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Abstract: In order to give machines, the interpretable thinking ability of mathematicians, the 

automatic derivation engine for advanced mathematics symbolic systems was explored to 

develop, which could update machines from the shallow thinking ability, such as natural 

language understanding and elementary mathematical numerical computation, to deep thinking, 

such as equivalent derivation for symbolic systems. This article proposed the complex logic 

algorithm design and development method with the frameworks as the core components. 

Starting with problem-resolving examples, the initial idea, basic data structure, and 

programming features of this new method were introduced in detail. However, this article 

proposed the integrated development environment for this method, as well as the main 

scheduling algorithm, core process algorithm, workflow dynamic display algorithm, execution 

status monitoring algorithm, generalization processing method, etc. The new method could be 

applicable to intelligent system development tasks that needed to gradually accumulate 

instance experience and had practical significance for the complex logic algorithms 

development, visualization software design, reduction complexity for software test and 

maintenance, and software reliability improvement. This article used the application problem 

solved by partial differential equations as an example to explain this method from the whole 

process, such as lexical analysis, semantic analysis, symbolic system establishment, and 

equivalent derivation to result validation, demonstrating the new dynamism and potential for 

logic derivation-based classical artificial intelligence methods. 

Keywords: logic derivation; semantic analysis; symbolic system; equivalent derivation; 

integrated development environment; complex logic algorithm; deep thinking 

1. Introduction 

In the past decade, research on automatic humanoid resolving of mathematics 

application problems (math word problems) mainly focused on the scope of 

elementary mathematics [1–3], which was the research topic based on natural 

language semantic understanding [4,5]. It could be systematically implemented by 

semantic understanding technologies, such as the limited local semantics extensions 

for the clauses with mathematics commonsense knowledge [6]. However, in terms of 

machine simulation of human mathematical abilities, the humanoid derivation of 

advanced mathematics symbolic systems, such as functions, calculus, and equations 

[7–9], also had great practical value. Research in this field could make machines think 

deeply about problem texts and even might have the potential to self-verify the 

mathematics theories. For artificial intelligence researchers who aimed to simulate the 
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human brain, this was a very attractive topic [10]. After 5 years of analyzing and 

resolving 1112 elementary mathematics application problems by machine, the authors 

established the computational resolving method system with limited local semantic 

extension. To enable the computer to have more comprehensive mathematics thinking 

abilities, the author explored the equivalent derivation of the mathematics symbolic 

system and the implementation mechanism for the computer. This work would mainly 

discuss the formal representation of problems and the equivalent derivation of 

symbolic systems, which had great significance for the comprehensive 

implementation of machine thinking. 

The difference from the software toolkits such as MATLAB [11] and Scientific 

Notebook, which were widely used in scientific computing and had advanced 

mathematics symbolic computing capabilities, is that this article focused on the formal 

representation of semantics in advanced mathematics (including data element 

computing relationships) and their symbolic equivalent derivation, with the feature of 

process interpretability [12,13]. From the recent period perspective, this technology 

route was still suitable for application in the education field; from the long period 

perspective, it also enabled the possibility of interactive exploration and collaborative 

evolution between thinking machines and humans. It was precisely because it could 

achieve interpretability by intermediate derivation steps, which required a large 

amount of commonsense knowledge and domain knowledge, that this technology 

route had the potential for autonomous science exploration and mathematics 

verification. From machine text semantic understanding to interpretable automatic 

advanced mathematical problem resolving, this paper achieved the entire process by 

commonsense knowledge base at first time. In the future, with the support of axiomatic 

sets (commonsense knowledge and domain knowledge), it would be possible to 

achieve autonomous extension research for new mathematics theories by computer 

and interactively verify the results with human mathematicians. This was also the 

fundamental reason why interpretability was crucial for both machine thinking and 

artificial intelligence research. The strengths of this route included: The engine was 

implemented based on case analysis, which conformed to human thinking habits; 

gradual effect presentation of the engine made developers feel a sense of achievement 

in the implementation; the visual development platform could reduce the complexity 

of software debugging and maintenance; unified function scheduling operation 

provided the mechanism foundation for automatic system self-programming; the 

machine thinking process could be explained. The limitations included: It was a 

completely new technological route and method, with no integration of other mature 

modules, a huge workload, and slow progress; currently, it is only in the prototype 

development stage. 

With the emergence of ChatGPT [14], the large language model technology had 

achieved significant success, becoming a hot topic and mainstream in the business and 

technology fields [15]. Despite the continuous efforts of many researchers, there were 

still many unsatisfactory aspects in numerical computation relationships, logic 

reasoning, commonsense reasoning, objective facts, and information updates. Many 

researchers were constantly striving to improve and enhance the large language model, 

with the main goal still focused on improving language understanding, logic reasoning, 

correctness, reliability, and security. 
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Research involving mathematical derivation and symbolic equivalent 

relationship verification was relatively rare. The current main target of the large 

language model was ordinary users, and the support and assistance provided for the 

highly specialized and knowledge-based scientific education field were still very 

limited. This article aimed to explore the evolution of autonomous semantic 

understanding, knowledge verification, conclusion generation, and human-computer 

interaction for thinking machines, targeting the field of scientific research. Taking the 

equivalent derivation in advanced mathematics symbolic systems as an example, the 

technology architecture for interpretable intelligent scientific research systems was 

designed to explore the implementation for scientific research machines. The main 

difference between this route and the popular machine learning methods was the 

interpretability of the derivation steps, rather than directly providing results. 

2. Related work 

This article implemented a humanoid thinking automatic processing platform 

using engineering methods, which included text semantic understanding, 

commonsense accumulation, mathematical knowledge citation, and equivalent 

derivation of mathematical symbols. Due to the complexity of language expression 

forms, the platform involved a wide range of data and pattern types, with complex 

language features and obvious feature sparsity, making it relatively difficult to 

accumulate feature samples. Currently, it is not suitable to use machine learning 

algorithms [16–18] that require a large number of feature samples, and machine 

learning processing of partial differential equations [19,20] also faced the same 

problem. Reinforcement learning [21,22], genetic algorithms [23], and deep learning 

algorithms [24–29] are all considered for future applications in this article. The 

interpretability principles were adopted in the technical route; language feature data 

required by these algorithms was precipitated in the platform. As there were many 

types of features, the quantity of samples for the single feature was relatively small, 

and the application loop had not yet been established. One of the main contributions 

of this article: Simplified traditional software engineering methods through 

visualization methods, enhanced the intuitiveness of system workflow, and reduced 

the complexity of system maintenance. Unlike classical visualization program design 

technologies [30–32], which were mainly aimed at the software development stage, 

the visualization method proposed in this article provided the new implementation 

approach for automatically understanding software logic changes [33] and planning 

thinking actions. The second main contribution of this article: Achieved 

interpretability of semantic understanding with clause vocabulary sequence patterns 

as the core idea, which was different from the semantic understanding technology 

routes based on large language models and traditional statistics [34–36]. The third 

main contribution of this article is the implementation of the interpretable derivation 

process for the symbol system of advanced mathematics with instances. The process 

of deriving mathematical knowledge [37–39] was different from the function black 

box processing method of advanced mathematics tools such as MATLAB and was 

more suitable for application in university teaching. Finally, it was worth pointing out 

that although the pre-training language model method [40] and the symbolic inference 
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enhancement of the thought chain technology for large language models [41] were 

mainstream directions, their main design ideas differed significantly from the methods 

proposed in this article. 

3. Implementation technologies 

If the problem space was not completely determined or the samples could not be 

precisely enumerated (the samples scale, form, or features could not be accurately 

determined), higher requirements were required on the generalization ability of big 

data based intelligent algorithms. Generally, the scale of input data for intelligent 

algorithms based on big data was enormous, and the processing logic should be the 

condensed version of simplified and smaller computation models. There were two 

ways to generate this “condensed version” model by the following modes: (1) Up-

down, which firstly determined the complete set of processing logic (macro 

architecture), and then gradually refined the branches (micro processing). For example, 

in deep learning of large language models, the hierarchy and scale of the neural 

network were first determined, and then the threshold and I/O link weights of each 

neuron were gradually trained and adjusted. (2) Down-up, referred to summarizing the 

general processing framework for each sample based on the processing workflows, 

gradually generalizing it to any valid input. For example, in this article, the way of 

humanoid machine resolving mathematics application problems, which analyzed and 

processed many problem examples, and summarized the general processing 

framework, was determined by the Down-up mode. The derivation rules of equations 

in advanced mathematics were generated in this way, and after generalization 

processing, they were applied to the machine automatic resolving process of general 

mathematics application problems. This article adopted the second mode and 

summarized the system technology levels as shown in the following Figure 1: 

 

Figure 1. Technology levels. 

The initial workflow of problem resolving could be the four step function units 

A, B, C, and D arranged in series in Figure 2a. In the subsequent instance process, 

there might be two types of workflow changes: (1) the addition of parallel selection 

function unit, for example, the addition of parallel selection function unit E for 

function unit B in Figure 2b. (2) The addition of function unit for serial selection 

function unit, such as the selection function unit F in Figure 2c (where F represented 

by a “real” branch with actual processing function and a “bypass” branch without any 

processing function). These were all based on the basic processing framework of 

samples, which was the same or similar, but only required local adjustments and 
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improvements. Based on this premise, the gradual refinement process could be 

implemented by Up-down mode through a standard pre-set data framework, similar to 

the training process for the large language model. The additions of branches and 

bypasses were all discrete gradual processes (refer to Figure 2). 

 

Figure 2. Gradual workflow refining processes. 

If each function unit was represented by a general framework (data structure) that 

included the selection judgment component (which could have only one output branch, 

indicating absolute selection, i.e., no selection judgment and directly linking to 

subsequent function unit) and the function processing component (which could be 

empty, indicating direct linking before and after, without corresponding processing 

component), the whole software logic workflow could be nested and refined into a 

multi-dimension web that could be dynamically added with function units, which 

could become the large logic model. The only provided as many effective feature 

judgment and processing function units as possible was all that the developers needed 

to do, automatically/semi-automatically added to the machine decision-making system 

of the large logic model, forming the systematic judgment and decision generalization 

ability. The atom function unit was called the basic function unit, and the upper 

function unit was the combination of basic function units. The standardized function 

unit data structure laid the foundation for adaptive dynamic adjustment of the large 

logic model with active autonomous machine actions. For example, the function units 

could be represented by the framework using the following C-like language data 

structure (refer to Appendix). 

Applying the above framework node data structure to the whole programming 

and debugging process of complex logic algorithms could form the framework nodes 

and logic links hierarchical web with recursive and loop structures. In the process of 

continuously refining this web system, in addition to the refining process of adding 

nodes at the same level mentioned above, there were also the forms of splitting and 
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refining operations, such as embedding sub-framework nodes into the basic 

framework nodes (without sub-frameworks). The processing principles were as 

follows: (1) If the embedding framework node located at the beginning of the splitting 

framework node, then copied the splitting framework nodes and linked the embedding 

framework node with the splitting framework back and forth, and used them as the 

sub-frameworks of the original splitting framework node; (2) If the embedded 

framework node located at the end of the splitting framework node, copied the splitting 

framework node and linked it back and forth with the embedding framework node as 

the sub-framework nodes of the original framework node; (3) If the embedding 

framework located in the middle of the source code of the splitting framework node, 

then took this location as the boundary to represent the splitting framework node into 

two new function units and initialized the two consecutive new framework nodes. 

Inserted the embedded framework node into the middle of these two nodes and linked 

them back and forth, becoming the sub-framework node of the original splitting 

framework node. (4) If the embedding framework node was the replacing framework 

node, the embedding framework node inherited the back-and-forth links of the 

replaced framework node, and then the addition action was performed according to 

principles (1) to (3) based on the location of the embedding framework node within 

the replaced framework node. For example, the Algorithm 1 Init_ splitting_chain() of 

adding embedding framework node I to splitting framework node G were listed as 

follows (In the initial state, framework nodes P, G, and K were arranged in order): 

Algorithm 1 Init_ splitting_chain() 

1: struct STRUCT_GENERAL_FRAME_INTERFACE P, G, K, I, Lson1, Lson2;/// variables definitation; 

2: Input: Framework nodes P, G, K, I, Lson1, Lson2; 

3: Output: Framework net with the unified input entry pHead. 

4: Algorithm description: Init_ splitting_chain() 

5: ①  P.nID = 7; P.pPrev = NULL; P.pTNext = &G; P.pFNext = &G; P.pSon = NULL; P.pFathter = NULL; 

P.fun_execute_body = …; memset(&(P. sRefer_Table [0][0]),0, MAX_OR_CONDITIONS_NUM * 

MAX_AND_FUNCTION_NUM * sizeof(struct STRUCT_FUNTION_ENTRANCE)); … 

6: ②  G.nID = 8; G.pPrev = &A; G.pTNext = &K; G.pFNext = &K; G.pSon = NULL; G.pFathter = NULL; 

G.fun_execute_body.App = G_content_fun; memset(&(G. sRefer_Table [0][0]),0, MAX_OR_CONDITIONS_NUM * 

MAX_AND_FUNCTION_NUM * sizeof(struct STRUCT_FUNTION_ENTRANCE)); … 

7: ③ K.nID = 9; K.pPrev = &G; K.pTNext = &…; K.pFNext = &…; K.pSon = NULL; K.pFathter = NULL; 

K.fun_execute_body = …; memset(&(K. sRefer_Table [0][0]),0, MAX_OR_CONDITIONS_NUM * 

MAX_AND_FUNCTION_NUM * sizeof(struct STRUCT_FUNTION_ENTRANCE)); … 

8: ④ pHead = &P; 

The function body of framework node G was shown in the following Figure3: 

 

Figure 3. Function body of framework node G. 
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If the embedding location was between G_content_fun1 and G_content_fun2 

inside the framework node G, the function G_content_fun2_n should be defined firstly 

as follows: 

a) Embedding at starting location with Algorithm 2 splitting_chain_a() 

Algorithm 2 splitting_chain_a() 

1: Input: Framework nodes P, G, K, I, Lson1, Lson2; 

2: Output: Framework net with the unified input entry pHead. 

3: Algorithm description: splitting_chain_a() 

4: ① Init_ splitting_chain() /// Initialize the context parameters and function  parameters of the framework node chain pHead. 

5: ② Lson1  =  G; G. fun_execute_body = NULL; G. pSon = &I; 

6: ③ I.nID = 10; I. pPrev =  G. pPrev; I.pTNext = &Lson1; I.pFNext = &Lson1; I.pFathter = &G; 

7: ④  Lson1.nID = 11; Lson1.pPrev = &I; Lson1.pTNext = G.pTNext; Lson1.pFNext = G. pFNext; I.pFathter = &G; 

STRUCT_FUNTION_ENTRANCE)); … 

b) Embedding at ending location with Algorithm 3 splitting_chain_b() 

Algorithm 3 splitting_chain_b() 

1: Input: Framework nodes P, G, K, I, Lson1, Lson2; 

2: Output: Framework net with the unified input entry pHead. 

3: Algorithm description: splitting_chain_b() 

4: ① Init_ splitting_chain() /// Initialize the context parameters and function parameters of the framework node chain pHead. 

5: ② Lson1 = G; G. fun_execute_body = NULL; G. pSon = &Lson1; 

6: ③ Lson1.nID = 10; Lson1.pTNext = &I; Lson1.pFNext = &I; Lson1.pFathter = &G; 

7: ④ I.nID = 11; I. pPrev = &Lson1; I.pTNext = G.pTNext; I.pFNext = G.pFNext; I.pFathter = &G; 

c) Embedding at middle location with algorithm splitting_chain_c() 

If the embedding node I was contained in framework node G, firstly, I inherited 

the context links of G; Then, based on the location of I in the G function body, selected 

the principles (1) to (3) to perform the generation operations of G son nodes. 

G_content_fun2_n 

{ 

 If(!G_content_fun2()) return false; 

 …… 

 If(!G_content_funn()) return false; 

 return true; 

} 

Then, executed following Algorithm 4 splitting_chain_c(): 

Algorithm 4 splitting_chain_c() 

1: Input: Framework nodes P, G, K, I, Lson1, Lson2; 

2: Output: Framework net with the unified input entry pHead. 

3: Algorithm description: splitting_chain_c() 

4: ① Init_ splitting_chain() /// Initialize the context parameters and function parameters of the framework node chain pHead. 

5: ② Lson1 = G; G. fun_execute_body = NULL; G. pSon = &Lson1; 

6: ③Lson1.nID = 10; Lson1.pTNext = &I; Lson1.pFNext = &I; Lson1.pFathter = &G; Lson1. fun_execute_body App = 

G_content_fun1;  

7: ④ I.nID = 11; I. = &Lson1; I.pTNext = &Lson2; I.pFNext = &Lson2; I.pFathter = &G; 

8: ⑤ Lson2 = G; Lson1.nID = 12; Lson2.pPrev = &I; I.pFathter = &G; Lson2. fun_execute_body App = G_content_fun2_n; 

d) Replacement embedding 
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It was worth noting that in order to split the function body, all variables were 

stored in the form of global variables; Although only the processing operation order 

and workflow branch were illustrated here, loop and recursive embedding could be 

implemented by the combination of the above operation order and workflow branches, 

so would not be repeated here; Deleting framework node was the inverse process of 

adding nodes mentioned above, and would not be elaborated here due to space 

limitations. 

4. Integrated development environment 

Framework-oriented programming, the whole algorithm was a large decision tree 

composed of semantic framework nodes formed by the two-dimension basic logic 

condition table and function body. The core algorithm was the scheduling and 

execution process of framework nodes, and all semantic framework nodes worked 

together through the main scheduling algorithm and shared this core algorithm. 

Adapting to development requirements motivated the framework-oriented gradual 

updating system for complex intelligent algorithms, namely: (1) the explicit and clear 

logic hierarchy and source code modules, which were conducive to development and 

maintenance; (2) monitoring the execution status of each key function to improve the 

efficiency of system debugging; (3) The key function needed to have the ability to 

approximate and compare input data samples, in order to generalize the processing 

ability of the input. The system architecture of the integrated development 

environment was shown in the following Figure 4: 

 

Figure 4. System architecture. 

To simplify the illustration, this article took the mathematics symbol system 

equivalent derivation module as the example to introduce the implementation of the 

integrated development environment design requirements, including the main 

scheduling algorithm (refer to Algorithm 5), core processing algorithm (refer to 

Algorithm 6), workflow dynamic display algorithm (refer to Algorithm 7), execution 

status monitoring method, and generalization processing method. 

a) Main scheduling algorithm 
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Algorithm 5 main_ scheduling_algorithm() 

1: Input: global framework node web FUNWeb and header pointer pHead (global variable), global return variable bRet. 

2: Output: logic derivation steps, intermediate results, and final answer. 

3: Algorithm description: main_ scheduling_algorithm() 

4: ① FUNWeb ← initialize_framework_node_parameters(); /// Semantic initialization for current framework nodes; 

5: ② IF (pHead == NULL) RETURN TRUE; /// If the loop pointer was NULL, return success. 

6: ③ IF (pHead → fun_execute_body != NULL) bRet ← main_framework_node_algorithm(); /// Executed the function body 

of the current framework node recorded the return value to the Boolean variable bRet. 

7: ④ ELSE pHead = pHead → pSon; 

8: GOTO ②; 

9: ///If current framework node had son node, jump to ②; 

10: ⑤ IF (bRet) pHead = pHead→ pTNext;  

11: GOTO ②; 

12: ///If the current framework node was successfully executed, transferred the current framework node pointer along the “true” 

branch and jump to step ②; 

13: ⑥ ELSE pHead = pHead→ pFNext; 

14: GOTO ②; 

15: ///If the current framework node was not successfully executed, transferred the current framework node pointer along the 

“false” branch and jump to step ②. 

b) Core processing algorithm 

Algorithm 6 core_processing_algorithm() 

1: Input: Current frame pointer pHead (global variable). 

2: Output: The current framework returned the global variable bRet. 

3: Algorithm description: core_processing_algorithm() 

4: ① nHorLoopVar = 0;  NVerLoopVar=0; bSucc=TRUE;///Initialize loop control variables. 

5: ② IF(pHead → sRefer_Table[nHorLoopVar][ nVerLoopVar]. fun_execute_body == NULL) THEN 

6: ///If the entry in the current two-dimension basic logic condition table is NULL, the return value was determined based on 

the executed logic condition; 

7: IF ((nVerLoopVar == 0)&&( nHorLoopVar==0)) THEN RETURN bSucc; 

8: IF ((nVerLoopVar == 0)&&( nHorLoopVar!=0)) THEN RETURN bSucc; 

9: ELSE IF (nVerLoopVar !=  0) THEN RETURN bSucc; 

10: ELSE nHorLoopVar++; goto ②; 

11: ③  IF (pHead → sRefer_Table [nHorLoopVar] [ nVerLoopVar].bRet == pHead → sRefer_Table [nHorLoopVar] 

[ nVerLoopVar]. fun_execute_body ()) THEN 

12: bSucc = TRUE; 

13: nVerLoopVar++; 

14: GOTO ②; 

15: ④ ELSE bSucc = FALSE; nHorLoopVar++; nVerLoopVar = 0; goto ②; 

16: ///If the entries in the two-dimension basic logic condition table were correctly executed, then continued to determine the 

next basic logic condition; Otherwise, recorded the failure flag and continued to determine the next logical condition. 

c) Workflow dynamic display algorithm 

Algorithm 7 dynamic_inhibition_list_display() 

1: Input: global framework node web FUNWeb and the header pointer pHead (global variable) 

2: Output: framework node web calling sequence FUNList; 

3: Algorithm description: dynamic_inhibition_list_display() 

4: ① IF(pHead == NULL) return TRUE; /// If the current framework node pointer was NULL, return the successful execution 

flag; 

5: ② display_new_fun(pHead); /// Display information about the current framework node. 

6: ③ IF (pHead → pSon !=NULL) THEN 

7: pHead = pHead → pSon; 

8: GOTO ①; 



Pure and New Mathematics in AI 2024, 1(1), 9798. 
 

10 

Algorithm 7 (Continued) 

9: ///If the current framework node had son nodes, jump to ①; 

10: ④ IF (pHead → pTNext!=NULL) THEN  

11: pHead = pHead → pTNext;  

12: GOTO ①; 

13: ///Transferred the current framework node pointer along the successful branch and jump to step ①; 

14: ⑤ IF (pHead → pFNext!=NULL) THEN  

15: pHead = pHead → pFNext; 

16: GOTO ①; 

///Transferred the current framework node pointer along the failure branch and jump to step ①. 

d) Execution status monitoring method 

The execution status monitoring algorithm execution_status_record_algorithm() 

mainly monitored the execution status of the two-dimension basic logic condition table. 

It was worth noting that when the source program was modified, the original 

framework node logic condition result data should be guaranteed not to change, that 

was, the input and output data, and corresponding relationships were verified to be 

correct; However, the operation status of the two-dimension basic logic condition table 

might change, and it was necessary to delete or update the relevant status data of the 

framework nodes involved, and restarted the accumulation of operation status data. 

The execution status monitoring algorithm was based on the main scheduling 

algorithm main_scheduling_algorithm() and the core processing algorithm 

core_processing_algorithm(). When the system called each framework node, it 

recorded the relevant input and output information of the system when executing the 

two-dimension basic logic condition table. That was, when the algorithm executed 

step ③ in core_processing_algorithm(), it could add the statements for recording the 

input data and return information of each basic logic condition as following (refer to 

Algorithm 8): 

Algorithm 8 execution_status_record_algorithm () 

1: Input: Current frame pointer pHead (global variable). 

2: Output: The current framework returned the global variable bRet. 

3: Algorithm description: execution_status_record_algorithm () 

4: ① nHorLoopVar = 0; NVerLoopVar=0; bSucc=TRUE;///Initialize loop control variables. 

5: ② IF(pHead → sRefer_Table[nHorLoopVar][ nVerLoopVar]. fun_execute_body == NULL) THEN 

6: ///If the entry in the current two-dimension basic logic condition table is NULL, the return value was determined based on 

the executed logic condition; 

7: IF ((nVerLoopVar == 0)&&( nHorLoopVar==0)) THEN RETURN bSucc; 

8: IF ((nVerLoopVar == 0)&&( nHorLoopVar!=0)) THEN RETURN bSucc; 

9: ELSE IF (nVerLoopVar != 0) THEN RETURN bSucc; 

10: ELSE nHorLoopVar++;  

11: goto ②; 

12: ③ pHead → Record_Input_Data(); /// Added execution steps for recording input data; 

13: ④  IF (pHead → sRefer_Table[nHorLoopVar] [ nVerLoopVar].bRet == pHead → sRefer_Table[nHorLoopVar] 

[ nVerLoopVar]. fun_execute_body ()) THEN 

14: pHead → Record_Output_Data(); /// Recorded the return information of each basic logical condition (AND operation 

element); 

15: bSucc = TRUE; 

16: nVerLoopVar++; 

17: goto ②; 

18: ⑤ pHead → Record_Output_Data(); /// Recorded the return information of each logic condition (OR operation element); 
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Algorithm 8 (Continued) 

19: ⑥ bSucc = FALSE; nHorLoopVar++; nVerLoopVar = 0; goto ②; ///If the entries in the two-dimension basic logic condition 

table were correctly executed, then continued to determine the next basic logic condition; Otherwise, recorded the failure 

flag and continued to determine the next logical condition. 

e) Generalization processing capability method 

The execution status monitoring algorithm execution_status_record_algorithm() 

in the previous section recorded the input/output data which became sample data 

correspondence of each basic logic condition (feature function), and the data could be 

used as the basis for improving the system’s generalization processing ability for the 

inputs. Analyzed the features of sample data, defined the semantic distance between 

sample data or between sample data and input data based on these features, and 

determined whether to directly output the processing result corresponding to the 

sample data based on the semantic distance (calculated by the output of each feature 

function in the two-dimension basic logic condition table). In this way, the sample 

data could form the “anchor point” of the input space, and new inputs that 

approximated to the samples could directly output the samples results. The input 

approximation calculation based on semantic distance achieved the input processing 

ability coverage to the whole problem space. 

5. Application example 

5.1. Problem description 

“An uncovered cuboid basin is made of the same thin sheet (C1), its volume is a 

constant value (C2). In order to minimize the use of the sheet as much as possible (C3), 

how much should be the length, width, and height of the basin (C4)?” 

a) Semantic annotation 

C1 ///Semantic framework identifier 

Normal ///Semantic framework type 

16 ///Quantity of the semantic framework entries 

c An ///”c” represented a constant, and “An” represented the constant value. 

t uncovered ///”t” represented other types of vocabulary.  

s cuboid||** ///”s” represented the noun. 

s basin||** /// “**” represented that it could be replaced by other nouns. 

v is made of /// “v” represented the verb. 

t the  

t same 

t thin 

s sheet||** 

m Uncovered::Basin::Volume///”m” represented the intermediate data element 

variable, “Uncovered::Basin::Volume” was the local variable name. 

m Uncovered::Basin::Surface~Area~ 

m Uncovered::Basin::Length 

m Uncovered::Basin::Width 

m Uncovered::Basin::Height 
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f uncovered /// “f” represented the focal features transmitted across semantic 

frameworks. 

f basin 

C2 ///Semantic framework identifier 

Normal ///Semantic framework type 

9 /// Quantity of the semantic framework entries 

F uncovered,basin, /// “F” paired with “f”, to receive the focal feature string 

transmitted, separated by symbols “,”, with the same quantity of features transmitted 

by “f”. 

t its///”t” represented other types of vocabulary. 

s volume||**//”s” represented the noun, and “**” represented that it could be 

replaced by other nouns. 

v is ///”v” represented the verb. 

c a 

s constant 

s value 

- Uncovered::Basin::Volume //”-” referred to the variable mentioned earlier that 

contained the semantic feature “Uncovered::Basin::Volume”. If it failed, the 

corresponding variable should be generated in the semantic scene mentioned earlier. 

D Uncovered::Basin::Volume ///”D” represented the semantic feature 

“Uncovered::Basin::Volume” referred to the variable whose value was a constant. 

C3///Semantic framework identifier 

Normal///Semantic framework type 

11 ///Quantity of semantic framework entries 

F0 uncovered,basin, ///”F0” represented the transfer of focal features across 

semantic frameworks, not only with the same quantity of features defined by “f”, but 

also with the same semantic string. 

t In order to||To~ ///”t” represented other types of vocabulary. 

v minimize ///”v” represented the verb. 

t the 

s use 

t of 

s sheet||** 

t as much as 

t possible 

Uncovered::Basin::Surface~Area~ ///”-” referred to the variable that contained 

the semantic feature “Uncovered::Basin::Surface~Area~” mentioned earlier. If it 

failed, the corresponding semantic variable should be generated in the semantic scene 

mentioned earlier. 

m Uncovered::Basin::Surface~Area~::MINVALUE ///”m” represented the 

intermediate data element variable, where “Uncovered::Basin::Surface~Area~” 

referred to the local variable name, and “MINVALUE” represented the property 

constraint (minimum value) of the variable with the semantic 

“Uncovered::Basin::Surface~Area~”. 

C4///Semantic framework identifier 

Normal///Semantic framework type 
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16///Number of semantic framework entries 

F uncovered,basin, /// “F” paired with “f”, to receive the focal feature string 

transmitted, separated by symbols “,”, with the same quantity of features transmitted 

by “f”. 

n Uncovered::Basin::Length///”n” represented the data element variable, where 

matching words such as “how much” specifically referred to the question variable. 

“Uncovered::Basin::Length” was the local semantic variable name. 

v should ///”v” represented the verb. 

v be 

t the ///”t” represented other types of vocabulary. 

s length 

y , ///”y” represented the punctuation. 

s width 

y , 

t and 

s height 

t of 

t the 

s basin||** ///”s” represented the noun, and “**” represented it could be 

replaced by other nouns. 

w Uncovered::Basin::Width///”w” represented the question data element 

variable, “Uncovered::Basin::Width” was the local semantic variable name. 

w Uncovered::Basin::Height 

b) Data element variables 

After preprocessing (format adjustment, unit base unification, symbol system 

unification, named entity recognition, etc.), the original text of the problem was 

subjected to sentence segmentation, word segmentation, and part of speech 

recognition. Then, the whole sentence, fragment, and clause were matched with the 

pre-annotated semantic framework base to extract the local knowledge, information, 

and data explicitly represented by the matched semantic framework. For automatic 

resolving of mathematical application problems, the local scene information 

(identification string) of the semantic framework was analyzed, and the global scene 

information of each analysis unit was formed through semantic inheritance and 

overloading. Next, filtered and merged with local semantic information (such as local 

variable names, calculation formulas, logic relationships, and semantic features) 

through semantic inheritance and overloading techniques, combined with overloading 

and supplementation of commonsense knowledge, and formed the global semantic set 

of analysis units, such as data element variables (refer to Table 1) and dynamic 

semantic circles. 

Table 1. Data element variables. 

No Location Attribute Name Value 

1 30 question variable Uncovered::Basin::Length unknown 

2 38 middle variable Uncovered::Basin::Volume unknown 

3 39 middle variable Uncovered::Basin::Surface~Area~ unknown 
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Table 1. (Continued). 

No Location Attribute Name Value 

4 40 question variable Uncovered::Basin::Width unknown 

5 41 question variable Uncovered::Basin::Height unknown 

6 44 constant constraint variable Uncovered::Basin::Volume unknown 

7 48 minimum value constraint variable Uncovered::Basin::Surface~Area~ unknown 

c) Dynamic semantic circle 

The dynamic semantic circle (including explicit representation of commonsense 

knowledge) related to the above example included the following two formulas and 

their symbolic representations: 

FL33///formula Identification ID 

Cuboid, Uncovered, ///contextual features 

Surface~Area~; Length; Width; Depth,Height,Thickness,Altitude,; /// data 

element variable table 

Swimming~Pool~::Surface~Area~; Swimming~Pool~::Length; 

Swimming~Pool~::Width; Swimming~Pool~::Height /// formula variable table 

Swimming~Pool~::Surface~Area~ = (Swimming~Pool~::Length × 

Swimming~Pool~::Width) + (Swimming~Pool~::Length × Swimming~Pool~::Height 

× 2) + (Swimming~Pool~::Width × Swimming~Pool~::Height × 2) ///formula 

semantic representation 

Surface~Area~, Length, Width, Height,; S, x, y, z,; ///variable semantic symbol 

correspondence table 

S = (1,1) × (3,+(1,1) x (1) y (1) z (0),+(1,2) x (1) y (0) z (1),+(1,2) x (0) y (1) z 

(1),)/1 /// symbolized representation of the formula 

FL23///formula Identification ID 

Cuboid, ///context features 

Volume; Length; Width; Depth,Height,Thickness,Altitude,; /// data Element 

Variable Table 

Cuboid~Volume~; Cuboid~Length~; Cuboid~Width~; Cuboid~Height~ /// 

formula variable table 

Cuboid~Volume~ =  Cuboid~Length~ × Cuboid~Width~ × Cuboid~Height~ 

///formula semantic representation 

Cuboid~Volume~, Cuboid~Length~, Cuboid~Width~, Cuboid~Height~,; V, x, y, 

z,; ///variable semantic symbol correspondence table 

V = (1,1) × (1,+(1,1) x (1) y (1) z (1),)/1 ///symbolized representation of the 

formula 

d) Thinking mechanism 

Based on the information provided by the data element variable table and 

dynamic semantic circle, effective computing and derivations could be performed to 

resolve the problem. It should not only include general derivation, equation resolving, 

enumeration resolving, feature constraint derivation, and iterative exploring, but also 

include methods such as unequal relationship derivation and symbol system equivalent 

derivation. 
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5.2. Static logic structure 

The development requirements for intelligent systems should become clear 

through the accumulation of experience in instance processing gradually. Clear static 

logic structure and dynamic workflow during program development were crucial for 

system upgrade and maintenance. The function unit framework adopted in this article 

was used to achieve explicit representation of software workflow between function 

nodes, which was the important component of software macro logic visualization. In 

static state (non-running state), the software logic structure could be represented by 

10-tuple <ID, FR, SN, TY, BF, BT, INIT, BODY, RETN, NOTE>, where: ID 

represented the current function node identifier, FR represented the parent node, SN 

represented the son node, TY represented the current node type, BF represented the 

successor node when the current function returned “false”, BT represented the 

successor node when the current function returned “true”, INIT was the variable and 

function initialization function before the current function node was executed, BODY 

represented the function body of the current node, RETN represented the parameter 

conversion function after the function node was executed, and NOTE was the function 

description. For example, there could be the following function units (refer to Table 

2): 

Table 2. Function units. 

ID FR SN TY BF BT INIT BODY RETN NOTE 

1 NULL 2 general NULL NULL NULL 
diff_symbol_de

duce_module 
NULL 

Solving module of partial differential 

equations 

2 1 NULL general 3 3 NULL diff_vars_init NULL 
Initialization of variables in partial 

differential equation systems 

3 1 NULL general 4 4 NULL 
diff_formulas_i

nit 
NULL 

Initialization of partial differential 

equation system 

4 1 6 general 5 5 
display_equat

ions_init_0 

display_equatio

ns 

display_equat

ions_retn_0 

Print partial differential equation 

system 

6 4 NULL general 7 7 NULL 
dispaly_equatio

ns_num 
NULL Print the number of equations 

7 4 NULL general 5 5 NULL 
display_loop_m

ulti_equations 
NULL Print equation sequentially 

5 1 11 general NULL NULL NULL 
diff_formulas_r

esolve 
NULL 

Resolving systems of partial 

differential equations 

… … … … … … … … … … 

17 13 20 
recursiv

e 
18 19 NULL 

resolving_equat

ions 
NULL Resolving equations 

18 5 NULL general NULL NULL NULL 
diff_free_deduc

e_chain_false 
NULL 

Free the storage space of the partial 

differential equation solving process 

chain and return false 

… … … … … … … … … … 

74 73 NULL 
Loop(h

ead) 
83 75 

polynomial_v

ar_init 

is_loop_each_e

quation_LPBN 
NULL Loop for each equatiom (head node) 

75 73 NULL general 80 76 NULL 
is_nExponent_

0 
NULL 

The polynomial in the equation 

numerator has no variables to be 

eliminated 
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Table 2. (Continued). 

ID FR SN TY BF BT INIT BODY RETN NOTE 

76 73 NULL general 78 77 NULL 

is_equation_de

nominator 

_constants 

NULL 
The denominator in the equation is a 

constant 

77 73 NULL general 84 84 NULL 

constants_multi

application_con

stants 

NULL Multiplying constants in equation 

78 73 NULL general 79 79 NULL 

polynomial_mu

ltiply_init_deno

minator  

NULL 
Polynomial multiplication denominator 

variable transformation initialize 

79 73 NULL general 84 84 NULL 
polynomial_mu

ltiply 
NULL 

Polynomial multiplication denominator 

variable transforms 

80 73 NULL general 18 81 NULL 
is_nExponent_

1 
NULL 

The exponent of the variable to be 

eliminated in the numerator 

polynomial of the equation is 1 

81 73 NULL general 82 82 NULL 

assign_eleminat

ion_var_expone

nt_zero 

NULL 
The exponent of the variable to be 

eliminated in the equation is assigned 0 

82 73 NULL general 79 79 NULL 

polynomial_mu

ltiply_init_num

erator 

NULL 
Polynomial multiplication numerator 

variable transforms 

83 73 NULL general 18 71 NULL result_return NULL Return of variable elimination function 

84 73 NULL 
Loop(ta

il) 
74 74 NULL 

loop_each_equ

ation_step_LPT

L 

NULL 
Loop tail node of the variable 

elimination function 

… … … … … … … … … … 

The types of function unit nodes listed in Table 2 included general, recursive, 

loop (head), and loop (tail). link types included parent, son, return false, and return 

true links. The execution process of the function units in the above example was shown 

in Figures 5–7: 

 

Figure 5. Son-function program structure. 

Note: The untagged links represented the upper node returns the same value of “true” or “false” as the 

lower node (BT and BF links were the same). The original BODY program contents for function units 

with son nodes were not actually executed. For example, the execution sequence of Figure 5 was: 

1.INIT → 2.INIT → 2.BODY → 2.RETN → 3.INIT → 3.BODY → 3.RETN → 4.INIT → 6.INIT → 

6.BODY → 6.RETN → 7.INIT → 7.BODY → 7.RETN → 4.RETN → 5.INIT → 5.BODY → 5.RETN → 

1.RETN… 
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Figure 6. Recursive program structure. 

Note: The original BODY program content of the recursive function unit with son nodes was not 

actually executed. For example, the node 17 in Figure 6, firstly executed its node initialization function 

17.INIT, then recursively executed all its son nodes, subsequently executed the result variable transfer 

function 17.RETN of the recursive node, finally executed the subsequent workflow along 17.BT or 

17.BF based on the return value “true” or “false”. 

 

Figure 7. Loop program structure. 

Note: Unlabeled link represented whether the previous node return “true” or “false” value, it should 

direct to the same subsequent node (BT and BF links are the same). Node 74 was the head node of the 

loop, and node 84 was the tail node of the loop. 

5.3. Dynamic execution workflow 

5.3.1. Son-nodes execution workflow 

Table 3. Son-nodes execution workflow. 

ID TY INIT BODY RETN 

1 general NULL diff_symbol_deduce_module NULL 

2 general NULL display_equations_init_0 NULL 

3 general NULL diff_formulas_init NULL 

4 general display_equations_init_0 display_equations display_equations_retn_0 

6 general NULL dispaly_equations_num NULL 

7 general NULL display_loop_multi_equations NULL 

5 general NULL diff_formulas_resolve NULL 

… … … … … 
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As shown above, the son-nodes execution workflow (refer to Table 3) in 

Figure 5 was: 1→2→3→4→6→7→5… 

5.3.2. Recursive nodes execution workflow 

Table 4. Recursive nodes execution workflow. 

ID TY INIT BODY RETN 

… … … … … 

17 Recursive NULL resolving_equations NULL 

20 General NULL diff_resolving_equation_num_codition_1 NULL 

… … … … … 

17 Recursive NULL resolving_equations NULL 

20 General NULL diff_resolving_equation_num_codition_1 NULL 

… … … … … 

17 Recursive NULL resolving_equations NULL 

20 General NULL diff_resolving_equation_num_codition_1 NULL 

… … … … … 

17 Recursive NULL resolving_equations NULL 

20 General NULL diff_resolving_equation_num_codition_1 NULL 

21 General NULL diff_resolving_equation_num_body_1 NULL 

23 General display_equations_init_n display_equations NULL 

24 General NULL last_equal_exchange NULL 

58 General NULL is_diff_single_var_equation NULL 

59 General NULL single_var_equation_exchange NULL 

25 General display_equations_init_n display_equations NULL 

19 General NULL diff_free_deduce_chain_true NULL 

… … … … … 

As shown above, the actual recursive nodes execution workflow (refer to Table 

4) in Figure 6 was... 17→20→... 17→20→... 17→20 ... 

17→20→21→23→24→58→59→25→19... Among them, the first three sequence 

segments “17→20→…” were repeatedly executed three times, and the fourth time 

executed a different recursive process workflow from the previous three times. 

5.3.3. Loop nodes execution workflow 

Table 5. Loop nodes execution workflow. 

ID TY INIT BODY RETN 

… … … … … 

74 Loop(head) polynomial_var_init is_loop_each_equation_LPBN NULL 

75 General NULL is_nExponent_0 NULL 

76 General NULL is_equation_fenmu_constants NULL 

78 General NULL polynomial_chengfa_init_fenmu NULL 

79 General NULL polynomial_chengfa NULL 

84 Loop(tail) NULL loop_each_equation_step_LPTL NULL 
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Table 5. (Continued). 

ID TY INIT BODY RETN 

74 Loop(head) polynomial_var_init is_loop_each_equation_LPBN NULL 

75 General NULL is_nExponent_0 NULL 

76 General NULL is_equation_fenmu_constants NULL 

78 General NULL polynomial_chengfa_init_fenmu NULL 

79 General NULL polynomial_chengfa NULL 

84 Loop(tail) NULL loop_each_equation_step_LPTL NULL 

74 Loop(head) polynomial_var_init is_loop_each_equation_LPBN NULL 

75 General NULL is_nExponent_0 NULL 

80 General NULL is_nExponent_1 NULL 

81 General NULL assign_elemination_var_index_zero NULL 

82 General NULL polynomial_chengfa_init_fenzi NULL 

79 General NULL polynomial_chengfa NULL 

84 Loop(tail) NULL loop_each_equation_step_LPTL NULL 

74 Loop(head) polynomial_var_init is_loop_each_equation_LPBN NULL 

83 General NULL result_return NULL 

… … … … … 

The loop usually quit from the “loop (head)” node, and the above loop nodes 

workflow (refer to Table 5) executed three iterations before leaving through node 83. 

Comparing the static logic structure and dynamic execution workflow of the program, 

it could be seen that the path 76→77→84 was not covered in this dynamic execution 

workflow (see Figure 7), which suggested that the system had the ability to detect the 

potential untested paths in the software. 

5.4. Equivalent derivation 

a) After semantic framework matching and global semantic analysis, it was 

determined that the calculation relationships contained in the original text, which 

included the formulas for uncovered basin volume and surface area. After unifying the 

variable symbol system, the following formulas could be obtained: 

Uncovered::Basin::Volume a = 1.000000 × (1.0000000 x (1.000000) y (1.000000) 

z (1.000000)/1.000000) 

Uncovered::Basin::Surface~Area~ S = 1.000000 × ((1.0000000 x (1.000000) y 

(1.000000) z (0.000000) + 2000000 x (1.000000) y (0.000000) z (1.000000) + 

2000000 x (0.000000) y (1.000000) z (1.000000))/1.000000) 

b) By introducing the Lagrange multiplier w, the equivalent combination of 

volume constant constraints was incorporated into the representation of the surface 

area computing function, resulting in the following constrained uncovered basin 

volume computing function:  

Constrained::Uncovered::Basin::Surface~Area~ S’ = 1.000000 × ((1.0000000 x 

(1.000000) y (1.000000) z (0.000000) w (0.000000) + 2.0000000 x (1.000000) y 

(0.000000) z (1.000000) w (0.000000) + 2.0000000 x (0.000000) y (1.000000) z 

(1.000000) w (0.000000) + 1.0000000 x (1.000000) y (1.000000) z (1.000000) w 
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(1.000000) − 1.0000000ax (0.000000) y (0.000000) z (0.000000) w 

(1.000000))/1.000000) 

c) Derived the four variables of the constrained uncovered basin surface area 

computing function S’, then could obtain a partial differential equation system 

consisting of four equations: 

0 = 1.000000 × (1.000000 x (0.000000) y (1.000000) z (0.000000) w 

(0.000000) + 2.000000 x (0.000000) y (0.000000) z (1.000000) w (0.000000) + 

1.000000 x (0.000000) y (1.000000) z (1.000000) w (1.000000)) 

0 = 1.000000 × (1.000000 x (1.000000) y (0.000000) z (0.000000) w 

(0.000000) + 2.000000 x (0.000000) y (0.000000) z (1.000000) w (0.000000) + 

1.000000 x (1.000000) y (0.000000) z (1.000000) w (1.000000)) 

0 = 1.000000 × (2.000000 x (1.000000) y (0.000000) z (0.000000) w 

(0.000000) + 2.000000 x (0.000000) y (1.000000) z (0.000000) w (0.000000) + 

1.000000 x (1.000000) y (1.000000) z (0.000000) w (1.000000)) 

0 = 1.000000 × (1.000000 x (1.000000) y (1.000000) z (1.000000) w 

(0.000000) − 1.000000ax (0.000000) y (0.000000) z (0.000000) w (0.000000)) 

d) After selecting the first elimination variable w and converting the 

representation, it could be represented by the following function: 

w = 1.000000 × (1.000000 x (0.000000) y (1.000000) z (0.000000) 

w (0.000000) + 2.000000 x (0.000000) y (0.000000) z (1.000000) w (0.000000))

 / −1.000000 x (0.000000) y (1.000000) z (1.000000) w (0.000000) 

e) By substituting the elimination element, the equation system consisting of the 

following three equations could be obtained 

0 = 1.000000 × (−2.000000 x (0.000000) y (1.000000) z (2.000000) w 

(0.000000) + 2.000000 x (1.000000) y (0.000000) z (2.000000) w (0.000000)) 

0 = 1.000000 × (−2.000000 x (0.000000) y (2.000000) z (1.000000) w 

(0.000000) + 1.000000 x (1.000000) y (2.000000) z (0.000000) w (0.000000)) 

0 = 1.000000 × (1.000000 x (1.000000) y (1.000000) z (1.000000) w 

(0.000000) − 1.000000ax (0.000000) y (0.000000) z (0.000000) w (0.000000)) 

f) After selecting the second elimination variable x and converting the 

representation, it can be represented by the following function: 

x = 1.000000 × (1.000000 x (0.000000) y (1.000000) z (0.000000) w 

(0.000000)) 

g) By substituting the elimination element, we could obtain the equation system 

consisting of the following two equations 

0 = 1.000000 × (−2.000000 x (0.000000) y (2.000000) z (1.000000) w 

(0.000000) + 1.000000 x (0.000000) y (3.000000) z (0.000000) w (0.000000)) 

0 = 1.000000 × (1.000000 x (0.000000) y (2.000000) z (1.000000) w 

(0.000000) − 1.000000ax (0.000000) y (0.000000) z (0.000000) w (0.000000)) 

h) After selecting the third elimination variable z and converting the 

representation, it could be represented by the following function: 

z = 1.000000 × (0.500000 x (0.000000) y (1.000000) z (0.000000) w 

(0.000000)) 

i) By substituting the elimination element, the following equation could be 

obtained: 
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0 = 1.000000 ×(0.500000 x (0.000000) y (3.000000) z (0.000000) w 

(0.000000) − 1.000000ax (0.000000) y (0.000000) z (0.000000) w (0.000000)) 

j) Resolving the cubic equation yielded the variable y as: 

y = 1.000000 × (cbrt(2.000000a) x (0.000000) y (0.000000) z (0.000000) 

w (0.000000)) 

k) By reversing the previous representation of the elimination variable function, 

the variables z and x could be resolved as follows: 

z = 1.000000 × (0.500000cbrt(2.000000a) x (0.000000) y (0.000000) z 

(0.000000) w (0.000000)) 

x = 1.000000 × (cbrt(2.000000a) x (0.000000) y (0.000000) z (0.000000) 

w (0.000000)) 

Among them, cbrt() was the cube root function identifier. 

6. Conclusion 

The equivalent derivation in symbol systems was an important part of realizing 

machine self-scientific exploration and knowledge discovery, involving semantic 

understanding of problem scenes, machine representation conversion of mathematic 

symbols, large-scale language pattern matching, development and maintenance of 

complex logic algorithms, and core key technologies for machine thinking modes 

implementation. It required resolving practical engineering problems such as 

extracting commonsense knowledge from massive information, resolving semantic 

conflicts, global semantic accumulation and condensation, formal representation and 

self-improvement of the symbol systems, hypothesis proposing, and verifying. This 

article proposed the engineering implementation method based on framework chain 

visualization programming to solve the non-linear increasing problem complexity in 

software caused by progressive processing logic accumulation. Using advanced 

mathematical application problems as examples, the implementation process of 

equivalent transformation for partial differential equations was introduced, which had 

important implications for the implementation of equivalent derivation engines in 

mathematical symbolic systems. In the future, on the one hand, we would 

comprehensively implement the machine representation of the mathematics symbol 

systems and the derivation rules of equivalence relationships; on the other hand, we 

would continue to explore the self-generation of symbol systems, discover new laws 

through machine implementation, and try to implement deep machine thinking. 
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Appendix 

(a) Data structure definitions 

struct STRUCT_FUNTION_ENTRANCE 

{ 

Boolean (*App)();  

///Function pointer, the function parameters were the ID of the basic logic condition table and the pointers array 

pointing to the I/O data pool. The logic meanings of the function parameters were initialized in the basic logic condition 

table. 

Char str_annotation [MAX_ATTRIBUTES_LIST_LEN]; /// The text string describing what the current function 

could do. 

Boolean bRet;///Function returned the Boolean value. 

Boolean bSEL;///Function used the Boolean value as the flag, where “true” indicated that this function is 

determined as the basic logic condition, and “false” indicated that this function was ignored. 

}; 

struct STRUCT_GENERAL_FRAME_INTERFACE 

{ 

Long nID;/// Current framework node identifier ID; 

Boolean bInit=false;/// “false” for the first execution of the loop node, “true” for all others. 

Int nType;///Divided into recursive nodes, loop beginning nodes, loop ending nodes, general nodes, etc; 

struct STRUCT_GENERAL_FRAME_INTERFACE * pPrev;///Pointed to the previous framework node. 

struct STRUCT_GENERAL_FRAME_INTERFACE * pTNext;///Pointed to the next framework node when the 

function returned “true”. 

struct STRUCT_GENERAL_FRAME_INTERFACE * pFNext;///Pointed to the next framework node when the 

function returned “fslse”. 

struct STRUCT_GENERAL_FRAME_INTERFACE * pSon;///Pointed to the first son framework node. 

struct STRUCT_GENERAL_FRAME_INTERFACE * pFather;///Pointed to the parent framework node. 

struct STRUCT_FUNTION_ENTRANCE * fun_init;/// Initialized the logic branch variables. 

struct STRUCT-FUNTION-INTRANCE * fun_execute_body;///Logic branch function body. 

struct STRUCT-FUNTION-INTRANCE * fun_rtn;///Logic branch function body returned values passing function. 

struct STRUCT_FUNTION_ENTRANCE *sRefer_Table [MAX_OR_CONDITIONS_NUM] 

[MAX_AND_FUNCTION_NUM];  

///Two-dimension basic logic condition table 

Boolean (*is_result_ validated) ();  

///Function pointer for result validation. 

Boolean (*Record_Input_Data) ();  

///Function pointer for input data recording function. 

Boolean (*Record_Output_Data) ();  

///Function pointer for recording output results. 

Boolean (*Record_Output_Format_Return) ();  

///Function pointer for unified output format function. 

}; 

(b) Variables definitions 

Each framework node could be represented by the struct STRUCT_GENERAL_FRAME_INTERFACE, with the 

following node variable declaration: 

struct STRUCT_GENERAL_FRAME_INTERFACE A, B, C, D, E, F; 
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struct STRUCT_GENERAL_FRAME_INTERFACE * pHead; 

The initialization algorithm Init_chain_a() of the framework-oriented programming in Figure 5 was represented 

as follows (the sRefer_Table pointer was NULL, indicating the unconditional execution of the function pointed by 

fun_execute_body): 

(c) Algorithm A1 Init_chain_a() 

Algorithm A1 Init_chain_a() 

1: Input: Framework nodes A, B, C, D, E, F; 

2: Output: Framework net with the unified input entry pHead. 

3: Algorithm description: Init_chain_a() 

4: ① A.nID = 1; A.pPrev = NULL; A.pTNext = &B; A.pFNext = &B; A.pSon = NULL; A.pFathter = NULL; 

A.fun_execute_body = …; memset(&(A. sRefer_Table [0][0]),0, MAX_OR_CONDITIONS_NUM * 

MAX_AND_FUNCTION_NUM * sizeof(struct STRUCT_FUNTION_ENTRANCE)); … /// Initialize the context parameters 

and function parameters of the framework node A. 

5: ② B.nID = 2; B.pPrev = &A; B.pTNext = &C; B.pFNext = &C; B.pSon = NULL; B.pFathter = NULL; 

B.fun_execute_body = …; memset(&(B. sRefer_Table [0][0]),0, MAX_OR_CONDITIONS_NUM * 

MAX_AND_FUNCTION_NUM * sizeof(struct STRUCT_FUNTION_ENTRANCE)); …/// Initialize the context parameters 

and function parameters of the framework node B. 

6: ③ C.nID = 3; C.pPrev = &B; C.pTNext = &D; C.pFNext = &D; C.pSon = NULL; C.pFathter = NULL; 

C.fun_execute_body = …; memset(&(C. sRefer_Table [0][0]),0, MAX_OR_CONDITIONS_NUM * 

MAX_AND_FUNCTION_NUM * sizeof(struct STRUCT_FUNTION_ENTRANCE)); … /// Initialize the context parameters 

and function parameters of the framework node C. 

7: ④D.nID = 4; D.pPrev = &C; D.pTNext = NULL; D.pFNext = NULL; D.pSon = NULL; D.pFathter = NULL; 

D.fun_execute_body = …; memset(&(D. sRefer_Table [0][0]),0, MAX_OR_CONDITIONS_NUM * 

MAX_AND_FUNCTION_NUM * sizeof(struct STRUCT_FUNTION_ENTRANCE)); … /// Initialize the context parameters 

and function parameters of the framework node D. 

8: ⑤ pHead = &A; 

(d) Algorithm add_chain_b() 

The Algorithm A2 add_chain_b() of the framework-oriented programming process in Figure 6 could be listed as 

follows: 

Algorithm A2 add_chain_b() 

1: Input: Framework nodes A, B, C, D, E; 

2: Output: Framework net with the unified input entry pHead. 

3: Algorithm description: add_chain_b() 

4: ① Init_chain_a() /// Initialize the context parameters and function  parameters of the framework node chain pHead. 

5: ② E. sRefer_Table = B_E_sRefer;///”B_E_sRefer” was the prerequisite table for the function framework node B and E. 

6: ③ B. pTNext =&C; B. pFNext =&E;///After framework node B was executed, turned to framework node C when returned 

true, turned to framework node E when returned false. 

7: ④ E.nID =5; E.pPrev=&B; E.pTNext=&C; E.pFNext=&C; E.pSon=NULL; E.pFathter=NULL; E.fun_execute_body=…; 

memset(&(E. sRefer_Table [0][0]),0, MAX_OR_CONDITIONS_NUM * MAX_AND_FUNCTION_NUM * sizeof(struct 

STRUCT_FUNTION_ENTRANCE));… /// After adding the new framework node E, it unconditionally switched to 

framework node C (similar to the “else” statement of conditional statements). 

(e) Algorithm add_chain_c() 

The Algorithm A3 add_chain_c() of the framework-oriented programming process in Figure 7 could be listed as 

follows: 

Algorithm A3 add_chain_b() 

1: Input: Framework nodes A, B, C, D, F; 

2: Output: Framework net with the unified input entry pHead. 

3: Algorithm description: add_chain_b() 

4: ① Init_chain_a() /// Initialize the context parameters and function parameters of the framework node chain pHead. 



Pure and New Mathematics in AI 2024, 1(1), 9798. 
 

26 

Algorithm A3 (Continued) 

5: ② B. PTNext = &F; B. pFNext = &F;///After framework node B was executed, turned to framework node E. 

6: ③ F. NID = 6; F.pPrev = &B; F.pTNext = &C; F.pFNext = &C; F.pSon = NULL; F.pFooter = NULL; F. fun_execute_body 

= ...; F. sRefer_Table = B_F_sRefer;///”B_F_sRefer” was the prerequisite table for the framework node F; If the default 

prerequisite was “false”, the function body fun_execute_body should not be executed and should directly switch to the 

framework node C. 

 


