different tasks, 
one of which is the regulation of activated IPF fi-
broblasts. Abnormalization of the PTEN/Akt/mTOR 
axis produces a viable IPF fibroblast phenotype on 
collagen by inhibiting autophagy and desensitizing 
IPF fibroblasts to stress from polymerized collagen. 
Abnormal regulation of the autophagic pathway 
suggests that it will play an important role in main-
taining the pathological IPF fibroblast phenotype[56].

3.8 Apoptosis resistance
Fibroblasts from IPF lung cells are highly 

resistant to apoptosis. In many studies, it was ob-
served that aged IPF fibroblasts showed decreased 
sensitivity to cytotoxic and proapoptotic signals. 
Fibroblasts resist cell death after senescence, result-
ing in the persistence of “damaged” cells that will 
undergo apoptosis and be cleared from the wound 
repair site. Also, little or no evidence of apoptosis 
was observed in cells expressing α-SMA in these 
areas; this confirms the apoptotic resistant pheno-
type of senescent myofibroblasts in areas with lung 
fibrosis[37–39,57,58].

Several mechanisms have been associated 
with the apoptosis-resistant phenotype of senescent 
fibroblasts and/or myofibroblasts in lung fibrosis 
(Figure 3). When we look at these mechanisms, the 
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most studied mechanism has been the differences in 
the levels of Bcl-2 family proteins. Apart from the 
decreased levels of proapoptotic proteins Bak and 
Bax, increased anti-apoptotic protein Bcl-2 family 
proteins are present in aged IPF fibroblasts. The in-
crease in Bcl-2 family member (Bcl-W and Bcl-XL) 
proteins contributes to the resistance of senescent 
cells to apoptosis. TGF-β1 signal formed in the cell 
activates STAT3 and JAK2, increasing the level of 
Bcl-2 protein. Bax and Bcl-2 protein levels in fibro-
blasts appear to be STAT3 dependent, as resistance 
to apoptosis can be blocked by inhibiting STAT3 
signaling. Some conditions are also associated with 
epigenetic modifications, which are DNA methyl-
ation, histone modification, changes in the expres-
sion of antiapoptotic and proapoptotic genes[55,59,60].

 

Figure 3. Apoptosis resistance stage in lung fibrosis.

When IPF pulmonary tissue fibroblasts age, 
they are highly resistant to TNF-associated apoptot-
ic ligand-induced (TRAIL) and Fas ligand-induced 
(FasL) apoptosis. Decreased expression of caveo-
lin-1 (Cav-1) and FasL receptor protein, together 
with increased AKT activity, is predicted to contrib-
ute to the apoptosis-resistant phenotype. Increasing 
AKT activity in the center of various signaling path-
ways involved in cell survival reduces autophagy 
and triggers the activation of the PI3K/AKT/mTOR 
pathway. Decreased expression of caveolin-1 in IPF 
fibroblasts is associated with aberrant activation of 
the PI3K/AKT pathway. The decrease in the level 
of caveolin-1 in the plasma membrane creates a 
micromembrane environment in which PTEN phos-

phatase activation decreases and PI3K/AKT activa-
tion increases. It also leads to decreased expression 
of caveolin-1 and Fas by decreasing PTEN activity. 
In this case, it leads to the inactivation of FoxO3a, 
the transcription activator dependent on PTEN/
Akt[38,61–63].

The formation of the apoptosis-resistant and 
senescent myofibroblast phenotype has also been at-
tributed to increased expression of the ROS-produc-
ing enzyme Nox4 and impaired capacity to induce 
Nrf2 antioxidant responses. Studies have shown 
that Nrf2 expression decreases in pulmonary tissues 
taken from people with IPF, and Nox4 expression 
increases in fibroblastic foci. In vivo knockdown 
of Nox4 and pharmacological targeting of Nox4 
during the persistent phase of lung fibrosis in aged 
mice reduced Bcl-2 levels and restored the capacity 
of aged fibroblasts to undergo apoptosis, allowing 
fibrosis to resolve[37].

3.9 Mesenchymal progenitor cells 
(MPCs)

Recent studies have identified a subtype of 
embryonic antigen (SSEA4), expressing mesenchy-
mal progenitor cells (MPCs) in the pulmonary tis-
sues of patients with IPF. This type of cells has been 
termed the main starting cells for fibroblasts with 
fibrotic reticulum in IPF. Studies have differentiated 
the gene and protein expression profile of IPF lung 
mesenchymal progenitors from control lung MPCs 
by amplification of disease-associated genes. These 
cells were propagated for DNA-PKcs, senescence 
factors and pro-fibrotic factors. Previous studies 
have shown the relationship between DNA damage 
and repair, aging and lung fibrosis. For example, 
loss of clusterin can induce aging and deterioration 
in fibroid pulmonary tissues with loss of DNA dam-
age response and repair pathways. It is noteworthy 
that the chemokines CCl28 and IL-8 increase after 
aging, stimulating the expansion and activation of 
SSEA4 ＋ MPCs, as well as their fibrogenicity and 
expression of markers. Thus, the production and 
expansion of MPCs appear to be a feedforward loop 
between the aging environment and their aging and 
pathogenic behavior in pulmonary fibrosis diseases 
such as IPF[64–70].

3.10 Immune cells
The relationship between immunity and cell 
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aging is very strong. Because senescent cells acti-
vate their adaptive immune systems and maintain 
tissue and organ homeostasis. Other than that, the 
persistence or accumulation of senescent cells can 
certainly unleash their immune systems. It may also 
predispose the organ microenvironment to a chron-
ic inflammatory condition that is partially seen in 
many age-related conditions, including in pulmo-
nary tissues. In general, the immune system has two 
features in pulmonary fibrosis. These are dysfunc-
tion of the immune system called “immune aging” 
and spontaneous aging of immune cells. Despite 
controversy regarding the role of inflammation in 
pulmonary fibrosis, persistent chronic inflammation 
is undoubtedly one of the hallmarks of pulmonary 
fibroproliferative disorders, as many immunosup-
pressant drugs cannot cure IPF[22,70–77].

3.11 Bone marrow mesenchymal stem 
cells (B-MSCs)

Mesenchymal stromal cells (MSC) were first 
identified in the bone marrow, but are a human stem 
cell assemblage that has subsequently been demon-
strated in many tissues. MSCs can differentiate into 
many cell types, thus they are multipotent stromal 
cells that have an important role in tissue remode-
ling and repair. In addition, B-MSCs are one of the 
experimental stem cell-based therapies in pulmo-
nary fibrosis. In studies in mice, administration of 
B-MSCs improved pulmonary fibrosis. Therefore, 
senescence of these stem cells will impair the tissue 
repair capacity needed in IPF[78,79].

Known key cellular players in the pathogenesis 
of pulmonary fibrosis, namely mesenchymal cells, 
immune cells and epithelial cells, exhibit cellular 
senescence phenotypes in preclinical studies and 
human lung samples. It is possible that stages of 
aging occur in more than one cell type in the lung, 
as observed in different studies of intact single-cell 
RNA sequencing. As a result, it is unclear wheth-
er these senescent cells work in concert to trigger 
pulmonary fibrosis or whether a dominant cell type 
drives the process[80].

It is also thought that the major cause of fibro-
sis in systemic sclerosis is excessive deposition of 
extracellular matrix in multiple organs[81]. In conclu-
sion, when we examine the pathogenesis of lung fi-
brosis, we see that cellular aging plays a major role. 
Lung fibroblasts take an active role in the regenera-

tion process. However, despite all the information, 
the pathogenesis of lung fibrosis is not clearly un-
derstood. It is not yet clear how senescent cells in 
the lung interact and cause fibrosis. The pathogene-
sis of lung fibrosis will be understood more clearly 
after future studies.

4. Conclusion
Cellular senescence is a significant factor in 

the development of lung fibrosis. Research indi-
cates that senescence processes occur in key cel-
lular components involved in lung fibrosis during 
abnormal lung tissue growth. AT2 cells and lung 
fibroblasts are crucial for tissue repair and regener-
ation, with inflammation also playing a vital role. 
Some shared factors and signaling pathways, such 
as autophagy and mitophagy, are observed in both 
AT2 cells and lung fibroblasts. The main culprit ap-
pears to be SASP (senescence-associated secretory 
phenotype), which creates a vicious cycle by acting 
as trigger and effector molecules. Eliminating se-
nescent cells is a logical approach to counteract the 
damaging effects of SASP, but it is a challenging 
task. The current knowledge gap lies in understand-
ing how senescent cells interact in the lung, modify 
the lung’s microenvironment, and contribute to 
persistent and progressive fibrosis. Advancements 
in scientific technologies like single-cell RNA se-
quencing, nuclear sequencing, and multi-omics ap-
proaches will provide further insights into the role 
of cellular senescence in lung fibrosis. Therefore, 
many mechanisms may play a role in lung fibrosis, 
as we mentioned above, the pathogenesis of the 
disease is still not fully understood. Research to be 
conducted in the near future will greatly contribute 
to the elucidation of the causes, follow-up and treat-
ment of this disorder.
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