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ABSTRACT 

Aging of organs starts from the time of birth and continues throughout life. Aging of skin can be divided into two 

distinct types — intrinsic aging and extrinsic, based on the fact that the skin is the outermost organ exposed to the exter-

nal environment. However, despite their different histological features and triggers, intrinsic and extrinsic aging share 

common biochemical mechanisms. β-galactosidase, p16INK4a, and senescence-associated secretory phenotype (SASP) 

factors are detected in skin cells as biomarkers of senescence. In particular, inflammatory cytokines, the constituents of 

SASP, play pivotal roles in “inflammaging” which is a concept involving the relationship between aging and low-grade 

inflammation. In this review, the features of skin aging and its underlying mechanism of skin aging are summarized. 

Keywords: SASP; Inflammaging; Skin

ARTICLE INFO 

Received 28 October 2021 
Accepted 19 November 2021 
Available online 24 November 2021 

COPYRIGHT

Copyright © 2021 Akihiro Aioi. 
EnPress Publisher LLC. This work is li-
censed under the Creative Commons Attrib-
ution-NonCommercial 4.0 International 
License (CC BY-NC 4.0). 
https://creativecommons.org/licenses/by-nc/
4.0/ 

1. Introduction
Aging of organs starts from the time when one is born and con-

tinues throughout life. Thus, the strategies to prevent chronological 
tissue dysfunction have become an important issue in increasing elder-
ly societies. Since Hayflick and Moorhead reported the finite prolifera-
tive capacity of cultured normal human fibroblasts[1], researchers have 
contended the involvement of cell senescence in organ aging. However, 
accumulating evidence has established obvious roles of senescent cells, 
which are defined by irreversible cell-cycle arrest, resistance to apop-
tosis, and senescence-associated secretory phenotype (SASP), in phys-
iological and pathological states[2-4].  

In the skin, aging can be divided into two distinct types: intrinsic 
aging and extrinsic aging. Intrinsic aging is an inevitable physiological 
process and characterized by dry skin, fine wrinkles, and gradual der-
mal atrophy. On the other hand, extrinsic aging is induced by environ-
mental factors, including air pollution and sun exposure, and is charac-
terized by coarse wrinkles, loss of elasticity, and rough texture 
appearance[5,6]. Similar to other organs, senescent cells accumulate in 
intrinsically and extrinsically aged skin and contribute to skin aging. In 
this review, the skin environment of senescent cells is summarized.  

2. Intrinsic skin aging
Intrinsic skin aging is a process of physiological change involving 

photo-protected areas. Intrinsically aged skin is clinically character-
ized by dryness, fine wrinkles, and a histologically thinner epidermis 
and flattened dermal-epidermal junction[7,8]. Clinical features are in- 
duced by a significant reduction in surface lipid production with 
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chronological aging, whereas stratum corneum hy-
dration and transepidermal water loss are modestly 
lowered or unchanged[9,10]. Thinning of the epider-
mis is induced by reduction of basal keratinocyte 
proliferation dependent on reduction of the nutrient 
flux through age-related flattened dermal-epidermal 
junctions, in which the area of the available ex-
change surface is reduced[11,12]. In the dermis, there 
are fewer fibroblasts in aged skin than in young 
skin[13]. In addition, the production of type I procol-
lagen in intrinsically aged human skin is reduced, 
depending on the downregulation of TGF-β/Smad 
signaling[14]. In addition to aging-induced structural 
changes, presumably the cutaneous immunity be-
comes defective with age. A variety of bacterial, 
fungal, and viral infections markedly increase with 
age[15-17]. Toll-like receptors (TLRs), which are cru-
cial pathogen pattern recognition receptors, are ex-
pressed in keratinocytes, fibroblasts, and skin-resi- 
dent immune cells. Once triggered by ligands, 
TLRs lead to the production of inflammatory cyto-
kines and initiation of immune responses[18,19]. 
Shaw et al. reported that the expression and func-
tion of TLRs diminished with age[20]. Furthermore, 
TLR ligand-induced production of inflammatory 
cytokines is reduced in circulating dendritic cells in 
older individuals[21]. This indicates that pathogen 
pattern recognition, which is the primary process of 
the innate immune system, is attenuated with age. 
Dendritic cells (DCs), which are the sentinels of the 
immune system, bridge the innate and adaptive 
immune system by sequestration and presentation 
of antigens to T cells. Diverse populations of DCs, 
including dermal DCs, dermal macrophages in the 
dermis, and Langerhans cells (LCs) represent DCs 
in epidermis[22,23]. A previous study reported that the 
absolute number of DCs and their CD34+ precursors 
declined with age[24,25]. In addition to the reduction 
in the number of LCs in aged-skin, the migratory 
ability of LCs in aged skin is impaired because of 
attenuation of the responses to cytokine gradients, 
and the subsequent accumulation of LCs in regional 
lymph nodes is reduced[26-28]. In the whole skin of 
an average person, there are approximately 2 × 1010 
T cells, including resident memory T cells (TRM) 
and circulating memory T cells[29]. The CD4+/ 
CD103– TRM cells are located in the dermis, whereas 

CD4+/CD103+ and CD8+/CD103+ TRM cells are en-
riched in epidermis. Both CD4+/CD103+ and CD8+/ 
CD103+ TRM cells have more potent effector func-
tions than circulating T cells, but have less prolifer-
ative capacity than that of the CD103– TRM cells[30]. 
To investigate antigen-specific T cell responses, 
delayed-type hypersensitivity reactions (DTHs) 
represent the most informative in vivo experimental 
models. Previous studies have demonstrated that 
DTHs are impaired in older humans and 
mice[18,31-33]. The proportion of memory phenotype 
T cells increases with age and becomes predomi-
nant after midlife, whereas the total number of T 
cells is maintained throughout life[34]. Repeated an-
tigen exposure during the lifespan induces exhaust-
ed T cells characterized by telomere shortening and 
expression of exhaustion markers such as PD1 and 
LAG3[35]. Moreover, continuous homeostatic pro-
liferation induces dysfunctional CD4+ T cells, 
named senescence-associated T cells, which are 
characterized by the expression of PD1 and LAG3, 
and abundant secretion of inflammatory cytokines. 
The proportion of senescence-associated T cells 
progressively increases with age[36,37]. Therefore, it 
is supposed that age-related dysfunction, including 
antigen recognition and presentation, and senes-
cence in T cells reflects cutaneous immunity. 

3. Extrinsic skin aging 
Extrinsic aging is caused by several exogenous 

factors such as tobacco smoke, air pollution and 
ultraviolet (UV) rays. Out of these factors, UV af-
fects aging the most; therefor, extrinsic aging is re-
ferred to as photoaging. UV is classified as UVA, 
UVB and UVC, depending on the wavelength. UVA 
(320‒400 nm) and UVB (280‒320 nm) reach the 
surface of the earth, while UVC (100‒280 nm) is 
absorbed by the ozone layer. Although UVB has 
higher energy, UVB is mostly absorbed by the epi-
dermis, owing to its shorter wavelength, while UVA, 
which has a lower energy, can penetrate into the 
dermis. Therefore, UVB is responsible for acute 
sunburn reactions in the epidermis, and UVA is 
considered as a major factor in chronic dermal 
photoaging. UV-irradiated epidermis thickens, in 
contrast to the thinner epidermis, is observed in in-
trinsically aged skin[38]. Tissue renewal in the epi-
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dermis is dependent on proliferative cells in the ba-
sal layer, which include keratinocyte stem cells 
(KSCs) and transit amplifying (TA) cells[39]. Alt-
hough the expression of integrin β1, which is a 
KSC marker, is reduced and the ratio between in-
volucrin, a differentiation marker of keratinocytes, 
and integrin β1 is increased, aberrant suprabasal 
integrin β1 expression and enhanced expression of 
Ki-67, expressed in proliferating cells, are detected 
in chronic sun-exposed skin of the elderly. In addi-
tion, flow cytometric analysis revealed that integrin 
α6bri CD71bri cell numbers are greater in sun-ex- 
posed epidermis than in sun-protected epidermis, 
suggesting that the proliferation of TA cells is in-
creased in sun-exposed epidermis[40,41]. These re-
sults suggest that UV exposure induces a hyper- 
proliferative state of epidermis in photoaged skin. 
Another clinical characteristic is the presence of 
coarse wrinkles in photoaged skin. Studies have 
demonstrated that the reduction of collagen type I 
formation in photodamaged human skin, depending 
on UV irradiation-induced matrix metalloproteinase 
(MMP) expression and synthesis inhibition by 
damaged collagen, contributes to UV irradiation- 
induced wrinkle formation[42-44]. Similarly, the sup-
pression of collagen type IV, a component of 
the basement membrane, and collagen type VII, an 
anchoring fibril connecting fibroblasts to the base-
ment membrane, affects wrinkle formation, because 
of weakening of the dermal-epidermal junc-
tion[45,46].  

4. Senescent cell biomarkers 
Cellular senescence was first described as the 

finite proliferative capacity of cultured normal hu-
man fibroblasts[1]. Irreversible cell growth arrest 
occurs due to DNA damage, telomere shortening[47], 
and oncogenic stress[48]. As removing senescent 
cells from aging tissues can delay tissue dysfunc-
tion and lead to prolonged lifespan, obvious bi-
omarkers to identify senescent cells have been 
sought. The activity of β　 -galactosidase (β-gal) at 
pH 6 is increased in middle-late passage cultured 
fibroblasts and keratinocytes, whereas terminally 
differentiated keratinocytes do not express β-gal at 
pH 6. Activity in skin sections from the different 
age groups increases with age, suggesting that se-

nescent cells accumulate in vivo with age[49]. Thus, 
the β-gal activity is termed senescence-associated 
β-gal (SA-β-gal) activity and remains the gold 
standard for identifying senescent cells in culture 
and in tissue samples. As senescent cells are irre-
versibly arrested, cell cycle regulators are usually 
employed to detect senescent cells. p16INK4a, en-
coded by the Ink4a/Arf locus, is a tumor growth 
suppressor. In normal human keratinocytes, p16INK4a, 
which is upregulated by single or repeated UVB 
irradiation, plays a role in cell cycle regulation[50]. 
The expression of p16INK4a markedly increases with 
advancing age in mice and humans, suggesting that 
p16INK4a is a cellular senescence marker[51,52]. A pre-
vious study showed that the number of p16INK4a 
positive cells increases with age in the skin and that 
numerous cardiovascular diseases are significantly 
associated with tertiles of p16INK4a positive cells in 
epidermal cells, suggesting an association between 
cell senescence and age-related pathology[53]. Pre-
vious studies have demonstrated that nuclear se-
nescence-associated events such as heterochromatin 
loss, remodeling of the nuclear lamina, and DNA 
methylation are involved in cell proliferation[54-57]. 
Senescent cells secrete senescence-associated se-
cretory phenotype (SASP) factors, including in-
flammatory cytokines, chemokines, MMPs and 
growth factors. The presence of SASP factors such 
as MMP3, MMP9, IL-6, IL-8, and insulin-like 
growth factor binding protein 7 has been used as a 
marker for senescent dermal fibroblasts and mela-
nocytes[58-60]. The release of SASP factors is facili-
tated by the translocation of high mobility 
group box-1 (HMGB1) proteins from the nucleus to 
the cytoplasm and extracellular space in senescent 
cells[61,62]. While molecular hallmarks of cell senes-
cence have been characterized in vitro, Lupa et al. 
demonstrated a correlation between SASP expres-
sion and age in intrinsically-aged human dermal 
fibroblasts, suggesting that SASP expression is up-
regulated along with chronological aging in vivo[63]. 
Collectively, senescent cells, which are considered 
passive bystanders, modulate their environment by 
secretion of SASP factors in both in vitro and in 
vivo (Figure 1). 
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Figure 1. Senescent cell biomarkers. Shortened telomeres, 
reduction of cell proliferative capacity, and increased SA-β-gal 

activity, p16
INK4a

 expression, and SASP production. 

5. Inflammaging 
Since Franceschi et al. used the term “In-

flamm-aging”[64], similar terms such as “inflam-
maging” and various other concepts have been 
proposed[65-70]. Despite of confusion regarding defi-
nitions and terminology, there is consensus that in-
flammaging refers to low-grade, chronic, and 
asymptomatic inflammation, and that the primary 
feature of inflammaging is an increase in proin-
flammatory status with advancing age[71]. Several 
factors are involved in the underlying mechanism of 
inflammaging[69,72-77]. Inflammatory cytokines, 
which are constituents of SASP, play pivotal roles 
in inflammation. Previous studies have suggested 
that complex processes are involved in the upregu-
lation of inflammatory cytokine expression. Alt-
hough p16INK4a is sufficient to induce senescent cell 
cycle arrest[78], precipitating DNA damage leads to 
the upregulation of inflammatory cytokines, sug-
gesting that the mechanism of inflammatory cyto-
kine production is distinct from that of senescent 
cell cycle arrest. Studies have also demonstrated 
that the upregulation of inflammatory cytokine ex-
pression is triggered by activated ataxia telangiecta-
sia mutated (ATM)-mediated DNA damage re-
sponses[79,80]. In addition to the DNA-damage 
response pathway, p38MAPK and protein kinase 
D1 are involved in the production of inflammatory 
cytokines. DNA-damage responses and kinases in-
duce phosphorylation of NFκB p65/RelA subunit, 
followed by translocation to the nucleus where 
it binds to the promoters of inflammatory cytokine 
genes, regulating their induction during senes-
cence[81-83]. In addition to NFκB, CCAAT/ enhanc-
er binding protein β (CEBPβ), which is regulated by 

the mitogen-activated protein kinase (MAPK) 
pathway, participates in inflammatory cytokine 
production. Sebastian et al. showed that CEBPβ is 
critical for cell senescence in mouse embryonic fi-
broblasts[84]. Following the activation of transcrip-
tion factors, it is supposed that IL-1α paracrinally 
regulates the production of SASP production as an 
upstream modulator. Previous studies have shown 
that IL-1α is essential for inducing the production 
of IL-6 and IL-8[85,86]. Consequently, low-grade 
chronic inflammation reinforces senescence via cell 
growth arrest and disruption of stem cell func-
tion[58,59,87,88]. Similar to the regulation of SASP 
production in intrinsic aging, previous studies have 
demonstrated that UVB irradiation, which is a ma-
jor stimulus in extrinsic aging (photoaging), is in-
volved in SASP regulation, such as the production 
of IL-6 and IL-8, activation of NFκB, activation of 
insulin-like growth factor-1 receptor, and HMGB1 
release[89-92]. In contrast, sirtuin 1 (SIRT1), which is 
one of the regulators of wound healing[93], sup-
presses inflammatory cytokines by binding to the 
promoter regions of inflammatory cytokine 
genes[93,95]. However, because these studies were 
performed in vitro, it is necessary to perform in vivo 
experiments with a dose of UVB that meets the 
definition of inflammaging as asymptomatic (Fig-
ure 2). 

6. Conclusions 
Despite their different histological features and 

triggers, intrinsic and extrinsic aging share com-
mon biochemical mechanisms. In particular, regula-
tion of inflammatory cytokine production is consid-
ered an important therapeutic strategy not only for 
acute inflammation caused by UV irradiation, but 
also for anti-aging. On the other hand, from a liter-
ature search regrading senescent cells, a question 
arose that cellular aging in the epidermis and aging 
in other organs should be distinguished. According 
to the definition of senescent cells, the cells are de-
noted exhibiting stable and long-term loss of prolif-
erative capacity, and are distinguished from termi-
nally differentiated cells. As KSCs and TA cells still 
have proliferative capacity, whereas senescence bio- 
markers are detected in the epidermis, the microen-
vironment surrounding KSCs and TA cells should 
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be addressed to explore the specific conditions in- volving the epidermis in the future. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Inflammatory cytokine regulatory pathways. Senescence-inducing stimuli induce DDR and p38MAPK activation, fol-
lowed by phosphorylation of NFκ-B. Phosphorylated NFκ-B translocates to the nucleus and then binds to the promoter regions of 
inflammatory cytokines genes. Consequently, the production of inflammatory cytokines is enhanced. Senescence-inducing stimuli 
and IL-1α, which is induced in the NFκ-B pathway, directly activate CEBPβ. Activated CEBPβ translocates to the nucleus and in-
duces the expression of IL-6 and IL-8 expression.
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