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ABSTRACT 

Peroxisome proliferator-activated receptors (PPARs) are fatty acid activated transcription factors that belong to the nu-

clear hormone receptor family. They are initially known as transcriptional regulators of lipid and glucose metabolism, 

although further evidence has also been accumulated for other functions. Due to the nature of all PPAR isotypes which 

are expressed and exert effects by regulating the functions of cell types residing and infiltrating in the skin, PPARs rep-

resent a major research target for the understanding and treatment of many skin diseases. Atopic dermatitis (AD) is a 

chronic and relapsing disease characterized by skin barrier dysfunction and immune dysregulation. Skin barrier dis-

turbance is one of the exacerbation factors of AD, due to facile penetration of molecules such as antigens. From the as-

pect of immune dysregulation, innate and acquired immunity including cell proliferation, cell differentiation, and cyto-

kine network are involved in the pathogenesis. In this review, the role of PPAR in AD and the possibility of its agonist 

for the treatment of AD are discussed. 
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1. Introduction
PPARs are classified three different isoforms termed 

PPAR, PPAR and PPAR
[1,2]

. Initial studies demon-

strated that PPARs are pivotal participants in the regula-

tion of energy homeostasis by modulating glucose and 

lipid metabolism and transportation
[3]

, and then subse-

quent studies have shown that PPARs regulate in other 

cellular functions such as cell proliferation, cell differen-

tiation, apoptosis and inflammation. Because all PPAR 

isotypes are expressed
[4]

 and exert effects by regulating 

the functions of cell types residing and infiltrating in skin, 

PPARs represent a major research target for the under-

standing and treatment of many skin diseases. Atopic 

dermatitis (AD) is a chronic and relapsing disease. AD is 

characterized skin barrier dysfunction and immune 

dysregulation. A typical characteristic of AD is xerosis 

which affects lesional and non-lesional skin areas, due to 

increased transepidermal water loss. This skin barrier 

disturbance exacerbates AD, due to facile penetration of 

high molecules such as antigens
[5]

. Thus, the application 

of emollients is one of the basic treatments to support 

skin barrier function and allow hydration of the skin as 

conservative treatments 
[6]

. Immune dysregulation occurs 

in both innate immunity and acquired immunity. The 

innate immunity is presented in the epidermis as the front 

line defense against infection. Antimicrobial peptides 

(AMPs), directly kill a broad spectrum of microbes, are 

secreted from keratinocytes and activated to respond 

immediately after microbial invasion. Although it is 

supposed that AD patients have a higher prevalence of 

infection with bacteria, fungi, and viruses due to 

skin barrier disruption, the defects of innate immune 

system are demonstrated previously 
[7]

. Regarding 

dysregulation of acquired immunity, AD is originally 

regarded as a Th2-mediated disease because of the sys-

temic elevation of Th2 cytokines with increased IgE lev-

els and eosinophilia in the acute phase
[6,8]

. However, 

Th1cytokines are detected in chronic AD, suggesting that 

Th1 cytokines are involved in the maintenance of chroic

Copyright © 2020 Akihiro Aioi 

doi: 10.24294/ti.v4.i2.1063 

EnPress Publisher LLC.This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). 

http://creativecommons.org/licenses/ by/4.0/



56 

AD skin
[8,9]

. Additionally, a study has reported that 

number of Th17 cells is significantly increased in AD 

patients
[10]

. Thus these alternative concepts in AD 

should be addressed. Tacrolimus mainly acts on both Th1 

and Th2 cells and then IFN-γ, IL-2, IL-4 and IL-5 are 

potently inhibited by tacrolimus
[11]

. Moreover, treatments 

with several monoclonal antibodies for AD are clinically 

applied or the clinical trials are underway
[12-14]

. In this 

review, the role of PPAR in AD and the possibility of its 

agonist for the treatment of AD are discussed. 

2. Peroxisome prolifera-

tor-activated receptors 
PPARs are fatty acid activated transcription factors 

that belong to the nuclear hormone receptor family. They 

are initially known as transcriptional regulators of lipid 

and glucose metabolism, although further evidence has 

also accumulated for their other functions. Three PPAR 

isotypes, PPAR-, PPAR- and PPAR-, encoded by 

separate genes, have been identified in vertebrates. The 

expression of each isotype exhibits distinct tissue distri-

bution reflecting their functions
[15]

. The highest expres-

sion of PPAR- is found in liver, and preferentially ex-

pressed in metabolically active tissues including kidney, 

heart, skeletal muscle and brown fat
[15-17]

. PPAR-/ is 

expressed in a wide range of tissues such as brain, kidney, 

heart and skin
[18,19]

. PPAR- is expressed in heart, skele-

tal muscle, colon, intestines, kidney, pancreas and spleen. 

In human skin, all PPAR isotypes are expressed
[4]

. In 

skin, PPAR isotypes show the different expression pat-

tern. PPAR-is ubiquitously present throughout the 

epidermis while the expression of PPAR- and - in-

crease along with the differentiation of keratinocytes
[20]

. 

Ligands of PPARs comprise long chain polyunsaturated 

fatty acid (Table 1). For example, -linoleic acid, do-

cosahexaenoic acid, arachidonic acid metabolites, and 

leukotrienes are the well-known endogenous ligands for 

PPARs. Many synthetic ligands for PPARs have been 

developed. Of them, fabric acid derivatives, du-

al-selective agonists for PPAR- and -, and thiazoli-

dinedione and derivatives, single-selective agonists for 

PPAR-, are successfully used in treatments of cardio-

vascular diseases and diabetes mellitus type 2
[21,22]

. 

However, any ligand for PPARs has not been clinically 

applied for the treatments of skin diseases. Previous 

studies have demonstrated underlying mechanisms in 

PPARs actions
[23]

. Once PPARs bind to their ligands, 

they form heterodimers with the retinoid X receptor 

(RXR), followed by direct binding to DNA response 

element, termed PPAR response elements (PPREs), lo-

cated in the promotor regions of target genes
[24-26]

. Bind-

ing of ligand leads to the recruitment of coactivator 

complexes which modify chromatin structure and facili-

tate assembly of the general transcriptional machinery to 

the promoter
[27]

. This transactivation induces the expres-

sion of target genes, involved in PPARs functions (Fig-

ure 1). 

Table 1. Endogenous and synthetic ligands of PPARs 
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Figure 1; Mechanism of gene expression by PPAR activation. Specific ligands-activated PPARs form hetrodimers with retinoid 

X receptors (RXRs) and recruit cofactors. The complexes then modulate DNA transcription by binding to peroxisome proliferator 

response element (PPRE) in the promoter region of target genes.  

3. Roles of PPARs in inflammation
Inflammation evoked by detrimental stimuli is a 

protective response in order to maintain homeostasis. 

Because innate immunity is considered as the first line of 

host defense against onset of harmful stimuli, immune 

cells such as macrophages, dendritic cells, mast cells, 

lymphocytes and neutrophils play crucial roles in com-

plicated inflammation response. Apart from immune 

cells, non-immune cells such as keratinocytes, fibroblasts, 

epithelial cells and endothelial cells contribute the re-

sponse as well
[28,29]

. In skin, once inflammatory stimuli 

are recognized by pattern-recognition receptors on the 

plasma membrane, inflammatory cytokines (e. g. TNF-, 

IL-1, IL-6) released from keratinocytes, fibroblasts and 

dendritic cells induce mediators during autocrine and 

paracrine signaling, followed by progression of the so-

phisticated inflammation process. Leukocyte adhesion, 

extravasation and migration to the inflammatory site are 

important events in leukocyte recruitment. Vascular cell 

adhesion molecule 1 (VCAM-1) and intercellular adhe-

sion molecule 1 (ICAM-1) play pivotal roles in leuko-

cyte adhesion and their expression is the consequence of 

stimulation by TNF- and IL-1, while they are not pre-

sent on quiescent endothelial cells
[30]

. On the other hand, 

IL-8, which is induced by TNF-, leads leukocyte, espe-

cially neutrophil, to migrate along a chemotactic gradient 

to the inflammatory site
[31]

. The initial demonstration of a 

regulatory function of PPAR- in inflammation signaling 

was obtained in PPAR--deficient mice that display an 

exacerbated response to inflammatory stimuli
[32]

. Con-

sequently, intensive studies on the effects of PPAR acti-

vators on inflammatory responses have been revealed 

that all of PPAR isotypes exert distinct and overlapping 

anti-inflammatory effects
[33-40]

. The effects of PPARs 

activation on inflammatory molecules are listed in Table 

2
[39,41]

. Previous studies reported that a crosstalk between 

PPARs and transcription factors mediating inflammatory 

signaling including C/EBP, STAT, AP-1 and NF-

proposed that five mechanisms of PPAR-mediated 

transrepression; i) direct interaction, ii) induction of 

IB, iii) regulation of kinase activity, iv) coactivator 

competition and v) co-repressor interaction
[27,39,42]

. The 
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reduction of IL-1-stimulated IL-6 production from hu-

man smooth muscle cells by fenofibrate is caused by the 

repression of c-Jun, a component of AP-1, and 

NF- -induced transcription of the human IL-6 pro-

motor. This transcription interference occurs independent 

to the promotor context. Furthermore, in vitro pro-

tein-protein interaction assay showed fibrate-activate 

PPAR- binds directly to c-Jun and NF-B (Figure 

2a)
[43]

. Another study demonstrated a distinct mechanism 

that fenofibrate induces the expression of IB, which 

inhibits NF-B by masking the nuclear localization sig-

nals of NF-κB proteins and keeping them sequestered in 

an inactive state in the cytoplasm, in human aortic 

smooth muscle cells and hepatocytes, accompanied with 

a decrease in NF-B DNA binding activity
[44]

. This sug-

gests that PPAR activation inhibits NF-B DNA bind-

ing by IB induced by PPAR activation (Figure 2b). In 

mice colon inflammation, troglitazone reduces TNF- 

and IL-1 mRNA levels, accompanied with reduction of 

NF-B DNA binding activity, c-Jun NH2-terminal kinase 

(JNK), and p38 activities
[45]

. Oxidative stress-induced 

production of TNF- and IL-1 is reduced in PPAR- 

overexpressing Ad/PPAR C2C12 cells, compared to 

Ad/LacZ C2C12 cells. At the same time, phosphorylation 

of ERK1/2 and p38 is inhibited in Ad/PPAR C2C12 

cells, concomitant with inhibition of NF-B translocation 

from cytosol to nucleus
[46]

. Likewise, Shi and the col-

leagues demonstrated that alline, a potent PPAR- acti-

vator, ameliorates LPS-induced production of iNOS, 

IL-1, IL-6 and TNF- from RAW264.7 cells through 

the reduced phosphorylation of ERK1/2, JNK and p38, 

suggesting that PPAR- activation regulates MAPKs 

activity
[47]

. These suggest PPAR activation attenuates 

inflammatory response through regulation of protein 

kinase activity (Figure 2c). Several members of the nu-

clear receptor family including PPARs and RXR require 

coactivator such as CREB-binding protein (CBP)/p300 

to exert their functions. Similarly, AP-1 also requires 

CBP/p300 to regulate the target gene expression. Thus, 

PPARs and AP-1 scramble competitively for limiting 

pool of overlapping sets of coactivator in cells
[48]

. Li et al. 

have demonstrated that transrepression by PPAR- is 

achieved by targeting CBP through direct interaction 

with its N-terminal domain and via SRC-1-like bridge 

factors
[49]

. This is the fourth mechanism of transrepres-

sion (Figure 2d). Lee and the colleagues proposed a lig-

and-dependent transcriptional pathway in which 

PPAR- controls an inflammatory switch through its 

association and disassociation with BCL-6
[50]

. 

PPAR--BCL-6 complex possesses pro-inflammatory 

effect when PPAR- is unliganded. Once PPAR- 

activated by the ligand, BCL-6 is released from the com-

plex and then suppresses the production of cytokines and 

chemokines (Figure 2e). Pascual et al proposed another 

corepressor-dependent model that PPAR- mediates 

transrepression of a subset of inflammatory response 

genes in macrophages by preventing the sig-

nal-dependent clearance of corepressor complexes on 

inflammatory promoters downstream of LPS signaling
[51]

. 

Based on its anti-inflammatory activities as described 

above, PPARs are expected to be therapeutic targets for 

treatment of different inflammatory skin diseases
[52]

. 

Table 2. Influence of PPAR activation on inflammatory molecule expression 
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Figure 2; Mechanisms of liganded PPAR-mediated transsppression. a) Direct interaction with transcription factor (TF), b) In-

duction of IB, c) Kinase inhibition, d) Competitive scramble for coactivator, e) Association and disassociation with BCL-6. 

4. Skin barrier disruption in atopic

dermatitis 
Atopic dermatitis (AD) is a chronic and relapsing 

disease. Its increasing prevalence to be estimated up to 

20% in children and 10% in adults represents a major 

public-health problem. AD is characterized skin barrier 

dysfunction and immune dysregulation. From the aspect 

of skin barrier dysfunction, a typical characteristic of AD 

is xerosis which affects lesional and non-lesional skin 

areas, due to increased transepidermal water loss. Previ-

ous studies have proposed two major causes of increased 

transepidermal water loss: (i) decreased ceramide content 

in strarum corneum
[53]

, (ii) filaggrin gene mutation
[54]

. 

This skin barrier disturbance exacerbates AD, due to 

facile penetration of molecules such as antigens
[5]

. Thus, 

the application of emollients such as urea and heparinoid 

is one of the basic treatments to support skin barrier 

function and allow hydration of the skin as conservative 

treatments
[6]

. On the other hand, it is supposed that hy-

perproliferation and hypodifferentiation of keratinocyte 

are the factors for skin barrier dysfunction in AD, other 

than gene mutation
[55,56]

. A previous report demonstrated 

that PPAR/ plays crucial roles in keratinocyte prolifer-

ation, maintenance of cutaneous barrier homeostasis and 

regulation of inflammation in PPAR/ deficient mice
[57]

. 

To establish a mature skin barrier function mechanically, 

sequential and orchestrated cross-linking of filaggrin, 

involucrin, loricrin and ceramides by transglutaminase 1 

along with keratinocyte differentiation is required. Han-

ley et al. reported that clofibrate, a PPAR agonist, de-

celerates keratinocyte proliferation and accelerate dif-

ferentiation with enhancement of mRNA expression of 

involucrin and transglutaminase 1
[58]

. Other studies 

demonstrated that caffeic acid induces keratinocyte dif-

ferentiation via PPAR- activation
[59]

, and that GW0742, 

a PPAR- selective activator, induces keratinocyte dif-

ferentiation and inhibits proliferation
[60]

. Addition to the 

regulation of keratinocyte differentiation, intracellular 

lipid accumulation and lamellar body secretion are cru-

cial for the construction of intercellular lipid alignment 

to contribute skin barrier function. Schmuth et al. pro-

vided crucial evidence on relation between PPAR- 

activation and skin barrier homeostasis: i) PPAR- 

activator, GW1514, stimulates the recovery of acute and 

chronic skin perturbation in hairless mice, ii) GW1514 

stimulates an increase in the expression of the differenti-

ation markers, loricrin and filaggrin, iii) GW1514 in-

creases accumulation of triglyceride
[61]

. A consecutive 

study from the same group demonstrated that application 

of activators of PPAR (WY14643), PPAR (GW1514) 

and PPAR (ciglitazone) to hairless mice enhances syn-

thesis of cholesterol, fatty acid and ceramides, and con-

sequently that the activators accelerate the recovery from 

acute disruption of skin barrier function
[62]

. These results 

suggest that PPAR activators are expected to improve 

cutaneous barrier homeostasis by control of keratinocyte 

differentiation. Further, other studies showed that activ- 

ation of PPAR- by WY14643 improves skin barrier 
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with normalization of the molar ratio of the main 

skin barrier lipids to 1:1:1 (free fatty ac-

ids:ceramides:cholesterol) and upregulation of filaggrin 

expression
[63]

, and that oat lipid extract, which demon-

strates robust dual agonism for PPAR- and PPAR-, 

enhances keratinocyte differentiation and ceramide syn-

thesis
[64]

. These results suggest that PPAR activators are 

expected to be alternative treatments to support skin bar-

rier function. 

5. Attenuation of innate immunity

in AD 
On the other hand, immune dysregulation in both 

innate and acquired immunity is another important aspect 

in AD. Especially, cytokines in innate and acquired im-

munity contribute to establish the pathology of AD
[65]

. 

The innate immunity presents in epidermis as the front 

line defense against infection. Antimicrobial peptides 

(AMPs) such as cathelidin (LL37) and -defensins, di-

rectly kill a broad spectrum of microbes, including 

Gram-positive and Gram-negative bacteria as well as 

fungi and certain viruses, are secreted from keratinocyte 

and activated to respond immediately after microbial 

invasion. Although it is supposed that AD patients have a 

higher prevalence of infection with bacteria, fungi, and 

viruses due to skin barrier disruption, the defects of in-

nate immune system are demonstrated previously
[7]

. Ong 

et al. reported that the expression of LL37 and human 

-defensin 2 (HBD-2) was suppressed in AD patients
[8]

. 

As the expression of AMPs arises during keratinocyte 

differentiation, the disturbance of keratinocyte differenti-

ation is a considerable reason why suppression of LL37 

and HBD-2 occurs in AD patients. Because PPARs acti-

vators induce keratinocyte differentiation
[59,61,66,67]

, PPAR 

activation may improve AMPs production in AD. Fur-

thermore, a previous study reported that apoptosis sig-

nal-regulating kinase-1 (ASK1), an intracellular regula-

tor of keratinocyte differentiation, enhances the expres-

sion of LL37 and HBD2 via p38 cascade
[68]

. Since 

PPAR/p38 pathway is one of the signal cascade to exert 

the functions, similar to ASK1
[69,70]

, PPAR activation is 

expected to induce AMP expression via p38. In fact, Dai 

et al. showed that PPAR regulates the 1, 

25-dihydroxyvitamin D3-induced production of HBD-3 

and LL37, whose gene is a direct target of the vitamin D 

receptor, in keratinocytes through the regulation of AP-1 

and p38 activity
[71-74]

. 

6. Dysregulation of acquired im-

munity in AD 
Regarding dysregulation of acquired immunity, AD 

is originally considered as a Th2-mediated disease be-

cause of the systemic elevation of Th2 cytokines with 

increased IgE levels and eosinophilia in the acute 

phase
[6,8]

. Once keratinocytes, locating the outmost of 

the body, are activated by diverse stimuli including 

chemicals, allergens, microbes and scratching, they re-

lease thymic stromal lymphopoetin (TSLP), IL-25 and 

IL-33. TSLP is produced from keratinocytes by tape 

stripping-induced skin barrier disruption and by Staphy-

lococcus aureus, as well as antigen-activated mast cells 

(MC)
[75-77]

. Additionally, the high expression of TSLP in 

keratinocytes from patients with AD implies involvement 

of TSLP in AD
[78]

. Previous studies demonstrated that 

IL-25 expression is found in Th2 cells, allergen-activated 

MCs, eosinophils, basophils, dendritic cells (DC) and 

human skin of AD patients
[79-82]

. IL-33 is expressed by a 

wide variety of cell types, including residing and infil-

trating cells in skin
[83]

. These cytokines share the proper-

ties which induce IL-4, IL-5 and IL-13 production to 

lead skewing and augmenting Th2 response in AD
[79,81]

. 

Interestingly, a previous study demonstrated that 

TNF--induced HBD-2 production from HaCaT cells is 

significantly decreased in the presence of IL-4 or IL-13
[7]

, 

suggesting that IL-4 and IL-13 affect the innate immune 

system in AD. In addition, IL-25 is suggested to partici-

pate in barrier dysfunction in AD because IL-25 reduces 

filaggrin expression in keratinocyte
[81]

. Additionally, 

IL-33 stimulates MCs to produce IL-5, IL-6, IL-10, 

IL-13, TNF- and GM-CSF
[84]

. Of them, TNF- stimu-

lates keratinocytes to produce TSLP
[65]

. Following the 

production of TSLP, IL-25 and IL-33 to target Th2 cells, 

Th2-cytokines including IL-4, IL-5 and IL-13 are re-

leased. Their functions in acquire immune response are; i) 

IL-4 induces immunoglobulin class switch form IgM to 

IgE, and upregulates IgE receptors on monocytes, as well 

as promotion of Th2 skewing, ii) IL-5 induces the pro-

duction of IL-25 from eosinophils and stimulates matu-

ration and also activation of eosinophis, iii) the effects of 

IL-13 are similar to those of IL-4. The patients with AD 

are divided into extrinsic AD (EAD) and intrinsic AD 

(IAD). In EAD, increased total serum IgE and a higher 
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expression of IgE receptors on monocytes are found, 

compared with IAD. On the other hand, higher expres-

sion of IL-5 and IL-13 are detected in EAD than IAD. 

However, the expression of Th2 cytokines including IL-4, 

IL-5 and IL-13 in skin lesions of both group is elevated, 

compared with normal control skin
[85-87]

. IL-31, belong-

ing to an IL-6 family in terms of its structure and recep-

tor complex, is expressed by Th2 cells
[88]

. Raap et al. 

reported a correlation between serum levels of IL-31 and 

the severity of AD
[89]

. A role of IL-31 is to induce the 

release of pro-inflammatory cytokines including IL-1 

and IL-6, and AD-related chemokines including CXCL1, 

CXCL8, CCL2 and CCL18 from eosinophils whose in-

filtration in skin lesions is a predominant pathological 

feature of AD
[90]

. In addition, IL-31 is focused as a major 

pruritogen associated with AD
[91]

. Because scratch-

ing behavior due to pruritus is an exacerbation factor to 

influence the quality of life, the control of pruritus is 

important. In NC/Nga mice developing spontaneously 

AD-like skin lesions, long-lasting scratching behavior 

and IL-31 expression is enhanced, while both of them is 

unchanged in TNCB-induced contact dermatitis and this 

scratching behavior is ameliorated by administration of 

anti-IL-31 antibody
[92,93]

. These suggest the importance 

of Th2 cytokines in the pathogenesis of acute phase in 

AD. It is well known that cytokine profile in AD shifts 

from Th2 dominant in acute phase to Th1 dominant in 

chronic phase, as it is called “Th1/Th2 paradigm”
[94-97]

. 

Indeed, increased levels of IL-12 and IFN-, which rep-

resent Th1 cytokines, are detected in chronic AD lesions, 

compared with normal skin
[8]

. Previously, Aral et al. 

demonstrated that serum level of IL-18 is found signifi-

cantly higher in AD patients than in controls and that a 

statistically significant relationship between the severity 

of AD, and serum levels of IL-18 and IL-12/p40 is de-

termined, suggesting the involvement of IL-18 in AD
[9]

. 

IL-18, derived from dendritic cells, induces Th1 cells to 

produce Th1 cytokines
[66, 98]

. Moreover, other studies 

suggest the roles of IL-18 in the pathogenesis of 

AD
[99-101]

. However, because the conflict results in rela-

tionship between IL-18 and atopic dermatitis-like in-

flammation
[102]

, the role of IL-18 in atopic dermatitis 

should be further addressed. IL-21, a member of the type 

I cytokine family, is produced by lymphoid cells such as 

activated CD4
+
 T cells and exerts its pleiotropic func-

tion by binding to IL-21 receptor (IL-21R). Upregulation 

of IL-21 and IL-21R in skin lesions from AD patients 

and elevated levels of IL-21 in serum form AD patients 

are reported
[103, 104]

. In mice, skin barrier disruption, a 

surrogate for scratching, enhances the expression of 

IL-21 and IL-21R, as well as IL-6
[103]

. Further, IL-21 

enhances CCR7 expression, migration to local 

lymphnode and antigen presentation of DCs
[105]

. In addi-

tion to Th1/Th2 paradigm, Th17 cells and Th22 cells 

emerged as new participants in the pathogenesis of AD. 

The cell number of intracellular IL-17 positive circulat-

ing lymphocyte, mRNA expression of IL-17 in peripher-

al blood mononuclear cells and IL-17 concentration in 

serum are upregulated in the patient with AD, correlated 

with the severity of AD
[106,107]

. IL-17 directly enhances 

IgE production, but not IgG, IgM or IgA, in human by 

triggering rapid degradation of IBa and subsequent 

translocation of NF-B into the B-cell nucleus
[108]

. Th22 

cells were identified as CD4+ T cell producing IL-22 and 

lacking production of IL-17 and are distinct from Th1, 

Th2 and Th17 cells
[109-111]

. IL-22 induces the expression 

of S100A7, S100A8 and S100A9, a group of proinflam-

matory molecules, in human keratinocyte, as well as ma-

trix metalloproteinase 3 and CXCL5. In addition, IL-22 

induces keratinocyte migration in an in vitro injury mod-

el and downregulates the expression of keratinocyte dif-

ferentiation markers including involucrin, loricrin, heat 

shock protein 27, calmodulin-related protein and heme 

oxygenase 1. Further, in reconstituted human epidermis, 

IL-22 induces strongly hyperplasia
[112]

. The number of 

Th2 and Th22 cells are significantly elevated in AD, 

whereas psoriatic skin has significantly increased fre-

quency of Th1 and Th17 cell. The levels of IL-22 is up-

regulated in AD lesions, associated with the severity of 

AD symptoms
[113]

. These findings suggested that IL-22 

affects to maintenance of inflammation and epidermal 

hyperplasia in AD. Taken together, AD is a Th2/Th22 

skewed disease, with additional contributions from Th1 

cytokines occurring in the chronic stage. Overlooking 

this complicated pathogenesis of AD, a simple question, 

whether this complicated cytokine network in AD can be 

regulated by the activation of PPARs, is raised. To sim-

plify the cytokine network, the intracellular signaling 

pathway activated by these cytokines are focused. As 

shown in Table 3, JAK/STAT or NF-B is involved in all 
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signaling pathways activated by cytokines in AD. 

PPAR- interacts with NF-B and AP-1 and PPAR- 

interacts with STAT, NF-B, AP-1 and NF-AT
[42]

. Con-

sequently, the gene expression in the down-stream in-

volving by these transcription factors is reduced. Like-

wise, we examined the effects of PPAR- activation by 

GW501516 on IL-6 and IL-8 production from HaCaT 

cells, an immortalized keratinocyte derived from human 

epidermis. Expectedly, LPS-induced IL-6 production and 

TNF--induced IL-8 production are reduced with 

GW501516 treatment (Figure 3). Following the results 

from in vitro experiments, in vivo experiments in animal 

models, including gene-modified animals and classical 

(traditional) animal, are required to elucidate the effect of 

PPAR activation on AD. Actually, Kim et al. demon-

strated that ursolic acid, a potential PPAR- agonist, sup-

presses ovalbumin-induced airway inflammation with the 

downregulation of IL-5, IL-13 and IL-17
[114]

. In derma-

tological field, two groups reported the effect of PPAR 

activators on oxazolone-induced contact dermatitis in 

mice, as an atopic dermatitis model
[115,116]

. NC/Nga 

mouse is known as an animal model for AD. NC/Nga 

mice are originated from Japanese fancy mice (Nishi-

ki-Nezumi) and were established as a inbred strain in 

1955. The most important characteristic in NC/Nga mice 

is that spontaneous AD-like dermatitis appears in the 

mice raised under ambient laboratory conditions, while 

no skin lesion is detected clinically in the mice raised 

under specific pathogen-free condition. Additionally, 

previous studies have revealed the other features, in-

cluding the skin barrier dysfunction with the reduction of 

ceramide contents, IgE hyperproduction, cytokine pro-

files and long-lasting scratching behavior, corresponding 

to human AD
[117-120, 92]

. Therefore NC/Nga mice are 

widely used for evaluation of the therapeutic effect for 

AD. Chiba et al. showed that topical application (trans-

dermal) of PPAR- suppresses atopic dermatitis in 

NC/Nga mice
[121]

. Recently, a study showed that tannic 

acid ameliorates clinical severity in house dust mite ex-

tract-induced AD-like dermatitis in NC/Nga mice, with 

pathologically inhibition of hyperkeratosis, parakeratosis, 

acanthosis and infiltration of inflammatory cell
[122]

. To 

follow the antecedent studies on the effect of PPAR acti-

vation on skin barrier dysfunction in AD, further studies 

should be performed to elucidate the effects of PPAR 

activation on immune-modulation in AD. 

Table 3. Kinases/Tanscription factors in signaling pathways of AD cytokines 

Figure 3; Suppression of inflammatory cytokine production by PPAR- agonist (GW501516). Treatment with GW501516 sup-

presses LPS-induced IL-6 production and TNF--induced IL-8 production from HaCaT cells. 
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7. Conclusion
Depending to pleiotropic function of PPARs, thera-

peutic applications of PPAR activators have been ex-

pected. Actually, some of agonists for PPAR- have al-

ready used in diabetes therapy. It is easily hypothesized 

that PPAR activators, which possess suppressive effects 

on transcription factors, may improve skin inflammation, 

including AD. Indeed, numerous numbers of in vitro 

experiments have been performed and provided useful 

information. Regarding to AD, although previous studies 

suggest that PPAR activation may be useful for im-

provement of skin barrier dysfunction and that PPAR 

activation suppresses the inflammatory molecules via 

inhibition of transcriptional pathways, the usefulness of 

PPAR activation for immune dysregulation is still un-

clear, due to its complicated cytokine network. However, 

some in vivo studies put the beacons to resolve the un-

derlying issues. Thus, PPAR activation is expected to be 

one of the immune-modulating therapy for AD. 
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