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Treating tumors with immune checkpoint inhibitors: 
Rationale and limitations 
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ABSTRACT
Immune checkpoints are essential for preventing immunopathology but can also obstruct anti-tumor 

immune responses. Recent medical advances in blocking these mechanisms have therefore opened 
promising avenues in the treatment of cancer. Various blocking antibodies targeting the immune checkpoints 
programmed cell death 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) are now 
approved for human use. This review summarizes the properties of PD-1 and CTLA-4 in physiological and 
tumor settings, and examines the treatment efficacy, side effects and biomarkers of their inhibitors. Future 
avenues in the application and development of immune checkpoint inhibitors for the treatment of cancer are 
also explored. 
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PD-1 and CTLA-4 are important for immune tolerance
Programmed cell death 1 (PD-1) and cytotoxic T-lymphocyte-associated 

protein 4 (CTLA-4) are inhibitory receptors with non-redundant functions. 
Also known as immune checkpoints, they are important in controlling adaptive 
immune responses under physiological conditions.

CTLA-4 is primarily expressed by regulatory T cells (Tregs) and may 
also be upregulated on conventional T cells upon activation[1]. The receptor 
is normally located in intracellular vesicles and released briefly onto the 
cell surface during T cell activation[2]. CTLA-4 binds CD80 and CD86 on 
antigen-presenting cells. This results in negative intracellular signaling, but 
more importantly prevents CD80 and CD86 from binding to their ligand 
CD28[1,3]. CTLA-4 binds CD80 and CD86 with much greater affinity, therefore 
outcompeting the co-stimulatory receptor CD28 during antigen presentation on 
the same or neighboring T cells[3].

PD-1 can be upregulated in a wide range of immune cell types, including 
T cells and B cells[4–7]. Most T cells do not constitutively express PD-1 but 
upregulate the receptor upon activation[8,9]. Unlike CTLA-4, PD-1-mediated 
inhibitory signaling is primarily intrinsic. The cytoplasmic tail of the receptor 
contains two amino acid motifs that become phosphorylated upon PD-1 
recruitment and initiate intracellular signaling cascades that interfere with 
CD28- and other TCR-associated signaling[10,11].

PD-1 and CTLA-4 therefore both primarily act on T cells by interfering 
with the signaling of the costimulatory receptor CD28. CD28 signaling 
during T cell activation is essential for initiating the T cells’ IL-2 production, 
proliferation and survival. By interfering with this pathway, CTLA-4 and PD-1 
lower the responsiveness of T cells during activation[12]. 

Spatial and temporal differences in the expression of PD-1, CTLA-
4 and their ligands mean that both receptors act independently and in a 
non-redundant manner. CTLA-4 is thought to primarily act during anti-
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gen presentation in secondary lymphoid organs, 
as its ligands CD80 and CD86 are expressed on 
antigen-presenting cells. PD-1 on the other hand 
may be more important in peripheral organs, 
especially during effector phases of immune 
responses, as its ligands PDL-1 and PDL-2 can 
be found on a wide range of lymphoid and non-
lymphoid cells across the body and are induced by 
IFN-γ[13–15]. 

By limiting T cell responses, CTLA-4 and PD-1 
are essential for the maintenance of immunological 
tolerance. CTLA-4 knock-out mice develop T cell 
proliferative disorders and die at a young age[16,17] 
and mice deficient in PD-1 develop lupus-like 
glomerulonephritis and arthritis with age[18,19]. In 
humans, polymorphisms in the CTLA-4 and PD-1 
genes have also been associated with autoimmune 
conditions[20–22]. However, CTLA-4 and PD-1 may 
also impair immune responses to pathogens and 
tumors[23].

The roles of PD-1 and CTLA-4 in anti-
cancer immunity

By inhibiting T cell activation and effector 
functions, PD-1 and CTLA-4 prevent effective anti-
tumor immune responses. T cells that bind strongly 
to self-antigens are deleted in the thymus. Because 
tumors are derived from self, tumor-reactive T 
cells often only bind their cognate antigen with low 
affinity[24]. These T cells are therefore particularly 
susceptible to a reduction in the activation threshold 
caused by PD-1 and CTLA-4.

PD-1 ligands can often be detected in the tumor 
microenvironment, not just on infiltrating immune 
cells but also on the tumor cells themselves[25–27]. 
Tregs may also be recruited to tumor draining lymph 
nodes or directly into the tumor, suppressing immune 
responses via a wide range of mechanisms including 
via CTL-4[28]. 

Finally, tumor-specific T cells may become add-
itionally susceptible to PD-1- and CTLA-4-mediated 
signaling by upregulating either or both receptors 
in a process known as immune exhaustion. During 
immune exhaustion, T cells exposed to high levels 
of antigen in the absence of disease resolution 
upregulate a wide range of inhibitory receptors that 
limit T cell effector functions, proliferation and 
survival[29]. Exhausted T cells expressing CTLA-
4 and PD-1, among other inhibitory receptors, and 
with poor functionality have been detected in the 
tumor microenvironment and circulation in both 
mice and humans[30–33].

Blockade of PD-1 and CTLA-4 in 
tumor patients

Blockade of PD-1 and CTLA-4 can restore anti-
tumor immune responses in T cells repressed by 
these inhibitory receptors. The anti-tumor effect of 
blocking CTLA-4 in vivo was first demonstrated 
in mice in 1996[34]. Clinical trials in humans 
followed and yielded promising results in metastatic 
melanoma and ovarian carcinoma patients, leading 
in 2011 to the FDA approval of the first immune 
checkpoint inhibitor, the anti-CTLA-4 antibody 
Ipilimumab[35,36]. The first anti-PD-1 blocking 
antibodies Pembrolizumab and Nivolumab were 
approved in 2014, and other checkpoint inhibitors 
targeting PD-1 and CTLA-4 have since been 
approved or are undergoing clinical trials (Table 1).

Both CTLA-4 and PD-1 checkpoint inhibitors 
have resulted in increased patient survival in a 
number of studies, including those on melanoma, 
renal cell carcinoma, squamous cell carcinoma 
and non-small cell lung cancer, when compared to 
conventional chemotherapies. Recently, a direct 
comparison between the two checkpoint inhibitors 
in two separate phase 3 clinical trials found better 
response and survival rates among patients treated 
with the anti-PD-1 antibodies, Pembrolizumab and 
Nivolumab, compared to the anti-CTLA-4 antibody 
Ipilimumab[37,38]. In advanced stage melanoma 
patients, objective response rates were 19%, 43.7% 
and 57.6% and median progression-free survival 
were 2.9, 6.9, and 11.5 months for anti-CTLA-4, 
anti-PD-1 and their combined administration, res-
pectively[37]. However, despite these advances, 

PD-1 CTLA-4

Expressed on T cells, B cells, 
dendritic cells, 
monocytes, mast cells, 
Langerhans cells

T cells

Ligands PDL-1, PDL-2 CD80, CD86

Antibody therapies 
(approved or 
undergoing clinical 
trial)

Anti-PD-1: 
Nivolumab, 
Pembrolizumab

Anti-PDL-1: 
Atezolizumab, 
Durvalumab, 
Avelumab

Anti-CTLA-4: 
Ipilimumab, 
Tremelimumad

Table 1. PD-1 and CTLA-4 expressing cells, their 
ligands and blocking antibodies
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overall mortality and relapse rates remain high 
among advanced stage patients treated with immune 
checkpoint inhibitors.

Treatment-related adverse events and 
their management

As PD-1 and CTLA-4 are important both in tumor 
immune evasion and for maintaining peripheral 
and central tolerance, indiscriminate blocking of 
receptor signaling can have important side effects 
in some patients. Almost all patients treated with 
either or both immune checkpoint inhibitors develop 
symptoms. Common side effects include diarrhea, 
fatigue, pruritus, rash, nausea and hyperthyroidism, 
all of which are mild in the majority of patients. 
However, some patients can develop severe 
adverse effects (grade 3 to 5), including diarrhea, 
colitis, increased alanine aminotransferase levels, 
interstitial pneumonia and interstitial nephritis[37–39]. 
Anti-PD-1 treatment has also been associated with 
the development of type 1 diabetes mellitus[40], 
hepatitis[41] and the exacerbation of pre-existing 
autoimmune conditions such as psoriasis[42,43], among 
others. It is of note that severe adverse events seem 
to be more common in melanoma patients treated 
with anti-CTLA-4 (around 20%) compared to those 
treated with anti-PD-1 (10%–13%)[37,38]. 

Severe side effects require careful monitoring 
and management[37,44]. Guidelines for health care 
professionals have been set by Bristol-Myers Squibb, 
the manufacturer of Nivolumab and Ipilimumab, 
and have been reviewed in detail by Della Vittoria 
Scarpati and colleagues[45]. In general, high dose 
oral corticosteroids are recommended for grade 3–4 
manifestations and checkpoint inhibitor treatment 
should be discontinued for grade 4 side effects[45]. 
Patients with severe diarrhea not responding to high 
dose corticosteroids may additionally be treated with 
anti-TNF-α[44,46]. Low-grade skin manifestations may 
be treated with topical steroids or anti-histamines, 
and low-grade diarrhea with anti-diarrhea drugs and 
patient hydration[45]. It should be noted that patients 
may still respond to immune checkpoint blockade 
despite the development of adverse events, the 
administration of corticosteroids or the cessation 
of treatment[44]. Intriguingly, the development of 
immune-related adverse events, particularly rash and 
vitiligo, has even been associated with improved 
disease outcome in melanoma patients treated 
with anti-PD-1[47], suggesting that the breaking 
of tolerance to local (auto-) antigens may also 
lead to improved anti-tumor immune responses. 
Figure 1 shows the visualization of treatment-
associated adverse events and their anatomical 

sites in melanoma patients treated with anti-PD-1 
and/or anti-CTLA-4, as reported by Larkin and 
colleagues[37]. 

Predicting the efficacy of anti-PD-1/
CTLA-4 treatments

Because of the substantial side effects and 
treatment cost associated with immune checkpoint 
inhibitors, there is great interest in identifying 
biomarkers that will allow the selection of patients 
who would respond to these treatments. 

The most commonly described biomarker 
for anti-PD-1/PDL-1 treatment efficacy to date 
is the expression of PDL-1 at the tumor site. In-
deed, in various cancers including melanoma, 
patients that had high PDL-1 expression on tumor 
cells or infiltrating immune cells were shown to 
respond better to the treatment than those who did 
not[37,38,48,49]. However, in a number of other studies, 
including some involving squamous cell carcinoma 
of the head and neck, non-small-cell lung cancer, or 
Merkel cell carcinoma, no significant association was 
found between treatment efficacy and tumor PDL-
1 expression[27,50,51], suggesting that PDL-1 status 
alone is not sufficient as a predictive biomarker of 
treatment efficacy.

Various other immune parameters have been 
associated with improved treatment response (Table 
2). Th1- and CTLA-4-related gene expressions 
within the tumor prior to treatment have been linked 
to subsequent response to anti-PDL-1[47]. In another 
study, melanoma patients responding successfully to 
anti-PD-1 treatment were more likely to display high 

Table 2. Biomarkers that have been associated with 
patient responses to immune checkpoint inhibitor treat-
ment

Anti-PD-1 
treatments

Anti-CTLA-4 
treatment

Pre-treatment •	 PDL-1 expression 
by tumor and tumor 
infiltrating immune 
cells

•	 High tumor mutation 
rate

•	 Th1-related gene 
expression

•	 CTLA-4-related gene 
expression

•	 Increased TGF-β 
serum levels

•	 High tumor 
mutation rate

During/post-
treatment

•	 Expanded Th9 T cell 
compartment

•	 Gut 
microbiome
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Figure 1. An overview of side effects associated with immune checkpoint inhibition. Percentages of grade 3–4 
treatment-related adverse events among patients are shown for anti-PD-1 treatment (in blue), anti-CTLA-4 (in red) and 
combination therapy (in purple). Data presented are based on the study by Larkin et al.[37]

TGF-β levels pre-treatment and an expanded IL-9 
producing CD4+ T (Th9) cell compartment post-
treatment[52]. The authors reported that the addition 
of PD-1-blocking antibodies increased the IL-4- 
and TGF-β-mediated induction of Th9 cells in vitro 
and that IL-9 promoted cytotoxic CD8+ T cells in 
vitro and in murine melanoma models. These results 
suggest that high TGF-β levels in responders prior 
to treatment may allow increased induction of Th9 
cells upon anti-PD-1 treatment, which in turn may 
improve cytotoxic anti-tumor immune responses[52]. 
However, it should be noted that the role of Th9 
cells in antitumor immunity is still controversial 
with various studies suggesting that IL-9 can 
either promote or inhibit anti-tumor immune 
responses[53–55].

Immune checkpoint inhibitor treatment may 
also be more effective in tumors that are highly 
immunogenic due to their high mutation rate. For 
example, anti-PD-1 antibody administration was 
more effective in treating colorectal cancers that 
were mismatch-repair deficient compared to those 
that were not, and was also particularly effective in 

non-small cell lung cancers with a higher mutational 
burden[56,57]. Similarly, the presence of somatic neo-
antigens in the tumor cells was associated with the 
treatment efficacy in melanoma patients treated with 
anti-CTLA-4[58].

Commensal bacteria may also play a role in 
influencing the efficacy of immune checkpoint 
inhibitors. A recent study suggests that anti-CTLA-4 
treatment may alter the gut microbiome composition 
in humans and mice by favoring the growth of 
Bacteroides facilis. In mice, the presence of these 
bacteria promoted an increase in Th1 polarization 
and was associated with an improved anti-tumor 
immune response[59]. 

Whilst a number of features appear to correlate 
with the treatment response to anti-CTLA-4 and PD-
1, further studies remain necessary to identify more 
suitable biomarkers that can identify the patients 
who should (or should not) be treated with immune 
checkpoint inhibitors. Importantly, tumor tissues 
are not always available for analysis, and an ideal 
biomarker would therefore rely on patient samples 



Treating tumors with immune checkpoint inhibitors: Rationale and limitations

6

that are easily accessible, such as blood and stool 
samples.

Future avenues for immune checkpoint 
treatments: Alternative checkpoints 
and combination therapy

An ideal therapy for cancer should contribute to 
the complete eradication of tumor cells before they 
become resistant to the treatment, and be effective 
in all the patients treated with minimal side effects. 
Whilst PD-1 and CTLA-4 signaling blockades have 
greatly improved treatment outcomes, the fact that 
the majority of patients do not respond, or relapse 
after treatment, remains a major concern[60]. 

Although anti-CTLA-4 and anti-PD1/PDL-1 anti-
bodies remain the only immune checkpoint inhibitors 
clinically approved to date, other similar targets are 
currently being investigated. Immune checkpoints 
other than PD-1 and CTLA-4 include the inhibitory 
receptors TIM-3, LAG-3, and TIGIT (recently 
reviewed in detail by Anderson et al.[61]), and some 
of these are currently being targeted in phase I and II 
clinical trials. 

The additive effect of PD-1 and CTLA-4 treat-
ment has highlighted that patients might benefit from 
combination therapies that target non-redundant 
pathways by combining various immune checkpoint 
inhibitors[37,38]. Future therapeutic approaches may 
also combine immune checkpoint inhibitors with 
other immunological and non-immunological 
treat ments. As the success of immune checkpoint 
inhibition in humans is related to the existence of 
anti-tumor immune responses prior to treatment, 
patients may benefit in particular from therapies 
that further aim to boost anti-tumor immunity 
directly[49,56,57]. For example, patients may benefit 
from cytokine administration in addition to check-
point inhibition. IL-2 can boost T cell function but 
prior trials involving IL-2 administration yielded 
variable results, possibly due to IL-2-induced ex-
pansion of Tregs, which in the future may be 
counteracted with anti-CTLA-4[62–64]. Tumor antigen 
vaccination may also help, although one previous 
study did not find any clinical benefit in gp100 
vaccination when combined with anti-CTLA-4 and 
chemotherapy[41]. The combination of checkpoint 
inhibitors together with the adoptive transfer of in 
vitro-expanded tumor-infiltrating lymphocytes has 
also yielded promising results in mice[65]. Finally, 
external factors such as the patients’ microbiota may 
also play an important role in boosting anti-tumor 
immunity, and recent studies in mice have shown an 

additive beneficial effect of intestinal Bifidobacteria 
in combination with PDL-1 blockade[66]. 

Conclusion
The recent development of immune checkpoint 

inhibitors targeting CTLA-4 and/or PD-1 has 
significantly improved disease outcome in a number 
of cancer patients by boosting anti-tumor immune 
responses. However, mortality among advanced 
stage patients and the frequency of treatment-related 
adverse events remain high with current treatment. 
The need for predictive markers of treatment efficacy 
and the development of improved treatment avenues 
therefore remain as acute as ever.
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