
Pure and New Mathematics in AI 2024, 1(1), 9798.

https://doi.org/10.24294/pnmai9798

1

Article

Equivalent derivation machine implementation in advanced mathematics

symbolic systems

Ping Zhu1,2,*, Pohua Lv1, Weiming Zou3, Xuetao Jiang1, Jin Shi3, Yang Zhang4, Yirong Ma3

1 Beijing Broad Network & Information Company Limited, Beijing 101111, China
2 Tellhow Institute of Smart City, Beijing 100176, China
3 Beijing Tellhow Intelligent Engineering Company Limited, Beijing 100176, China
4 Beijing Yizhuang Smart City Institute Group Company Limited, Beijing 100176, China

* Corresponding author: Ping Zhu, 1401626437@qq.com

Abstract: In order to give machines, the interpretable thinking ability of mathematicians, the

automatic derivation engine for advanced mathematics symbolic systems was explored to

develop, which could update machines from the shallow thinking ability, such as natural

language understanding and elementary mathematical numerical computation, to deep thinking,

such as equivalent derivation for symbolic systems. This article proposed the complex logic

algorithm design and development method with the frameworks as the core components.

Starting with problem-resolving examples, the initial idea, basic data structure, and

programming features of this new method were introduced in detail. However, this article

proposed the integrated development environment for this method, as well as the main

scheduling algorithm, core process algorithm, workflow dynamic display algorithm, execution

status monitoring algorithm, generalization processing method, etc. The new method could be

applicable to intelligent system development tasks that needed to gradually accumulate

instance experience and had practical significance for the complex logic algorithms

development, visualization software design, reduction complexity for software test and

maintenance, and software reliability improvement. This article used the application problem

solved by partial differential equations as an example to explain this method from the whole

process, such as lexical analysis, semantic analysis, symbolic system establishment, and

equivalent derivation to result validation, demonstrating the new dynamism and potential for

logic derivation-based classical artificial intelligence methods.

Keywords: logic derivation; semantic analysis; symbolic system; equivalent derivation;

integrated development environment; complex logic algorithm; deep thinking

1. Introduction

In the past decade, research on automatic humanoid resolving of mathematics

application problems (math word problems) mainly focused on the scope of

elementary mathematics [1–3], which was the research topic based on natural

language semantic understanding [4,5]. It could be systematically implemented by

semantic understanding technologies, such as the limited local semantics extensions

for the clauses with mathematics commonsense knowledge [6]. However, in terms of

machine simulation of human mathematical abilities, the humanoid derivation of

advanced mathematics symbolic systems, such as functions, calculus, and equations

[7–9], also had great practical value. Research in this field could make machines think

deeply about problem texts and even might have the potential to self-verify the

mathematics theories. For artificial intelligence researchers who aimed to simulate the

CITATION

Zhu P, Lv P, Zou W, et al. Equivalent

derivation machine implementation

in advanced mathematics symbolic

systems. Pure and New Mathematics

in AI. 2024; 1(1): 9798.

https://doi.org/10.24294/pnmai9798

ARTICLE INFO

Received: 22 October 2024

Accepted: 4 December 2024

Available online: 13 December 2024

COPYRIGHT

Copyright © 2024 by author(s).

Pure and New Mathematics in AI is

published by EnPress Publisher,

LLC. This work is licensed under the

Creative Commons Attribution (CC

BY) license.

https://creativecommons.org/licenses/

by/4.0/

Pure and New Mathematics in AI 2024, 1(1), 9798.

2

human brain, this was a very attractive topic [10]. After 5 years of analyzing and

resolving 1112 elementary mathematics application problems by machine, the authors

established the computational resolving method system with limited local semantic

extension. To enable the computer to have more comprehensive mathematics thinking

abilities, the author explored the equivalent derivation of the mathematics symbolic

system and the implementation mechanism for the computer. This work would mainly

discuss the formal representation of problems and the equivalent derivation of

symbolic systems, which had great significance for the comprehensive

implementation of machine thinking.

The difference from the software toolkits such as MATLAB [11] and Scientific

Notebook, which were widely used in scientific computing and had advanced

mathematics symbolic computing capabilities, is that this article focused on the formal

representation of semantics in advanced mathematics (including data element

computing relationships) and their symbolic equivalent derivation, with the feature of

process interpretability [12,13]. From the recent period perspective, this technology

route was still suitable for application in the education field; from the long period

perspective, it also enabled the possibility of interactive exploration and collaborative

evolution between thinking machines and humans. It was precisely because it could

achieve interpretability by intermediate derivation steps, which required a large

amount of commonsense knowledge and domain knowledge, that this technology

route had the potential for autonomous science exploration and mathematics

verification. From machine text semantic understanding to interpretable automatic

advanced mathematical problem resolving, this paper achieved the entire process by

commonsense knowledge base at first time. In the future, with the support of axiomatic

sets (commonsense knowledge and domain knowledge), it would be possible to

achieve autonomous extension research for new mathematics theories by computer

and interactively verify the results with human mathematicians. This was also the

fundamental reason why interpretability was crucial for both machine thinking and

artificial intelligence research. The strengths of this route included: The engine was

implemented based on case analysis, which conformed to human thinking habits;

gradual effect presentation of the engine made developers feel a sense of achievement

in the implementation; the visual development platform could reduce the complexity

of software debugging and maintenance; unified function scheduling operation

provided the mechanism foundation for automatic system self-programming; the

machine thinking process could be explained. The limitations included: It was a

completely new technological route and method, with no integration of other mature

modules, a huge workload, and slow progress; currently, it is only in the prototype

development stage.

With the emergence of ChatGPT [14], the large language model technology had

achieved significant success, becoming a hot topic and mainstream in the business and

technology fields [15]. Despite the continuous efforts of many researchers, there were

still many unsatisfactory aspects in numerical computation relationships, logic

reasoning, commonsense reasoning, objective facts, and information updates. Many

researchers were constantly striving to improve and enhance the large language model,

with the main goal still focused on improving language understanding, logic reasoning,

correctness, reliability, and security.

Pure and New Mathematics in AI 2024, 1(1), 9798.

3

Research involving mathematical derivation and symbolic equivalent

relationship verification was relatively rare. The current main target of the large

language model was ordinary users, and the support and assistance provided for the

highly specialized and knowledge-based scientific education field were still very

limited. This article aimed to explore the evolution of autonomous semantic

understanding, knowledge verification, conclusion generation, and human-computer

interaction for thinking machines, targeting the field of scientific research. Taking the

equivalent derivation in advanced mathematics symbolic systems as an example, the

technology architecture for interpretable intelligent scientific research systems was

designed to explore the implementation for scientific research machines. The main

difference between this route and the popular machine learning methods was the

interpretability of the derivation steps, rather than directly providing results.

2. Related work

This article implemented a humanoid thinking automatic processing platform

using engineering methods, which included text semantic understanding,

commonsense accumulation, mathematical knowledge citation, and equivalent

derivation of mathematical symbols. Due to the complexity of language expression

forms, the platform involved a wide range of data and pattern types, with complex

language features and obvious feature sparsity, making it relatively difficult to

accumulate feature samples. Currently, it is not suitable to use machine learning

algorithms [16–18] that require a large number of feature samples, and machine

learning processing of partial differential equations [19,20] also faced the same

problem. Reinforcement learning [21,22], genetic algorithms [23], and deep learning

algorithms [24–29] are all considered for future applications in this article. The

interpretability principles were adopted in the technical route; language feature data

required by these algorithms was precipitated in the platform. As there were many

types of features, the quantity of samples for the single feature was relatively small,

and the application loop had not yet been established. One of the main contributions

of this article: Simplified traditional software engineering methods through

visualization methods, enhanced the intuitiveness of system workflow, and reduced

the complexity of system maintenance. Unlike classical visualization program design

technologies [30–32], which were mainly aimed at the software development stage,

the visualization method proposed in this article provided the new implementation

approach for automatically understanding software logic changes [33] and planning

thinking actions. The second main contribution of this article: Achieved

interpretability of semantic understanding with clause vocabulary sequence patterns

as the core idea, which was different from the semantic understanding technology

routes based on large language models and traditional statistics [34–36]. The third

main contribution of this article is the implementation of the interpretable derivation

process for the symbol system of advanced mathematics with instances. The process

of deriving mathematical knowledge [37–39] was different from the function black

box processing method of advanced mathematics tools such as MATLAB and was

more suitable for application in university teaching. Finally, it was worth pointing out

that although the pre-training language model method [40] and the symbolic inference

Pure and New Mathematics in AI 2024, 1(1), 9798.

4

enhancement of the thought chain technology for large language models [41] were

mainstream directions, their main design ideas differed significantly from the methods

proposed in this article.

3. Implementation technologies

If the problem space was not completely determined or the samples could not be

precisely enumerated (the samples scale, form, or features could not be accurately

determined), higher requirements were required on the generalization ability of big

data based intelligent algorithms. Generally, the scale of input data for intelligent

algorithms based on big data was enormous, and the processing logic should be the

condensed version of simplified and smaller computation models. There were two

ways to generate this “condensed version” model by the following modes: (1) Up-

down, which firstly determined the complete set of processing logic (macro

architecture), and then gradually refined the branches (micro processing). For example,

in deep learning of large language models, the hierarchy and scale of the neural

network were first determined, and then the threshold and I/O link weights of each

neuron were gradually trained and adjusted. (2) Down-up, referred to summarizing the

general processing framework for each sample based on the processing workflows,

gradually generalizing it to any valid input. For example, in this article, the way of

humanoid machine resolving mathematics application problems, which analyzed and

processed many problem examples, and summarized the general processing

framework, was determined by the Down-up mode. The derivation rules of equations

in advanced mathematics were generated in this way, and after generalization

processing, they were applied to the machine automatic resolving process of general

mathematics application problems. This article adopted the second mode and

summarized the system technology levels as shown in the following Figure 1:

Figure 1. Technology levels.

The initial workflow of problem resolving could be the four step function units

A, B, C, and D arranged in series in Figure 2a. In the subsequent instance process,

there might be two types of workflow changes: (1) the addition of parallel selection

function unit, for example, the addition of parallel selection function unit E for

function unit B in Figure 2b. (2) The addition of function unit for serial selection

function unit, such as the selection function unit F in Figure 2c (where F represented

by a “real” branch with actual processing function and a “bypass” branch without any

processing function). These were all based on the basic processing framework of

samples, which was the same or similar, but only required local adjustments and

Pure and New Mathematics in AI 2024, 1(1), 9798.

5

improvements. Based on this premise, the gradual refinement process could be

implemented by Up-down mode through a standard pre-set data framework, similar to

the training process for the large language model. The additions of branches and

bypasses were all discrete gradual processes (refer to Figure 2).

Figure 2. Gradual workflow refining processes.

If each function unit was represented by a general framework (data structure) that

included the selection judgment component (which could have only one output branch,

indicating absolute selection, i.e., no selection judgment and directly linking to

subsequent function unit) and the function processing component (which could be

empty, indicating direct linking before and after, without corresponding processing

component), the whole software logic workflow could be nested and refined into a

multi-dimension web that could be dynamically added with function units, which

could become the large logic model. The only provided as many effective feature

judgment and processing function units as possible was all that the developers needed

to do, automatically/semi-automatically added to the machine decision-making system

of the large logic model, forming the systematic judgment and decision generalization

ability. The atom function unit was called the basic function unit, and the upper

function unit was the combination of basic function units. The standardized function

unit data structure laid the foundation for adaptive dynamic adjustment of the large

logic model with active autonomous machine actions. For example, the function units

could be represented by the framework using the following C-like language data

structure (refer to Appendix).

Applying the above framework node data structure to the whole programming

and debugging process of complex logic algorithms could form the framework nodes

and logic links hierarchical web with recursive and loop structures. In the process of

continuously refining this web system, in addition to the refining process of adding

nodes at the same level mentioned above, there were also the forms of splitting and

Pure and New Mathematics in AI 2024, 1(1), 9798.

6

refining operations, such as embedding sub-framework nodes into the basic

framework nodes (without sub-frameworks). The processing principles were as

follows: (1) If the embedding framework node located at the beginning of the splitting

framework node, then copied the splitting framework nodes and linked the embedding

framework node with the splitting framework back and forth, and used them as the

sub-frameworks of the original splitting framework node; (2) If the embedded

framework node located at the end of the splitting framework node, copied the splitting

framework node and linked it back and forth with the embedding framework node as

the sub-framework nodes of the original framework node; (3) If the embedding

framework located in the middle of the source code of the splitting framework node,

then took this location as the boundary to represent the splitting framework node into

two new function units and initialized the two consecutive new framework nodes.

Inserted the embedded framework node into the middle of these two nodes and linked

them back and forth, becoming the sub-framework node of the original splitting

framework node. (4) If the embedding framework node was the replacing framework

node, the embedding framework node inherited the back-and-forth links of the

replaced framework node, and then the addition action was performed according to

principles (1) to (3) based on the location of the embedding framework node within

the replaced framework node. For example, the Algorithm 1 Init_ splitting_chain() of

adding embedding framework node I to splitting framework node G were listed as

follows (In the initial state, framework nodes P, G, and K were arranged in order):

Algorithm 1 Init_ splitting_chain()

1: struct STRUCT_GENERAL_FRAME_INTERFACE P, G, K, I, Lson1, Lson2;/// variables definitation;

2: Input: Framework nodes P, G, K, I, Lson1, Lson2;

3: Output: Framework net with the unified input entry pHead.

4: Algorithm description: Init_ splitting_chain()

5: ① P.nID = 7; P.pPrev = NULL; P.pTNext = &G; P.pFNext = &G; P.pSon = NULL; P.pFathter = NULL;

P.fun_execute_body = …; memset(&(P. sRefer_Table [0][0]),0, MAX_OR_CONDITIONS_NUM *

MAX_AND_FUNCTION_NUM * sizeof(struct STRUCT_FUNTION_ENTRANCE)); …

6: ② G.nID = 8; G.pPrev = &A; G.pTNext = &K; G.pFNext = &K; G.pSon = NULL; G.pFathter = NULL;

G.fun_execute_body.App = G_content_fun; memset(&(G. sRefer_Table [0][0]),0, MAX_OR_CONDITIONS_NUM *

MAX_AND_FUNCTION_NUM * sizeof(struct STRUCT_FUNTION_ENTRANCE)); …

7: ③ K.nID = 9; K.pPrev = &G; K.pTNext = &…; K.pFNext = &…; K.pSon = NULL; K.pFathter = NULL;

K.fun_execute_body = …; memset(&(K. sRefer_Table [0][0]),0, MAX_OR_CONDITIONS_NUM *

MAX_AND_FUNCTION_NUM * sizeof(struct STRUCT_FUNTION_ENTRANCE)); …

8: ④ pHead = &P;

The function body of framework node G was shown in the following Figure3:

Figure 3. Function body of framework node G.

Pure and New Mathematics in AI 2024, 1(1), 9798.

7

If the embedding location was between G_content_fun1 and G_content_fun2

inside the framework node G, the function G_content_fun2_n should be defined firstly

as follows:

a) Embedding at starting location with Algorithm 2 splitting_chain_a()

Algorithm 2 splitting_chain_a()

1: Input: Framework nodes P, G, K, I, Lson1, Lson2;

2: Output: Framework net with the unified input entry pHead.

3: Algorithm description: splitting_chain_a()

4: ① Init_ splitting_chain() /// Initialize the context parameters and function parameters of the framework node chain pHead.

5: ② Lson1 = G; G. fun_execute_body = NULL; G. pSon = &I;

6: ③ I.nID = 10; I. pPrev = G. pPrev; I.pTNext = &Lson1; I.pFNext = &Lson1; I.pFathter = &G;

7: ④ Lson1.nID = 11; Lson1.pPrev = &I; Lson1.pTNext = G.pTNext; Lson1.pFNext = G. pFNext; I.pFathter = &G;

STRUCT_FUNTION_ENTRANCE)); …

b) Embedding at ending location with Algorithm 3 splitting_chain_b()

Algorithm 3 splitting_chain_b()

1: Input: Framework nodes P, G, K, I, Lson1, Lson2;

2: Output: Framework net with the unified input entry pHead.

3: Algorithm description: splitting_chain_b()

4: ① Init_ splitting_chain() /// Initialize the context parameters and function parameters of the framework node chain pHead.

5: ② Lson1 = G; G. fun_execute_body = NULL; G. pSon = &Lson1;

6: ③ Lson1.nID = 10; Lson1.pTNext = &I; Lson1.pFNext = &I; Lson1.pFathter = &G;

7: ④ I.nID = 11; I. pPrev = &Lson1; I.pTNext = G.pTNext; I.pFNext = G.pFNext; I.pFathter = &G;

c) Embedding at middle location with algorithm splitting_chain_c()

If the embedding node I was contained in framework node G, firstly, I inherited

the context links of G; Then, based on the location of I in the G function body, selected

the principles (1) to (3) to perform the generation operations of G son nodes.

G_content_fun2_n

{

 If(!G_content_fun2()) return false;

 ……

 If(!G_content_funn()) return false;

 return true;

}

Then, executed following Algorithm 4 splitting_chain_c():

Algorithm 4 splitting_chain_c()

1: Input: Framework nodes P, G, K, I, Lson1, Lson2;

2: Output: Framework net with the unified input entry pHead.

3: Algorithm description: splitting_chain_c()

4: ① Init_ splitting_chain() /// Initialize the context parameters and function parameters of the framework node chain pHead.

5: ② Lson1 = G; G. fun_execute_body = NULL; G. pSon = &Lson1;

6: ③Lson1.nID = 10; Lson1.pTNext = &I; Lson1.pFNext = &I; Lson1.pFathter = &G; Lson1. fun_execute_body App =

G_content_fun1;

7: ④ I.nID = 11; I. = &Lson1; I.pTNext = &Lson2; I.pFNext = &Lson2; I.pFathter = &G;

8: ⑤ Lson2 = G; Lson1.nID = 12; Lson2.pPrev = &I; I.pFathter = &G; Lson2. fun_execute_body App = G_content_fun2_n;

d) Replacement embedding

Pure and New Mathematics in AI 2024, 1(1), 9798.

8

It was worth noting that in order to split the function body, all variables were

stored in the form of global variables; Although only the processing operation order

and workflow branch were illustrated here, loop and recursive embedding could be

implemented by the combination of the above operation order and workflow branches,

so would not be repeated here; Deleting framework node was the inverse process of

adding nodes mentioned above, and would not be elaborated here due to space

limitations.

4. Integrated development environment

Framework-oriented programming, the whole algorithm was a large decision tree

composed of semantic framework nodes formed by the two-dimension basic logic

condition table and function body. The core algorithm was the scheduling and

execution process of framework nodes, and all semantic framework nodes worked

together through the main scheduling algorithm and shared this core algorithm.

Adapting to development requirements motivated the framework-oriented gradual

updating system for complex intelligent algorithms, namely: (1) the explicit and clear

logic hierarchy and source code modules, which were conducive to development and

maintenance; (2) monitoring the execution status of each key function to improve the

efficiency of system debugging; (3) The key function needed to have the ability to

approximate and compare input data samples, in order to generalize the processing

ability of the input. The system architecture of the integrated development

environment was shown in the following Figure 4:

Figure 4. System architecture.

To simplify the illustration, this article took the mathematics symbol system

equivalent derivation module as the example to introduce the implementation of the

integrated development environment design requirements, including the main

scheduling algorithm (refer to Algorithm 5), core processing algorithm (refer to

Algorithm 6), workflow dynamic display algorithm (refer to Algorithm 7), execution

status monitoring method, and generalization processing method.

a) Main scheduling algorithm

Pure and New Mathematics in AI 2024, 1(1), 9798.

9

Algorithm 5 main_ scheduling_algorithm()

1: Input: global framework node web FUNWeb and header pointer pHead (global variable), global return variable bRet.

2: Output: logic derivation steps, intermediate results, and final answer.

3: Algorithm description: main_ scheduling_algorithm()

4: ① FUNWeb ← initialize_framework_node_parameters(); /// Semantic initialization for current framework nodes;

5: ② IF (pHead == NULL) RETURN TRUE; /// If the loop pointer was NULL, return success.

6: ③ IF (pHead → fun_execute_body != NULL) bRet ← main_framework_node_algorithm(); /// Executed the function body

of the current framework node recorded the return value to the Boolean variable bRet.

7: ④ ELSE pHead = pHead → pSon;

8: GOTO ②;

9: ///If current framework node had son node, jump to ②;

10: ⑤ IF (bRet) pHead = pHead→ pTNext;

11: GOTO ②;

12: ///If the current framework node was successfully executed, transferred the current framework node pointer along the “true”

branch and jump to step ②;

13: ⑥ ELSE pHead = pHead→ pFNext;

14: GOTO ②;

15: ///If the current framework node was not successfully executed, transferred the current framework node pointer along the

“false” branch and jump to step ②.

b) Core processing algorithm

Algorithm 6 core_processing_algorithm()

1: Input: Current frame pointer pHead (global variable).

2: Output: The current framework returned the global variable bRet.

3: Algorithm description: core_processing_algorithm()

4: ① nHorLoopVar = 0; NVerLoopVar=0; bSucc=TRUE;///Initialize loop control variables.

5: ② IF(pHead → sRefer_Table[nHorLoopVar][nVerLoopVar]. fun_execute_body == NULL) THEN

6: ///If the entry in the current two-dimension basic logic condition table is NULL, the return value was determined based on

the executed logic condition;

7: IF ((nVerLoopVar == 0)&&(nHorLoopVar==0)) THEN RETURN bSucc;

8: IF ((nVerLoopVar == 0)&&(nHorLoopVar!=0)) THEN RETURN bSucc;

9: ELSE IF (nVerLoopVar != 0) THEN RETURN bSucc;

10: ELSE nHorLoopVar++; goto ②;

11: ③ IF (pHead → sRefer_Table [nHorLoopVar] [nVerLoopVar].bRet == pHead → sRefer_Table [nHorLoopVar]

[nVerLoopVar]. fun_execute_body ()) THEN

12: bSucc = TRUE;

13: nVerLoopVar++;

14: GOTO ②;

15: ④ ELSE bSucc = FALSE; nHorLoopVar++; nVerLoopVar = 0; goto ②;

16: ///If the entries in the two-dimension basic logic condition table were correctly executed, then continued to determine the

next basic logic condition; Otherwise, recorded the failure flag and continued to determine the next logical condition.

c) Workflow dynamic display algorithm

Algorithm 7 dynamic_inhibition_list_display()

1: Input: global framework node web FUNWeb and the header pointer pHead (global variable)

2: Output: framework node web calling sequence FUNList;

3: Algorithm description: dynamic_inhibition_list_display()

4: ① IF(pHead == NULL) return TRUE; /// If the current framework node pointer was NULL, return the successful execution

flag;

5: ② display_new_fun(pHead); /// Display information about the current framework node.

6: ③ IF (pHead → pSon !=NULL) THEN

7: pHead = pHead → pSon;

8: GOTO ①;

Pure and New Mathematics in AI 2024, 1(1), 9798.

10

Algorithm 7 (Continued)

9: ///If the current framework node had son nodes, jump to ①;

10: ④ IF (pHead → pTNext!=NULL) THEN

11: pHead = pHead → pTNext;

12: GOTO ①;

13: ///Transferred the current framework node pointer along the successful branch and jump to step ①;

14: ⑤ IF (pHead → pFNext!=NULL) THEN

15: pHead = pHead → pFNext;

16: GOTO ①;

///Transferred the current framework node pointer along the failure branch and jump to step ①.

d) Execution status monitoring method

The execution status monitoring algorithm execution_status_record_algorithm()

mainly monitored the execution status of the two-dimension basic logic condition table.

It was worth noting that when the source program was modified, the original

framework node logic condition result data should be guaranteed not to change, that

was, the input and output data, and corresponding relationships were verified to be

correct; However, the operation status of the two-dimension basic logic condition table

might change, and it was necessary to delete or update the relevant status data of the

framework nodes involved, and restarted the accumulation of operation status data.

The execution status monitoring algorithm was based on the main scheduling

algorithm main_scheduling_algorithm() and the core processing algorithm

core_processing_algorithm(). When the system called each framework node, it

recorded the relevant input and output information of the system when executing the

two-dimension basic logic condition table. That was, when the algorithm executed

step ③ in core_processing_algorithm(), it could add the statements for recording the

input data and return information of each basic logic condition as following (refer to

Algorithm 8):

Algorithm 8 execution_status_record_algorithm ()

1: Input: Current frame pointer pHead (global variable).

2: Output: The current framework returned the global variable bRet.

3: Algorithm description: execution_status_record_algorithm ()

4: ① nHorLoopVar = 0; NVerLoopVar=0; bSucc=TRUE;///Initialize loop control variables.

5: ② IF(pHead → sRefer_Table[nHorLoopVar][nVerLoopVar]. fun_execute_body == NULL) THEN

6: ///If the entry in the current two-dimension basic logic condition table is NULL, the return value was determined based on

the executed logic condition;

7: IF ((nVerLoopVar == 0)&&(nHorLoopVar==0)) THEN RETURN bSucc;

8: IF ((nVerLoopVar == 0)&&(nHorLoopVar!=0)) THEN RETURN bSucc;

9: ELSE IF (nVerLoopVar != 0) THEN RETURN bSucc;

10: ELSE nHorLoopVar++;

11: goto ②;

12: ③ pHead → Record_Input_Data(); /// Added execution steps for recording input data;

13: ④ IF (pHead → sRefer_Table[nHorLoopVar] [nVerLoopVar].bRet == pHead → sRefer_Table[nHorLoopVar]

[nVerLoopVar]. fun_execute_body ()) THEN

14: pHead → Record_Output_Data(); /// Recorded the return information of each basic logical condition (AND operation

element);

15: bSucc = TRUE;

16: nVerLoopVar++;

17: goto ②;

18: ⑤ pHead → Record_Output_Data(); /// Recorded the return information of each logic condition (OR operation element);

Pure and New Mathematics in AI 2024, 1(1), 9798.

11

Algorithm 8 (Continued)

19: ⑥ bSucc = FALSE; nHorLoopVar++; nVerLoopVar = 0; goto ②; ///If the entries in the two-dimension basic logic condition

table were correctly executed, then continued to determine the next basic logic condition; Otherwise, recorded the failure

flag and continued to determine the next logical condition.

e) Generalization processing capability method

The execution status monitoring algorithm execution_status_record_algorithm()

in the previous section recorded the input/output data which became sample data

correspondence of each basic logic condition (feature function), and the data could be

used as the basis for improving the system’s generalization processing ability for the

inputs. Analyzed the features of sample data, defined the semantic distance between

sample data or between sample data and input data based on these features, and

determined whether to directly output the processing result corresponding to the

sample data based on the semantic distance (calculated by the output of each feature

function in the two-dimension basic logic condition table). In this way, the sample

data could form the “anchor point” of the input space, and new inputs that

approximated to the samples could directly output the samples results. The input

approximation calculation based on semantic distance achieved the input processing

ability coverage to the whole problem space.

5. Application example

5.1. Problem description

“An uncovered cuboid basin is made of the same thin sheet (C1), its volume is a

constant value (C2). In order to minimize the use of the sheet as much as possible (C3),

how much should be the length, width, and height of the basin (C4)?”

a) Semantic annotation

C1 ///Semantic framework identifier

Normal ///Semantic framework type

16 ///Quantity of the semantic framework entries

c An ///”c” represented a constant, and “An” represented the constant value.

t uncovered ///”t” represented other types of vocabulary.

s cuboid||** ///”s” represented the noun.

s basin||** /// “**” represented that it could be replaced by other nouns.

v is made of /// “v” represented the verb.

t the

t same

t thin

s sheet||**

m Uncovered::Basin::Volume///”m” represented the intermediate data element

variable, “Uncovered::Basin::Volume” was the local variable name.

m Uncovered::Basin::Surface~Area~

m Uncovered::Basin::Length

m Uncovered::Basin::Width

m Uncovered::Basin::Height

Pure and New Mathematics in AI 2024, 1(1), 9798.

12

f uncovered /// “f” represented the focal features transmitted across semantic

frameworks.

f basin

C2 ///Semantic framework identifier

Normal ///Semantic framework type

9 /// Quantity of the semantic framework entries

F uncovered,basin, /// “F” paired with “f”, to receive the focal feature string

transmitted, separated by symbols “,”, with the same quantity of features transmitted

by “f”.

t its///”t” represented other types of vocabulary.

s volume||**//”s” represented the noun, and “**” represented that it could be

replaced by other nouns.

v is ///”v” represented the verb.

c a

s constant

s value

- Uncovered::Basin::Volume //”-” referred to the variable mentioned earlier that

contained the semantic feature “Uncovered::Basin::Volume”. If it failed, the

corresponding variable should be generated in the semantic scene mentioned earlier.

D Uncovered::Basin::Volume ///”D” represented the semantic feature

“Uncovered::Basin::Volume” referred to the variable whose value was a constant.

C3///Semantic framework identifier

Normal///Semantic framework type

11 ///Quantity of semantic framework entries

F0 uncovered,basin, ///”F0” represented the transfer of focal features across

semantic frameworks, not only with the same quantity of features defined by “f”, but

also with the same semantic string.

t In order to||To~ ///”t” represented other types of vocabulary.

v minimize ///”v” represented the verb.

t the

s use

t of

s sheet||**

t as much as

t possible

Uncovered::Basin::Surface~Area~ ///”-” referred to the variable that contained

the semantic feature “Uncovered::Basin::Surface~Area~” mentioned earlier. If it

failed, the corresponding semantic variable should be generated in the semantic scene

mentioned earlier.

m Uncovered::Basin::Surface~Area~::MINVALUE ///”m” represented the

intermediate data element variable, where “Uncovered::Basin::Surface~Area~”

referred to the local variable name, and “MINVALUE” represented the property

constraint (minimum value) of the variable with the semantic

“Uncovered::Basin::Surface~Area~”.

C4///Semantic framework identifier

Normal///Semantic framework type

Pure and New Mathematics in AI 2024, 1(1), 9798.

13

16///Number of semantic framework entries

F uncovered,basin, /// “F” paired with “f”, to receive the focal feature string

transmitted, separated by symbols “,”, with the same quantity of features transmitted

by “f”.

n Uncovered::Basin::Length///”n” represented the data element variable, where

matching words such as “how much” specifically referred to the question variable.

“Uncovered::Basin::Length” was the local semantic variable name.

v should ///”v” represented the verb.

v be

t the ///”t” represented other types of vocabulary.

s length

y , ///”y” represented the punctuation.

s width

y ,

t and

s height

t of

t the

s basin||** ///”s” represented the noun, and “**” represented it could be

replaced by other nouns.

w Uncovered::Basin::Width///”w” represented the question data element

variable, “Uncovered::Basin::Width” was the local semantic variable name.

w Uncovered::Basin::Height

b) Data element variables

After preprocessing (format adjustment, unit base unification, symbol system

unification, named entity recognition, etc.), the original text of the problem was

subjected to sentence segmentation, word segmentation, and part of speech

recognition. Then, the whole sentence, fragment, and clause were matched with the

pre-annotated semantic framework base to extract the local knowledge, information,

and data explicitly represented by the matched semantic framework. For automatic

resolving of mathematical application problems, the local scene information

(identification string) of the semantic framework was analyzed, and the global scene

information of each analysis unit was formed through semantic inheritance and

overloading. Next, filtered and merged with local semantic information (such as local

variable names, calculation formulas, logic relationships, and semantic features)

through semantic inheritance and overloading techniques, combined with overloading

and supplementation of commonsense knowledge, and formed the global semantic set

of analysis units, such as data element variables (refer to Table 1) and dynamic

semantic circles.

Table 1. Data element variables.

No Location Attribute Name Value

1 30 question variable Uncovered::Basin::Length unknown

2 38 middle variable Uncovered::Basin::Volume unknown

3 39 middle variable Uncovered::Basin::Surface~Area~ unknown

Pure and New Mathematics in AI 2024, 1(1), 9798.

14

Table 1. (Continued).

No Location Attribute Name Value

4 40 question variable Uncovered::Basin::Width unknown

5 41 question variable Uncovered::Basin::Height unknown

6 44 constant constraint variable Uncovered::Basin::Volume unknown

7 48 minimum value constraint variable Uncovered::Basin::Surface~Area~ unknown

c) Dynamic semantic circle

The dynamic semantic circle (including explicit representation of commonsense

knowledge) related to the above example included the following two formulas and

their symbolic representations:

FL33///formula Identification ID

Cuboid, Uncovered, ///contextual features

Surface~Area~; Length; Width; Depth,Height,Thickness,Altitude,; /// data

element variable table

Swimming~Pool~::Surface~Area~; Swimming~Pool~::Length;

Swimming~Pool~::Width; Swimming~Pool~::Height /// formula variable table

Swimming~Pool~::Surface~Area~ = (Swimming~Pool~::Length ×

Swimming~Pool~::Width) + (Swimming~Pool~::Length × Swimming~Pool~::Height

× 2) + (Swimming~Pool~::Width × Swimming~Pool~::Height × 2) ///formula

semantic representation

Surface~Area~, Length, Width, Height,; S, x, y, z,; ///variable semantic symbol

correspondence table

S = (1,1) × (3,+(1,1) x (1) y (1) z (0),+(1,2) x (1) y (0) z (1),+(1,2) x (0) y (1) z

(1),)/1 /// symbolized representation of the formula

FL23///formula Identification ID

Cuboid, ///context features

Volume; Length; Width; Depth,Height,Thickness,Altitude,; /// data Element

Variable Table

Cuboid~Volume~; Cuboid~Length~; Cuboid~Width~; Cuboid~Height~ ///

formula variable table

Cuboid~Volume~ = Cuboid~Length~ × Cuboid~Width~ × Cuboid~Height~

///formula semantic representation

Cuboid~Volume~, Cuboid~Length~, Cuboid~Width~, Cuboid~Height~,; V, x, y,

z,; ///variable semantic symbol correspondence table

V = (1,1) × (1,+(1,1) x (1) y (1) z (1),)/1 ///symbolized representation of the

formula

d) Thinking mechanism

Based on the information provided by the data element variable table and

dynamic semantic circle, effective computing and derivations could be performed to

resolve the problem. It should not only include general derivation, equation resolving,

enumeration resolving, feature constraint derivation, and iterative exploring, but also

include methods such as unequal relationship derivation and symbol system equivalent

derivation.

Pure and New Mathematics in AI 2024, 1(1), 9798.

15

5.2. Static logic structure

The development requirements for intelligent systems should become clear

through the accumulation of experience in instance processing gradually. Clear static

logic structure and dynamic workflow during program development were crucial for

system upgrade and maintenance. The function unit framework adopted in this article

was used to achieve explicit representation of software workflow between function

nodes, which was the important component of software macro logic visualization. In

static state (non-running state), the software logic structure could be represented by

10-tuple <ID, FR, SN, TY, BF, BT, INIT, BODY, RETN, NOTE>, where: ID

represented the current function node identifier, FR represented the parent node, SN

represented the son node, TY represented the current node type, BF represented the

successor node when the current function returned “false”, BT represented the

successor node when the current function returned “true”, INIT was the variable and

function initialization function before the current function node was executed, BODY

represented the function body of the current node, RETN represented the parameter

conversion function after the function node was executed, and NOTE was the function

description. For example, there could be the following function units (refer to Table

2):

Table 2. Function units.

ID FR SN TY BF BT INIT BODY RETN NOTE

1 NULL 2 general NULL NULL NULL
diff_symbol_de

duce_module
NULL

Solving module of partial differential

equations

2 1 NULL general 3 3 NULL diff_vars_init NULL
Initialization of variables in partial

differential equation systems

3 1 NULL general 4 4 NULL
diff_formulas_i

nit
NULL

Initialization of partial differential

equation system

4 1 6 general 5 5
display_equat

ions_init_0

display_equatio

ns

display_equat

ions_retn_0

Print partial differential equation

system

6 4 NULL general 7 7 NULL
dispaly_equatio

ns_num
NULL Print the number of equations

7 4 NULL general 5 5 NULL
display_loop_m

ulti_equations
NULL Print equation sequentially

5 1 11 general NULL NULL NULL
diff_formulas_r

esolve
NULL

Resolving systems of partial

differential equations

… … … … … … … … … …

17 13 20
recursiv

e
18 19 NULL

resolving_equat

ions
NULL Resolving equations

18 5 NULL general NULL NULL NULL
diff_free_deduc

e_chain_false
NULL

Free the storage space of the partial

differential equation solving process

chain and return false

… … … … … … … … … …

74 73 NULL
Loop(h

ead)
83 75

polynomial_v

ar_init

is_loop_each_e

quation_LPBN
NULL Loop for each equatiom (head node)

75 73 NULL general 80 76 NULL
is_nExponent_

0
NULL

The polynomial in the equation

numerator has no variables to be

eliminated

Pure and New Mathematics in AI 2024, 1(1), 9798.

16

Table 2. (Continued).

ID FR SN TY BF BT INIT BODY RETN NOTE

76 73 NULL general 78 77 NULL

is_equation_de

nominator

_constants

NULL
The denominator in the equation is a

constant

77 73 NULL general 84 84 NULL

constants_multi

application_con

stants

NULL Multiplying constants in equation

78 73 NULL general 79 79 NULL

polynomial_mu

ltiply_init_deno

minator

NULL
Polynomial multiplication denominator

variable transformation initialize

79 73 NULL general 84 84 NULL
polynomial_mu

ltiply
NULL

Polynomial multiplication denominator

variable transforms

80 73 NULL general 18 81 NULL
is_nExponent_

1
NULL

The exponent of the variable to be

eliminated in the numerator

polynomial of the equation is 1

81 73 NULL general 82 82 NULL

assign_eleminat

ion_var_expone

nt_zero

NULL
The exponent of the variable to be

eliminated in the equation is assigned 0

82 73 NULL general 79 79 NULL

polynomial_mu

ltiply_init_num

erator

NULL
Polynomial multiplication numerator

variable transforms

83 73 NULL general 18 71 NULL result_return NULL Return of variable elimination function

84 73 NULL
Loop(ta

il)
74 74 NULL

loop_each_equ

ation_step_LPT

L

NULL
Loop tail node of the variable

elimination function

… … … … … … … … … …

The types of function unit nodes listed in Table 2 included general, recursive,

loop (head), and loop (tail). link types included parent, son, return false, and return

true links. The execution process of the function units in the above example was shown

in Figures 5–7:

Figure 5. Son-function program structure.

Note: The untagged links represented the upper node returns the same value of “true” or “false” as the

lower node (BT and BF links were the same). The original BODY program contents for function units

with son nodes were not actually executed. For example, the execution sequence of Figure 5 was:

1.INIT → 2.INIT → 2.BODY → 2.RETN → 3.INIT → 3.BODY → 3.RETN → 4.INIT → 6.INIT →

6.BODY → 6.RETN → 7.INIT → 7.BODY → 7.RETN → 4.RETN → 5.INIT → 5.BODY → 5.RETN →

1.RETN…

Pure and New Mathematics in AI 2024, 1(1), 9798.

17

Figure 6. Recursive program structure.

Note: The original BODY program content of the recursive function unit with son nodes was not

actually executed. For example, the node 17 in Figure 6, firstly executed its node initialization function

17.INIT, then recursively executed all its son nodes, subsequently executed the result variable transfer

function 17.RETN of the recursive node, finally executed the subsequent workflow along 17.BT or

17.BF based on the return value “true” or “false”.

Figure 7. Loop program structure.

Note: Unlabeled link represented whether the previous node return “true” or “false” value, it should

direct to the same subsequent node (BT and BF links are the same). Node 74 was the head node of the

loop, and node 84 was the tail node of the loop.

5.3. Dynamic execution workflow

5.3.1. Son-nodes execution workflow

Table 3. Son-nodes execution workflow.

ID TY INIT BODY RETN

1 general NULL diff_symbol_deduce_module NULL

2 general NULL display_equations_init_0 NULL

3 general NULL diff_formulas_init NULL

4 general display_equations_init_0 display_equations display_equations_retn_0

6 general NULL dispaly_equations_num NULL

7 general NULL display_loop_multi_equations NULL

5 general NULL diff_formulas_resolve NULL

… … … … …

Pure and New Mathematics in AI 2024, 1(1), 9798.

18

As shown above, the son-nodes execution workflow (refer to Table 3) in

Figure 5 was: 1→2→3→4→6→7→5…

5.3.2. Recursive nodes execution workflow

Table 4. Recursive nodes execution workflow.

ID TY INIT BODY RETN

… … … … …

17 Recursive NULL resolving_equations NULL

20 General NULL diff_resolving_equation_num_codition_1 NULL

… … … … …

17 Recursive NULL resolving_equations NULL

20 General NULL diff_resolving_equation_num_codition_1 NULL

… … … … …

17 Recursive NULL resolving_equations NULL

20 General NULL diff_resolving_equation_num_codition_1 NULL

… … … … …

17 Recursive NULL resolving_equations NULL

20 General NULL diff_resolving_equation_num_codition_1 NULL

21 General NULL diff_resolving_equation_num_body_1 NULL

23 General display_equations_init_n display_equations NULL

24 General NULL last_equal_exchange NULL

58 General NULL is_diff_single_var_equation NULL

59 General NULL single_var_equation_exchange NULL

25 General display_equations_init_n display_equations NULL

19 General NULL diff_free_deduce_chain_true NULL

… … … … …

As shown above, the actual recursive nodes execution workflow (refer to Table

4) in Figure 6 was... 17→20→... 17→20→... 17→20 ...

17→20→21→23→24→58→59→25→19... Among them, the first three sequence

segments “17→20→…” were repeatedly executed three times, and the fourth time

executed a different recursive process workflow from the previous three times.

5.3.3. Loop nodes execution workflow

Table 5. Loop nodes execution workflow.

ID TY INIT BODY RETN

… … … … …

74 Loop(head) polynomial_var_init is_loop_each_equation_LPBN NULL

75 General NULL is_nExponent_0 NULL

76 General NULL is_equation_fenmu_constants NULL

78 General NULL polynomial_chengfa_init_fenmu NULL

79 General NULL polynomial_chengfa NULL

84 Loop(tail) NULL loop_each_equation_step_LPTL NULL

Pure and New Mathematics in AI 2024, 1(1), 9798.

19

Table 5. (Continued).

ID TY INIT BODY RETN

74 Loop(head) polynomial_var_init is_loop_each_equation_LPBN NULL

75 General NULL is_nExponent_0 NULL

76 General NULL is_equation_fenmu_constants NULL

78 General NULL polynomial_chengfa_init_fenmu NULL

79 General NULL polynomial_chengfa NULL

84 Loop(tail) NULL loop_each_equation_step_LPTL NULL

74 Loop(head) polynomial_var_init is_loop_each_equation_LPBN NULL

75 General NULL is_nExponent_0 NULL

80 General NULL is_nExponent_1 NULL

81 General NULL assign_elemination_var_index_zero NULL

82 General NULL polynomial_chengfa_init_fenzi NULL

79 General NULL polynomial_chengfa NULL

84 Loop(tail) NULL loop_each_equation_step_LPTL NULL

74 Loop(head) polynomial_var_init is_loop_each_equation_LPBN NULL

83 General NULL result_return NULL

… … … … …

The loop usually quit from the “loop (head)” node, and the above loop nodes

workflow (refer to Table 5) executed three iterations before leaving through node 83.

Comparing the static logic structure and dynamic execution workflow of the program,

it could be seen that the path 76→77→84 was not covered in this dynamic execution

workflow (see Figure 7), which suggested that the system had the ability to detect the

potential untested paths in the software.

5.4. Equivalent derivation

a) After semantic framework matching and global semantic analysis, it was

determined that the calculation relationships contained in the original text, which

included the formulas for uncovered basin volume and surface area. After unifying the

variable symbol system, the following formulas could be obtained:

Uncovered::Basin::Volume a = 1.000000 × (1.0000000 x (1.000000) y (1.000000)

z (1.000000)/1.000000)

Uncovered::Basin::Surface~Area~ S = 1.000000 × ((1.0000000 x (1.000000) y

(1.000000) z (0.000000) + 2000000 x (1.000000) y (0.000000) z (1.000000) +

2000000 x (0.000000) y (1.000000) z (1.000000))/1.000000)

b) By introducing the Lagrange multiplier w, the equivalent combination of

volume constant constraints was incorporated into the representation of the surface

area computing function, resulting in the following constrained uncovered basin

volume computing function:

Constrained::Uncovered::Basin::Surface~Area~ S’ = 1.000000 × ((1.0000000 x

(1.000000) y (1.000000) z (0.000000) w (0.000000) + 2.0000000 x (1.000000) y

(0.000000) z (1.000000) w (0.000000) + 2.0000000 x (0.000000) y (1.000000) z

(1.000000) w (0.000000) + 1.0000000 x (1.000000) y (1.000000) z (1.000000) w

Pure and New Mathematics in AI 2024, 1(1), 9798.

20

(1.000000) − 1.0000000ax (0.000000) y (0.000000) z (0.000000) w

(1.000000))/1.000000)

c) Derived the four variables of the constrained uncovered basin surface area

computing function S’, then could obtain a partial differential equation system

consisting of four equations:

0 = 1.000000 × (1.000000 x (0.000000) y (1.000000) z (0.000000) w

(0.000000) + 2.000000 x (0.000000) y (0.000000) z (1.000000) w (0.000000) +

1.000000 x (0.000000) y (1.000000) z (1.000000) w (1.000000))

0 = 1.000000 × (1.000000 x (1.000000) y (0.000000) z (0.000000) w

(0.000000) + 2.000000 x (0.000000) y (0.000000) z (1.000000) w (0.000000) +

1.000000 x (1.000000) y (0.000000) z (1.000000) w (1.000000))

0 = 1.000000 × (2.000000 x (1.000000) y (0.000000) z (0.000000) w

(0.000000) + 2.000000 x (0.000000) y (1.000000) z (0.000000) w (0.000000) +

1.000000 x (1.000000) y (1.000000) z (0.000000) w (1.000000))

0 = 1.000000 × (1.000000 x (1.000000) y (1.000000) z (1.000000) w

(0.000000) − 1.000000ax (0.000000) y (0.000000) z (0.000000) w (0.000000))

d) After selecting the first elimination variable w and converting the

representation, it could be represented by the following function:

w = 1.000000 × (1.000000 x (0.000000) y (1.000000) z (0.000000)

w (0.000000) + 2.000000 x (0.000000) y (0.000000) z (1.000000) w (0.000000))

 / −1.000000 x (0.000000) y (1.000000) z (1.000000) w (0.000000)

e) By substituting the elimination element, the equation system consisting of the

following three equations could be obtained

0 = 1.000000 × (−2.000000 x (0.000000) y (1.000000) z (2.000000) w

(0.000000) + 2.000000 x (1.000000) y (0.000000) z (2.000000) w (0.000000))

0 = 1.000000 × (−2.000000 x (0.000000) y (2.000000) z (1.000000) w

(0.000000) + 1.000000 x (1.000000) y (2.000000) z (0.000000) w (0.000000))

0 = 1.000000 × (1.000000 x (1.000000) y (1.000000) z (1.000000) w

(0.000000) − 1.000000ax (0.000000) y (0.000000) z (0.000000) w (0.000000))

f) After selecting the second elimination variable x and converting the

representation, it can be represented by the following function:

x = 1.000000 × (1.000000 x (0.000000) y (1.000000) z (0.000000) w

(0.000000))

g) By substituting the elimination element, we could obtain the equation system

consisting of the following two equations

0 = 1.000000 × (−2.000000 x (0.000000) y (2.000000) z (1.000000) w

(0.000000) + 1.000000 x (0.000000) y (3.000000) z (0.000000) w (0.000000))

0 = 1.000000 × (1.000000 x (0.000000) y (2.000000) z (1.000000) w

(0.000000) − 1.000000ax (0.000000) y (0.000000) z (0.000000) w (0.000000))

h) After selecting the third elimination variable z and converting the

representation, it could be represented by the following function:

z = 1.000000 × (0.500000 x (0.000000) y (1.000000) z (0.000000) w

(0.000000))

i) By substituting the elimination element, the following equation could be

obtained:

Pure and New Mathematics in AI 2024, 1(1), 9798.

21

0 = 1.000000 ×(0.500000 x (0.000000) y (3.000000) z (0.000000) w

(0.000000) − 1.000000ax (0.000000) y (0.000000) z (0.000000) w (0.000000))

j) Resolving the cubic equation yielded the variable y as:

y = 1.000000 × (cbrt(2.000000a) x (0.000000) y (0.000000) z (0.000000)

w (0.000000))

k) By reversing the previous representation of the elimination variable function,

the variables z and x could be resolved as follows:

z = 1.000000 × (0.500000cbrt(2.000000a) x (0.000000) y (0.000000) z

(0.000000) w (0.000000))

x = 1.000000 × (cbrt(2.000000a) x (0.000000) y (0.000000) z (0.000000)

w (0.000000))

Among them, cbrt() was the cube root function identifier.

6. Conclusion

The equivalent derivation in symbol systems was an important part of realizing

machine self-scientific exploration and knowledge discovery, involving semantic

understanding of problem scenes, machine representation conversion of mathematic

symbols, large-scale language pattern matching, development and maintenance of

complex logic algorithms, and core key technologies for machine thinking modes

implementation. It required resolving practical engineering problems such as

extracting commonsense knowledge from massive information, resolving semantic

conflicts, global semantic accumulation and condensation, formal representation and

self-improvement of the symbol systems, hypothesis proposing, and verifying. This

article proposed the engineering implementation method based on framework chain

visualization programming to solve the non-linear increasing problem complexity in

software caused by progressive processing logic accumulation. Using advanced

mathematical application problems as examples, the implementation process of

equivalent transformation for partial differential equations was introduced, which had

important implications for the implementation of equivalent derivation engines in

mathematical symbolic systems. In the future, on the one hand, we would

comprehensively implement the machine representation of the mathematics symbol

systems and the derivation rules of equivalence relationships; on the other hand, we

would continue to explore the self-generation of symbol systems, discover new laws

through machine implementation, and try to implement deep machine thinking.

Author contributions: Conceptualization, PZ; methodology, PZ; software, PZ;

validation, YM; formal analysis, WZ; investigation, XJ; resources, PL; data curation,

JS; project administration, PL; supervision, WZ; writing—original draft, PZ;

writing—review and editing, YZ. All authors have read and agreed to the published

version of the manuscript.

Conflict of interest: The authors declare no conflict of interest.

References

1. Newcomb A, Kalita J. Explaining Math Word Problem Solvers. In: Proceedings of the 2022 6th International Conference on

Natural Language Processing and Information Retrieval; 2022.

Pure and New Mathematics in AI 2024, 1(1), 9798.

22

2. Qin J, Huang Z, Zeng Y, et al. An Introspective Data Augmentation Method for Training Math Word Problem Solvers. In:

IEEE/ACM Transactions on Audio, Speech, and Language Processing; 2024.

3. Paliwal P. Adversarial Analysis and Methods for Math Word Problems. In: Proceedings of the International Conference on

Computing, Machine Learning and Data Science. 2024.

4. Zhu P, Lv P, Shi J, et al. Design and implementation of text understanding system based on semantic tagging Instances. In:

Proceedings of the 4th International Conference on Artificial Intelligence in Electronics Engineering (AIEE ‘23); 2023.

5. Patel M, Dogan FI, Zeng Z, et al. Semantic scene understanding for human-robot interaction. In: Proceedings of the

Companion of the ACM/IEEE International Conference on Human-Robot Interaction (HRI ‘23); 2023.

6. Nguyen TP, Razniewski S, Varde A, and Weikum G. Extracting cultural commonsense knowledge at scale. In: Proceedings

of the ACM Web Conference (WWW ‘23); 2023.

7. Iravanian S, Gowda S, Rackauckas C. Hybrid Symbolic-Numeric and Numerically-Assisted Symbolic Integration. In:

Proceedings of the 2024 International Symposium on Symbolic and Algebraic Computation; 2024.

8. Taihei Oki and Yujin Song. Structural preprocessing method for nonlinear differential-algebraic equations using linear

symbolic matrices. In: Proceedings of the 2024 International Symposium on Symbolic and Algebraic Computation (ISSAC

‘24); 2024.

9. Kaltofen EL. Encounters in Symbolic Computation: Ideas for the Ages. In: Proceedings of the 2024 International

Symposium on Symbolic and Algebraic Computation; 2024.

10. Gewaltig MO. Towards Simulating the Human Brain. In: Proceedings of the 2017 ACM SIGSIM Conference on Principles

of Advanced Discrete Simulation; 2017.

11. Meilong C, Xiehua Y, Shaozi L, et al. Design of Graphic Interactive Experimental Platform Based on MATLAB. In:

Proceedings of the 2022 12th International Conference on Information Technology in Medicine and Education (ITME);

2022.

12. Valina L, Teixeira B, Reis A, et al. Explainable Artificial Intelligence for Deep Synthetic Data Generation Models. In:

Proceedings of the 2024 IEEE Conference on Artificial Intelligence (CAI); 2024.

13. Hickling T, Zenati A, Aouf N, et al. Explainability in Deep Reinforcement Learning: A Review into Current Methods and

Applications. ACM Computing Surveys. 2023; 56(5): 1-35. doi: 10.1145/3623377.

14. Ahmed YA, Sharo A. On the education effect of CHATGPT: Is AI CHATGPT to dominate education career profession? In:

Proceedings of the 2023 International Conference on Intelligent Computing, Communication, Networking and Services

(ICCNS); 2023.

15. Arulmohan S, Meurs MJ, Mosser S. Extracting Domain Models from Textual Requirements in the Era of Large Language

Models. In: Proceedings of the 2023 ACM/IEEE International Conference on Model Driven Engineering Languages and

Systems Companion (MODELS-C); 2023.

16. Franceschelli G, Musolesi M. Creativity and Machine Learning: A Survey. ACM Computing Surveys. 2024; 56(11): 1-41.

doi: 10.1145/3664595

17. Subagdja B, Shanthoshigaa D, Wang Z, et al. Machine Learning for Refining Knowledge Graphs: A Survey. ACM

Computing Surveys. 2024; 56(6): 1-38. doi: 10.1145/3640313

18. Seyyedi A, Bohlouli M, Oskoee SN. Machine Learning and Physics: A Survey of Integrated Models. ACM Computing

Surveys. 2023; 56(5): 1-33. doi: 10.1145/3611383

19. Brunton SL, Kutz JN. Promising directions of machine learning for partial differential equations. Nature Computational

Science. 2024; 4(7): 483-494. doi: 10.1038/s43588-024-00643-2

20. Duan X, Wang X, Zhao P, et al. DeepLogic: Joint Learning of Neural Perception and Logical Reasoning. IEEE Transactions

on Pattern Analysis and Machine Intelligence. 2022: 1-14. doi: 10.1109/tpami.2022.3191093

21. Vamplew P, Foale C, Hayes CF, et al. Utility-based reinforcement learning: Unifying single-objective and multi-objective

reinforcement learning. In: Proceedings of the 23rd International Conference on Autonomous Agents and Multiagent

Systems (AAMAS ‘24); 2024.

22. Flageat M, Lim B, Cully A. Evolutionary Reinforcement Learning. In: Proceedings of the Genetic and Evolutionary

Computation Conference Companion; 2024.

23. Harada T, Alba E. Parallel Genetic Algorithms. ACM Computing Surveys. 2020; 53(4): 1-39. doi: 10.1145/3400031

24. Zamanzadeh Darban Z, Webb GI, Pan S, et al. Deep Learning for Time Series Anomaly Detection: A Survey. ACM

Computing Surveys. 2024; 57(1): 1-42. doi: 10.1145/3691338

Pure and New Mathematics in AI 2024, 1(1), 9798.

23

25. Wan Y, Bi Z, He Y, et al. Deep Learning for Code Intelligence: Survey, Benchmark and Toolkit. ACM Computing Surveys.

2024; 56(12): 1-41. doi: 10.1145/3664597

26. Wijesekara PADSN, Wang YK. A Mathematical Epidemiological Model (SEQIJRDS) to Recommend Public Health

Interventions Related to COVID-19 in Sri Lanka. COVID. 2022; 2(6): 793-826. doi: 10.3390/covid2060059

27. Wijesekara PADSN. Deep 3D Dynamic Object Detection towards Successful and Safe Navigation for Full Autonomous

Driving. The Open Transportation Journal. 2022; 16(1). doi: 10.2174/18744478-v16-e2208191

28. Nguyen K, Proença H, Alonso-Fernandez F. Deep Learning for Iris Recognition: A Survey. ACM Computing Surveys.

2024; 56(9): 1-35. doi: 10.1145/3651306

29. Spannaus A, Hanson HA, Tourassi G, et al. Topological Interpretability for Deep Learning. In: Proceedings of the Platform

for Advanced Scientific Computing Conference; 2024.

30. Kletsko E, van Rozen R. Advanced Game Engine Wizardry for Visual Programming Environments. In: Proceedings of the

3rd ACM SIGPLAN International Workshop on Programming Abstractions and Interactive Notations, Tools, and

Environments; 2024.

31. Homer M. Reclaiming the Unexplored in Hybrid Visual Programming. In: Proceedings of the 2024 ACM SIGPLAN

International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software; 2024.

32. Homer M. In-Line Compositional Visual Programming. In: Proceedings of the 8th International Conference on the Art,

Science, and Engineering of Programming; 2024.

33. Glock J. Aiding Developer Understanding of Software Changes via Symbolic Execution-based Semantic Differencing. In:

Proceedings of the 2024 IEEE/ACM 46th International Conference on Software Engineering: Companion Proceedings;

2024.

34. Krestel R, Aras H, Andersson L, et al. In: Proceedings of the 47th International ACM SIGIR Conference on Research and

Development in Information Retrieval, Proceedings of the 5th Workshop on Patent Text Mining and Semantic Technologies

(PatentSemTech2024); 2024.

35. Huang S, Luan Z. Semantic-Aware Log Understanding and Analysis. In: Proceedings of the 33rd International Symposium

on High-Performance Parallel and Distributed Computing; 2024.

36. Fang J, Wang W, Luo T, et al. Progressive Multimodal Pivot Learning: Towards Semantic Discordance Understanding as

Humans. In: Proceedings of the 33rd ACM International Conference on Information and Knowledge Management; 2024.

37. D’Aquin M, Bunoiu R, Cirstea H, et al. Combining representation formalisms for reasoning upon mathematical knowledge.

In: Proceedings of the 12th Knowledge Capture Conference 2023; 2023.

38. Liu J, Huang Z, Ma Z, et al. Guiding Mathematical Reasoning via Mastering Commonsense Formula Knowledge. In:

Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining; 2023.

39. Greiner-Petter A, Schubotz M, Müller F, et al. Discovering Mathematical Objects of Interest—A Study of Mathematical

Notations. In: Proceedings of The Web Conference 2020; 2020.

40. Zhao WX, Zhou K, Gong Z, et al. JiuZhang: A Chinese Pre-trained Language Model for Mathematical Problem

Understanding. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining; 2022.

41. Xu J, Fei H, Pan L, et al. Faithful logical reasoning via symbolic chain-of-thought. Available online:

https://arxiv.org/pdf/2405.18357.pdf (accessed on 1 May 2024).

Pure and New Mathematics in AI 2024, 1(1), 9798.

24

Appendix

(a) Data structure definitions

struct STRUCT_FUNTION_ENTRANCE

{

Boolean (*App)();

///Function pointer, the function parameters were the ID of the basic logic condition table and the pointers array

pointing to the I/O data pool. The logic meanings of the function parameters were initialized in the basic logic condition

table.

Char str_annotation [MAX_ATTRIBUTES_LIST_LEN]; /// The text string describing what the current function

could do.

Boolean bRet;///Function returned the Boolean value.

Boolean bSEL;///Function used the Boolean value as the flag, where “true” indicated that this function is

determined as the basic logic condition, and “false” indicated that this function was ignored.

};

struct STRUCT_GENERAL_FRAME_INTERFACE

{

Long nID;/// Current framework node identifier ID;

Boolean bInit=false;/// “false” for the first execution of the loop node, “true” for all others.

Int nType;///Divided into recursive nodes, loop beginning nodes, loop ending nodes, general nodes, etc;

struct STRUCT_GENERAL_FRAME_INTERFACE * pPrev;///Pointed to the previous framework node.

struct STRUCT_GENERAL_FRAME_INTERFACE * pTNext;///Pointed to the next framework node when the

function returned “true”.

struct STRUCT_GENERAL_FRAME_INTERFACE * pFNext;///Pointed to the next framework node when the

function returned “fslse”.

struct STRUCT_GENERAL_FRAME_INTERFACE * pSon;///Pointed to the first son framework node.

struct STRUCT_GENERAL_FRAME_INTERFACE * pFather;///Pointed to the parent framework node.

struct STRUCT_FUNTION_ENTRANCE * fun_init;/// Initialized the logic branch variables.

struct STRUCT-FUNTION-INTRANCE * fun_execute_body;///Logic branch function body.

struct STRUCT-FUNTION-INTRANCE * fun_rtn;///Logic branch function body returned values passing function.

struct STRUCT_FUNTION_ENTRANCE *sRefer_Table [MAX_OR_CONDITIONS_NUM]

[MAX_AND_FUNCTION_NUM];

///Two-dimension basic logic condition table

Boolean (*is_result_ validated) ();

///Function pointer for result validation.

Boolean (*Record_Input_Data) ();

///Function pointer for input data recording function.

Boolean (*Record_Output_Data) ();

///Function pointer for recording output results.

Boolean (*Record_Output_Format_Return) ();

///Function pointer for unified output format function.

};

(b) Variables definitions

Each framework node could be represented by the struct STRUCT_GENERAL_FRAME_INTERFACE, with the

following node variable declaration:

struct STRUCT_GENERAL_FRAME_INTERFACE A, B, C, D, E, F;

Pure and New Mathematics in AI 2024, 1(1), 9798.

25

struct STRUCT_GENERAL_FRAME_INTERFACE * pHead;

The initialization algorithm Init_chain_a() of the framework-oriented programming in Figure 5 was represented

as follows (the sRefer_Table pointer was NULL, indicating the unconditional execution of the function pointed by

fun_execute_body):

(c) Algorithm A1 Init_chain_a()

Algorithm A1 Init_chain_a()

1: Input: Framework nodes A, B, C, D, E, F;

2: Output: Framework net with the unified input entry pHead.

3: Algorithm description: Init_chain_a()

4: ① A.nID = 1; A.pPrev = NULL; A.pTNext = &B; A.pFNext = &B; A.pSon = NULL; A.pFathter = NULL;

A.fun_execute_body = …; memset(&(A. sRefer_Table [0][0]),0, MAX_OR_CONDITIONS_NUM *

MAX_AND_FUNCTION_NUM * sizeof(struct STRUCT_FUNTION_ENTRANCE)); … /// Initialize the context parameters

and function parameters of the framework node A.

5: ② B.nID = 2; B.pPrev = &A; B.pTNext = &C; B.pFNext = &C; B.pSon = NULL; B.pFathter = NULL;

B.fun_execute_body = …; memset(&(B. sRefer_Table [0][0]),0, MAX_OR_CONDITIONS_NUM *

MAX_AND_FUNCTION_NUM * sizeof(struct STRUCT_FUNTION_ENTRANCE)); …/// Initialize the context parameters

and function parameters of the framework node B.

6: ③ C.nID = 3; C.pPrev = &B; C.pTNext = &D; C.pFNext = &D; C.pSon = NULL; C.pFathter = NULL;

C.fun_execute_body = …; memset(&(C. sRefer_Table [0][0]),0, MAX_OR_CONDITIONS_NUM *

MAX_AND_FUNCTION_NUM * sizeof(struct STRUCT_FUNTION_ENTRANCE)); … /// Initialize the context parameters

and function parameters of the framework node C.

7: ④D.nID = 4; D.pPrev = &C; D.pTNext = NULL; D.pFNext = NULL; D.pSon = NULL; D.pFathter = NULL;

D.fun_execute_body = …; memset(&(D. sRefer_Table [0][0]),0, MAX_OR_CONDITIONS_NUM *

MAX_AND_FUNCTION_NUM * sizeof(struct STRUCT_FUNTION_ENTRANCE)); … /// Initialize the context parameters

and function parameters of the framework node D.

8: ⑤ pHead = &A;

(d) Algorithm add_chain_b()

The Algorithm A2 add_chain_b() of the framework-oriented programming process in Figure 6 could be listed as

follows:

Algorithm A2 add_chain_b()

1: Input: Framework nodes A, B, C, D, E;

2: Output: Framework net with the unified input entry pHead.

3: Algorithm description: add_chain_b()

4: ① Init_chain_a() /// Initialize the context parameters and function parameters of the framework node chain pHead.

5: ② E. sRefer_Table = B_E_sRefer;///”B_E_sRefer” was the prerequisite table for the function framework node B and E.

6: ③ B. pTNext =&C; B. pFNext =&E;///After framework node B was executed, turned to framework node C when returned

true, turned to framework node E when returned false.

7: ④ E.nID =5; E.pPrev=&B; E.pTNext=&C; E.pFNext=&C; E.pSon=NULL; E.pFathter=NULL; E.fun_execute_body=…;

memset(&(E. sRefer_Table [0][0]),0, MAX_OR_CONDITIONS_NUM * MAX_AND_FUNCTION_NUM * sizeof(struct

STRUCT_FUNTION_ENTRANCE));… /// After adding the new framework node E, it unconditionally switched to

framework node C (similar to the “else” statement of conditional statements).

(e) Algorithm add_chain_c()

The Algorithm A3 add_chain_c() of the framework-oriented programming process in Figure 7 could be listed as

follows:

Algorithm A3 add_chain_b()

1: Input: Framework nodes A, B, C, D, F;

2: Output: Framework net with the unified input entry pHead.

3: Algorithm description: add_chain_b()

4: ① Init_chain_a() /// Initialize the context parameters and function parameters of the framework node chain pHead.

Pure and New Mathematics in AI 2024, 1(1), 9798.

26

Algorithm A3 (Continued)

5: ② B. PTNext = &F; B. pFNext = &F;///After framework node B was executed, turned to framework node E.

6: ③ F. NID = 6; F.pPrev = &B; F.pTNext = &C; F.pFNext = &C; F.pSon = NULL; F.pFooter = NULL; F. fun_execute_body

= ...; F. sRefer_Table = B_F_sRefer;///”B_F_sRefer” was the prerequisite table for the framework node F; If the default

prerequisite was “false”, the function body fun_execute_body should not be executed and should directly switch to the

framework node C.

