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ABSTRACT 
Leprosy is still a serious human health problem in developing countries. Environmental and genetic fac-

tors are playing a key role in the chronic course of the disease, resistance versus susceptibility. Multidrug 
treatment is not effective for all infected individuals. “Cured” individuals mostly show relapses of neurologi-
cal disorders as the same as not cured can present physical and deformed constraints. The unsolved matter in 
leprosy is that the clinical spectrum depends on the host immune response.and thus, the outcome of the im-
mune response. In the present review we intend to describe some aspects of the immunotherapy, based on 
type I IFNs and M. bovis BCG vaccine like a sword strategy to target germinal centers, either for its genera-
tion or for its enhancement and thus, throughout key signals delivered by follicular CD4+ T cells and con-
trolled by follicular regulatory CD4+ T cells, B cell differentiation into plasmacytoid cells being highly pro-
motes the induction of protective high affinity neutralizing antibodies to unlock humoral immunity towards 
M. leprae infected individuals. 
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Introduction 

Hanses’s infection disease (human leprosy) caused by Mycobacerium 
leprae is an ancient world infectious disease[1,2] that still constitutes a se-
rious threat to human beings in developing countries[1-3]. The multidrug 
treatments are not effective for all infected individuals. The genetic sus-
ceptibility to the disease as well as the environmental (poverty, geograph-
ic localization) plays a pivotal role in the development of the clinic mani-
festations and the outcome of the host immune response[4-7]. How and 
whether or no epigenetic factors influence the outcomes in a manner 
positive or negative, are issues that deserve further studies[8,9]. A major 
limitation that has dampened advances in the understanding of the im-
munopathogenesis of leprosy is that M. leprae could not be propagated in 
vitro. However, nowadays, cellular immunology of leprosy can be ap-
proximated in vitro throughout keratinocytes infection[10] as well as hu-
man airway epithelial cells[11]. Moreover, tick cell lines constitute a step 
forward to a promising venue not only for large scale production of M. 
leprae bacteria but for deep insight into the mechanism of pathogenici-
ty[12].  

M. leprae is an alcohol acid resistant intracellular bacilli pathogen[9,10] 

comprised of at least 33 immunodominant antigens (genome scan)[12], 
among them a 19 and 33Kda lipoproteins that interact through pattern 
pathogen receptors (PRRS), Toll-like receptors on innate cells (macro-
phages, dendritic cells)[13-15] to trigger an acute pro-inflammatory state 
accompanied with TNF-alpha and IL-12 to connect with adaptive im-
mune response (CMI)[16-19]. In leprosy either in humans (M. leprae) or in 
mice (M. lepraemurium), the host-pathogen interaction leads to a spec-
trum of cellular immune and clinical phenotype[18-20]. As outlined in 
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Figure 1, in one extreme of the spectrum, tuber-
culoid (TT/) on strong Th1 and Th17 immune re-
sponse that limits the pathogen and dissemination. 
In the  middle, two intermediate phenotypes, 
Borderline tuberculoid (BT) and Borderline (BB), 
a mix of a Th1 and Th2 cellular immune response. 
Moreover, TLR1, TLR2 enhanced expression in 
resistant infected patients (Tuberculoid Leprosy) 
and down regulation in susceptible infected 
(TLL)[5,19]. What determines that each of these in-
termediae stages is polarized toward a predomi-
nant Th1 or Th2?. On the other end of the spec-
trum a lepromatous disease or borderline 
lepromatous leprosy with a Th2 type cellular im-
mune response, and a regulatory T cellular com-
ponent (CD4-FoxP3+) that can not limit the dis-
semination of the pathogen and is dominated by a 
state of anergy (Figure 1). Indeed, leprosy regu-
latory T or B cells leads to a immunosuppressive 
ambiance by IL-10, TGF-beta induction instead 
oof IL17 protective immune responses and avoid 
exacerbates helper follicular T cell as well as B 
cell proliferation[21-25]. The state of immunosup-
pression has been proposed to play a pivotal role 
in the immunopathogenesis and immunoregula-
tion not only in human leprosy but also in auto-

inmune diseases[25]. The role of regulatory T cells 
is to control or regulate functions in different 
sites, however, in some infectious diseases such 
as leprosy it is intriguing that B and T regulatory 
T and B cells instead of immunoregulate pro-
motes a immunosuppressive state for the estab-
lishment of the pathogen. Therefore, it is tempt-
ing to think that in eradicated regions, the 
treatments promoted a strong Th1 and Th17 im-
mune protective response while in endemic re-
gions, infected individuals have a dysregulation 
of the immune response, and the induction of a 
state of anergy that hampers elimination of the 
pathogen. How the Th1 cellular protective im-
mune response can be augmented against disidu-
os complex pathogens like M. leprae?. How to re-
solve this immunological challenge and moreover, 
how to modulate it in order to obtain more bene-
ficial protective responses than damage to the 
host. One hypothesis that raises from different 
studies is that vaccines adjuvants against infected 
individuals might be directed germinal centers 
because these sites are programmed for high af-
finity neutralizing protective antibodies induction 
either for bacterial or virus infections[26,27].

 

 
Figure 1. Outline of the clnical spectrum of the host immune response in leprosy. 

 
Riddley and Jopling in 1966 defined Hanse’s 

disease or leprosy,-caused by Mycobacterium 
leprae, -as a heterogenous infectious disease be-
cause it shows a wide spectrum of clinic manifesta-
tions. M. leprae is monomorphic, there are not di-
vergent variability among strains, making more 
feasible to study and vaccine development. Howev-

er, multidrug treatments are not effective for all in-
fected individuals presumably because the envi-
ronmental factors and genetic susceptibility to dis-
ease.  
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Germinal centers 

Germinal centers (GCs), are niches inside sec-
ondary lymphoid organs (lymph node, spleen cells), 
that arise from the center of primary B follicles, 
programmed for the antigen diversification through 
B cell receptor (BCR) somatic hypermutation 
(SHM). This process can be simple for simple an-
tigens (protein), few mutations are required, but in 
the case of a more complex pathogen (virus, bacte-
ria), protective since high affinity antibodies re-
quire a much higher rate of mutations[26,27-29]. The 
program of the high antibody diversity generation 
is well ordered and not limited, includeing that fol-
licular T cells provide key signals to B cells for 
plasmacytoid differentiation and memory B cells 
induction, clonal expansión, hypersomatic muta-
tion, and class switch of class. The output of the 
GCs reactions depends on several factors, in be-
tween of the interaction of stromal follicular den-
dritic cells (FDCs), follicular B cells (FBC), follic-
ular helper T cells (Tfh), follicular regulatory T 
cells (TFr), foamy macrophages in GCs[30-34]. The 
understanding of all GCs reactions that occur in 
secondary lymphoid organs (SLOs) or in tertiary 
lymphoid organs (TLOs) is pivotal for the devel-
opment of vaccine[35-37]. GC reaction or generation 
of GC is an ordered process that involves different 
innate and adaptive cell populations, and all the re-
actions should be carefully regulated in order for 
rare antigens to be able to mount a high quality 
number of antibodies[35,36]. In the light of our data 
and from the literature, we think that this potential 
adjuvant vaccine (induction of GCs in secondary 
lymphoid tissues) is promising since the hallmark 
of vaccination and development of human vaccines 
are the induction of neutralizing protective anti-
body responses that depends strongly on CD4+ T 
cell population and germinal centers (programmed 
for antibody diversity generation, clonal expansión, 
hypersomatic mutation, switch of class), and thus, 
to have enhanced affinity and maturation of the 
humoral response which could primarily boost IgG 
subclass antibodies magnitude[38,39]. 

From the outside, the lifespan of GCs, can be 
modulated by adjuvants vaccines, by immunization 
protocols or strategies to long lastly Ag availabil-
ity[37,38]. To approximate this first in vivo and then 
in vitro, we had used M. lepraemurium mice infec-
tion whose primarily and general clinic manifesta-
tion is skin lesión and peripheral nerve damage[16]. 
In murine leprosy at early times of infection, Th1 
type cellular immune response limits the pathogen 

dissemination reflecting the tuberculoid phenotype. 
But weeks later, there is a dysregulation of either 
cellular and humoral immune response that last with 
a state of anergy giving rise to lepromatous pheno-
type[40-42].  

Type I Interferons 

In agreement with already data from the litera-
ture[43-47], we had found that the sole administration 
of type I IFNs exacerbate M. lepraemurium and/or 
M. tuberculosis infection. Firstly, skin lesión was 
not developed[48] while in the second a reduction of 
the bacterial load was observed[49]. Interestingly, we 
found in either infection model as well as from in 
vitro experiments (M. tuberculosis) that the treat-
ment based on type I IFNS plus BCG vaccine pro-
mote strong Th1 cellular immune response and pro-
tection against M. tuberculosis infection[49], whereas 
in murine leprosy type I IFNs induced protection 
correlated with a high induction of iNOS induc-
tion[48], The mechanism of this induced protection in 
either model are studies that are currently addressed. 
As part of an approximantion of the anergy observed 
at the level of the celular and in the humoral immune 
response, we asked how adjuvants such as type I 
IFNs could have an influence on GCs processes in 
secondary or tertiary lymphoid organs? 

Type I IFNs are induced at a very low steady 
level in the absence of bacterial or viral infection[43-

45] (Figure 2). However, after infection (bacterial or 
viral) or immunization, type I IFNs signalization on 
innate cells (dendritic cells, DCs) thorough IFN re-
ceptor (IFNR) (Figure 2) induce the expression in 
mesenteric lymph node of CXCR5+ follicular T 
helper, cells to support plasmacytoid B cell differen-
tiation into plasmablasts and plasma cells that se-
crete high affinity switched Abs as well as the gen-
eration of memory B cells,[22,23] leading thus to an 
enhanced cross protective immune response. 
CXCR5+ expression also enables B cells to be re-
cruited to the lung and thus, initiate formation of 
functional GCs (Figure 2). Furthermore, type I IFNs 
after viral infection can induce CXCL-13 expression 
in lung fibroblast, conducting thus, to CXCR5+ de-
pendent recruitment of B cells, leading to initiation 
of ectopic GCs formation[31,32]. This supports a role 
of type I IFNs as a natural adjuvant of SLO or TLO 
lung remodeling[31,32]. Is this a direct evidence that 
type I IFNs induce more efficient germinal centers 
in mice. It has been described that GCs enhancement 
and therefore humoral immune responses potency 
can be modulated throughout extended antigen 
availability favored by vaccine adjuvant and of the   
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immunization strategies[27]. The mechanism of this 
had been proposed to occur precisely as stated 
above through improving T follicular helper (Tfh) 
cell generation which will lead to enhanced affinity 
maturation and enhanced development of B ell 
memory. From our own findings, successive IFN-
alpha boosting of M. bovis BCG vaccinated mice, 
increased GCs average in SLO that correlated with 
induced protection in intradermal infected mice 
(lack of skin lesion) (Guerrero et al., unpublished 
results). How type I IFNs natural action in infected 
M. leprae individuals is proposed to initiate; as out-
lined by[46], toll like receptors (TLR2-/1), Interferon 
1 and 2 receptors (IFNR); intracellular nucleotide 
binding oligomerization domain containging - 
(NOD2)NOD-receptors, trigger a series of path-
ways which final commitment is the shut off or at 
least downregulation of pro-inflammatory response 
(macrophage microbicidal mechanisms, oxide nitric 
synthetase (iNOS, Il1-β, IL-6, TNF-α, IL-12, IFN-γ) 
against versus antiinflammatory respose (M. leprae 
or M.tuberculosis infection) represented by a sup-
pressive state leaded by IL10; the stimulator of in-
terferón genes (STING); interferón regulatory fac-
tor 3(IRF3, cGAS (cGMP-AMP syntahse); [2’-5’-
oligoadenylate synthetase](OASL). But also there is 
a change in the energy supply through glucose up-
take, pentose pathway that generates, nicotinamide 
adenine dinucleootide phosphate (NADPH), lipids 

metabolism (arachidonic acids, eicosanoids, leuko-
trienes), as well as an increase in mitocondrial ac-
tivity that serve to the own pathogens purposes, a 
switch off in the metabolism to redirect carbon(s) 
source for nutrients survival inside lipid bodies) that 
it has been observed in the skin lesion of M. leprae 
infected patients[46,47] (Figure 2). Autophagy and a 
pro-inflammatory response are activated upon 
NOD2 recogniton of mycobacterial DNA, that initi-
ate a leucine-rich-repeat kinase 2 (LRRK2)-
dependent response followed by host’s recruitment 
of ubiquitin chains, exemplified by E3-ubiquitin 
ligase parkin (PARK2) to target mycobacteria to 
autophagic degradation (Figure 2). The evasion 
mechanism used by is the early secreted system 
(ESTX-1) mediate pore formation in the autophago-
somal membrane to equalize autophagosomal and 
cytosol content. This, eventually trigger type I IFNs 
response and autophagy and downregulation of IL1-
β. Interestingly, as depicted in Figure 2, the sword 
represented with M. bovis BCG vaccine plus IFN-
alpha propose that this strategy might be redirecting 
type I IFNs adjuvant properties toward an increase 
in the antigen availability favored at the same time 
through an increase in the CXCR5+CD4+T cell 
generation and further CXCL13+ expression in 
SLO or TLO follicular B and T cells, key players to 
unlock humoral immuner responses in GC. 

 

 
Figure 2. Scheme of type I IFNs and M. bovis BCG vaccine immunotherapy as a sword in the host immune response in leprosy.
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In the M. leprae infection, the outcome of the 

immune response depends of the effectiveness in 
the generation of key innate and cellular host im-
mune system at systemic and mucosal tissues. type 
I IFNs adjuvant action in synergy with M. bovis 
BCG vaccine faced host immune response, such as 
autophagy, metabolism upon M. leprae infection. 
Intracellular receptors such as nucleotide binding 
oligomerization domain containing 2 (NOD2) upon 
recognition of muramyl-dipeptides of M. leprae 
(first interaction with Toll-like receptors, TLR2/1) 
can initiate a leucine-rich-repeat-kinase 2(LRRK2)-
dependent pro-inflammatory response as well as au-
tophagy. While targeting of M. leprae/M. tubercu-
losis for autophagic degradation involves recruit-
ment of the host ubiquitin system that depends on 
an E3-ubiquitin-ligase or parkin encoded by the 
gene PARK2, associated with leprosy susceptibility. 
Once the pathogen enter and switch the metabolism 
of glycolysis, lipids and cholesterol for its own pur-
poses, it is highly possible that type I IFNs robust 
adjuvanticity plus M. bovis BCG redirect its action 
to unlock humoral immune responses throughtout 
enhancement of CXCL13+ (lung fibroblast) and 
CXCR5+ in lymph node to enhance follicular T 
helper cells (Tfh) cells that are primordial to deliver 
key signals for B cell differentiation in GCs to 
plasmacytoid cells for the production of high affini-
ty neutralyzing antibodies.These processes are 
modulated by follicular regulatory T cells (Tfr). 
Moreover, it is tempting to think that the sword of 
the proposed immunotherapy pin-point the antigen 
availability potentially favored by the successive 
immunization strategy of IFN-alpha to M. bovis 
BCG vaccinated mice.   

Conclusions 

In the immunobiology of leprosy (M. leprae/M. 
lepraemurium), most of the studies have focused to 
search for therapeutic targets etiher from genome 
wide studies (GWS) or from microarray expression 
profiles which have pin point several genes of sus-
ceptibility or resistance as well as potential bi-
omarkers of the different interrelated pathways such 
type I IFNs, autophagy and metabolism. But still 
remains unsolved others aspects in the biology of 
the disease. From our own findigns, successive 
IFN-alpha boosting of M. bovis BCG vaccinated 
mice, increased GCs average in SLO that correlated 
with induced protection (lack of skin lesión devel-
opment) (Guerrero et al., unpublished results). As 
depicted in figure 2, the sword comprised of M. bo-
vis BCG vaccine plus IFN-alpha propose that this 
strategy might be redirecting type I IFNs adjuvant 

properites toward an increase in the antigen availa-
bility favored at the same time through an increase 
in the CXCR5+CD4+T cell generation and further 
CXCL13+ expression in SLO or TLO follicular B 
and T cells, key players to unlock humoral im-
muner responses in GCs.  
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