
Pure and New Mathematics in AI 2024, 1(1), 8052.

https://doi.org/10.24294/pnmai8052

1

Article

The importance of fine-tuning Gurobi parameters when solving quadratic

knapsack problems: A guide for OR practitioners

Dominic Rando
1
, Yun Lu

2
, Myung Soon Song

2
, Francis J. Vasko

2,*

1 Computer Science Department, Kutztown University, Kutztown, PA 19530, USA
2 Department of Mathematics, Kutztown University, Kutztown, PA 19530, USA

* Corresponding author: Francis J. Vasko, vasko@kutztown.edu

Abstract: In the operations research (OR) literature several highly efficient solution methods

for the Quadratic Knapsack Problem (QKP) have been documented. However, these solution

approaches are not readily available for industrial applications. In this short paper, we

demonstrate that OR practitioners must be careful in their use of general-purpose integer

programming software such as Gurobi when solving QKPs. We verify the very positive impact

of fine-tuning parameters when solving QKPs with Gurobi.

Keywords: quadratic knapsack problem; general-purpose integer programming software;

Gurobi; parameter fine tuning; operations research practitioners

1. Introduction

The Quadratic Knapsack Problem (QKP) has many real-world industrial

applications in diverse areas such as telecommunications [1], computer compilers [2],

location of freight terminals [3], and wind farm layout optimization [4]. Hence

operations research (OR) practitioners need solution methods that will provide

guaranteed optimal or near-optimal solutions in a timely and cost-effect manner.

Although there are a number of highly efficient algorithms for solving the QKP that

appear in the OR literature, their computer codes are not readily available for industrial

use. As an example, the highly efficient QKP code QUADKNAP discussed in Caprara

et al. [5] comes with the following statement “This code can be used free of charge for

research and academic purposes only”. Additionally, even if such codes were offered

there would be no technical support available. For the OR practitioner to thoroughly

understand one of the QKP algorithms documented in the literature, then code it, test

and validate it and implement it for industrial use would be very time-consuming and

costly. Alternatively, many corporations (as of 12 March 2024 Gurobi claims over

2500 industrial customers spanning 40 industries world-wide) own Gurobi software

and routinely solve optimization problems using this software. In this short paper we

will demonstrate that when using Gurobi to solve QKPs, parameter fine-tuning is

critical to getting proven optimal solutions in a timely manner.

In the next section we will provide a mathematical formulation for the QKP. This

will be followed by a brief summary of the best performing algorithms for solving the

QKP. Then we analyze how well Gurobi performs when solving QKP instances from

the literature—first without and then with parameter fine-tuning. Several observations

will conclude the paper.

CITATION

Rando D, Lu Y, Song MS, Vasko FJ.

The importance of fine-tuning Gurobi

parameters when solving quadratic

knapsack problems: A guide for OR

practitioners. Pure and New

Mathematics in AI. 2024; 1(1): 8052.

https://doi.org/10.24294/pnmai8052

ARTICLE INFO

Received: 18 July 2024

Accepted: 12 September 2024

Available online: 11 November 2024

COPYRIGHT

Copyright © 2024 by author(s).

Pure and New Mathematics in AI is

published by EnPress Publisher,

LLC. This work is licensed under the

Creative Commons Attribution (CC

BY) license.

https://creativecommons.org/licenses/

by/4.0/

Pure and New Mathematics in AI 2024, 1(1), 8052.

2

2. Literature review of algorithms for solving the quadratic

knapsack problem

The QKP was first introduced by Gallo et al. [6]. Pisinger [7] provided a

comprehensive survey of the QKP. More recently, Cacchiani et al. [8] gave an

overview on recent advances dealing with the QKP. After giving the mathematical

formulation that appeared in Cacchiani et al. [8], we will focus on the main solution

algorithms that have appeared in the literature.

In the QKP we are given a knapsack with capacity c and n items having profit pj

and weight wj (j = 1, …, n). An extra non-negative profit pij is earned if both items i

and j are selected (i, j = 1, …, n; i > j). The objective function maximizes overall profit,

calculated as the sum of the profits of the selected items and of their pairwise profits.

This objective is achieved by inserting items into the knapsack such that the capacity

is not exceeding. Formally:

max ∑ 𝑝𝑗𝑥𝑗 + ∑ ∑ 𝑝𝑖𝑗𝑥𝑖𝑥𝑗

𝑛

𝑖=1+𝑗

𝑛−1

𝑗=1

𝑛

𝑗=1

s.t. ∑ 𝑤𝑗𝑥𝑗
𝑛
𝑗=1 ≤ 𝑐

𝑥𝑗 ∈ {0, 1} 𝑗 = 1, ⋯ , 𝑛

We will briefly review (in chronological order of publication) the main QKP

solution algorithms that appear in the literature.

Caprara et al. [5] introduce a branch and bound algorithm (Quadknap) for the

QKP, where upper bounds are computed by considering a Lagrangian that is solvable

through a series of continuous KPs. Notably, the C code for Quadknap is available for

research purposes only. Similarly, Billionnet and Soutif [9] propose a branch and

bound algorithm based on a Lagrangian decomposition. Building on these methods,

Pisinger et al. [10] develop an exact algorithm that employs a variable fixing procedure,

called aggressive reduction, which utilizes the upper bound suggested by Billionnet

and Soutif [9], along with another upper bound from Caprara et al. [5], while also

integrating several heuristic algorithms to compute lower bounds. Meanwhile, Cunha

et al. [11] describe two Lagrangian heuristics based on linear reformulations of the

problem, where Lagrangian dual bounds are generated, and their corresponding

solutions are applied as input to a primal heuristic. In contrast, Fomeni et al. [12]

present a cut-and-branch algorithm in which a sophisticated cutting plane phase is

followed by a branch-and-bound phase. Finally, Fomeni et al. [13] introduce a

heuristic that combines dynamic programming with a local search procedure, both of

which are adapted and implemented in the space of lifted variables of the QKP.

Although the above list is not all inclusive, it serves to demonstrate that there are

a significant number of highly specialized solution approaches for the QKP that have

been documented in the OR literature. Two more recent papers dealing with the QKP

are Fampa et al. [14] and Wu et al. [15]. However, since none of the computer codes

associated with these solution approaches are available for industrial use, it would

Pure and New Mathematics in AI 2024, 1(1), 8052.

3

require significant time and effort to implement one of these solution approaches for

an industrial application.

In the next section, using QKP instances available from Beasley’s OR Library,

we will analyze how well Gurobi can solve these instances; first without any parameter

fine-tuning and then with parameter fine-tuning.

3. Empirical results using QKP instances from Billionnet and Soutif

[9]

3.1. Description of the QKP instances

It is important to remember that the purpose of this paper is to demonstrate the

significant value in using Gurobi’s fine-tuning tool specifically when using Gurobi to

solve QKPs. Although the are other general-purpose integer programming software

packages available, we chose Gurobi because it had performed well on other binary

integer programming problems and its tuning tool had performed well for us in the

past.

We are not trying to solve all or most of the QKP instances that appear in the

literature. This paper is more a proof-of-concept paper instead of a comprehensive

computational study. We will consider the impact of parameter fine tuning on larger

QKP instances in future work. We downloaded from Beasley’s OR-Library the 100

QKP instances that are discussed in Billionnet and Soutif [9]. There are 10 instances

for the following combination of number of items and density. Where density refers

to the number of non-zero pij values. For example, if density is 25%, then only 25% of

the possible pij values are non-zero. The number of item-density combinations are:

100-25%, 100-50%, 100-75%, 100-100%, 200-25%, 200-50%, 200-75%, 200-100%,

300-25%, and 300-50% for a total of 100 instances. However, three of the files (100-

100%-#4, 200-25%-#3, 300-25%-#3) were corrupted and could not be used. Hence

the results are based on 97 QKP instances. Unless otherwise stated, all Gurobi (version

10.0) runs were executed on a PC with the following specifications: Intel® Core™ i3-

1005G1 CPU at 1.20 GHz with 8 GB of RAM at 2667 MHz.

3.2. Empirical results using all default parameter values

The authors have successfully solved more than 50,000 binary integer

programming problems using general-purpose integer programming software with

default parameter values. Among these instances were a large number of hard 0–1

knapsack problems [16] and multidimensional knapsack problems [17]. Hence, it

seemed reasonable to try Gurobi with all default parameter values to solve these QKP

instances. Using Gurobi in a default mode to solve an integer programming problem

means that either a mipgap value less than 0.0001 is achieved or the maximum time

has been reached. For a maximization problem mipgap is the difference between the

best upper bound minus the best current solution divided by the best current solution

[18]. Table 1 summaries the results of using Gurobi to solve these QKP instances with

a maximum execution time of 600s. Results are averaged over problem instances for

each number of items and density combination.

Pure and New Mathematics in AI 2024, 1(1), 8052.

4

Out of the 97 instances only 44 (45%) are solved to proven optimality in 600s or

less. The average execution time over all 97 QKP instances was 341.1 seconds. Only

the 100 items by 25% density case had all instances solved to proven optimality. When

using Gurobi to solve industrial applications it is important that the solutions are either

guaranteed to be optimal or that the solutions are guaranteed to be very close to the

optimums (very small mipgap values-- usually 0.2% or less). The large final mipgap

values in Table 1 are totally unacceptable to report to management.

Table 1. Results executing Gurobi with all defaults for up to 600s.

Number of

variables
Density

Average objective

function values
Average time

Maximum

time

Average

Final mipgap

Maximum

final mipgap

Percent Optimal

solutions

100 25 32,255 0.5 0.9 0.001% 0.006% 100%

100 50 66,582 246.0 600 2.716% 7.168% 60%

100 75 97,007 361.4 600 9.416% 27.464% 40%

100 100 144,578 337.5 600 4.308% 13.683% 44%

200 25 137,816 335.2 600 5.455% 26.523% 44%

200 50 287,394 481.1 600 9.646% 31.718% 20%

200 75 281,754 422.1 600 10.732% 33.339% 30%

200 100 468,919 492.8 600 26.966% 127.527% 20%

300 25 241,045 342.7 600 16.258% 119.683% 44%

300 50 583,268 396.0 600 5.406% 26.517% 50%

Overall averages 235,905 341.1 9.137% 45%

A simple second step to try to improve the Gurobi results is to increase the

maximum execution time. In Table 2 we show the results of executing Gurobi for a

maximum of 1200 seconds. Unfortunately, doubling the execution time had very little

impact on the solutions. Notice that there were no changes in any of the 97 objective

function values. Only three more proven optimal solutions were obtained. However,

the average execution time increased from 341.1 to 664.8 seconds and the average

final mipgap was only reduced from 9.137% to 8.831%. Hence, even with an average

execution time of over 11 minutes, less than 50% of the instances had obtained proven

optimums.

A number of recent papers that have appeared in the literature have reported

successfully obtaining tightly bounded solutions quickly on standard PCs. This is

achieved by systematically loosening the acceptable terminal mipgap value. This

approach is called the simple sequential increasing tolerance (SSIT) methodology and

an overview of SSIT is provided in Vasko et al. [19].

Table 2. Results executing Gurobi with all defaults for up to 1200s.

Number of

variables
Density

Average objective

function values

Average

time

Maximum

time

Average Final

mipgap

Maximum

final mipgap

Percent Optimal

solutions

100 25 32,255 0.5 1.0 0.001% 0.006% 100%

100 50 66,582 486.3 1200 2.426% 10.553% 60%

100 75 97,007 704.2 1200 8.698% 38.802% 50%

100 100 144,578 671.4 1200 3.922% 12.770% 44%

Pure and New Mathematics in AI 2024, 1(1), 8052.

5

Table 2. (Continued).

Number of

variables
Density

Average objective

function values

Average

time

Maximum

time

Average Final

mipgap

Maximum

final mipgap

Percent Optimal

solutions

200 25 137,816 668.8 1200 5.325% 16.255% 44%

200 50 287,394 952.4 1200 9.406% 31.084% 20%

200 75 281,754 842.1 1200 10.400% 32.637% 30%

200 100 468,919 972.2 1200 26.385% 89.499% 20%

300 25 241,045 676.4 1200 16.247% 119.683% 44%

300 50 583,268 677.4 1200 5.060% 26.154% 60%

Overall averages 235,905 664.8 8.831% 48%

Regrettably, because for many of these QKP instances the mipgap values are still

very large, the SSIT approach is inappropriate for solving these instances because it

cannot be expected to yield tight bounds in short execution times. In the next section

we will explore the possible benefit of using Gurobi’s parameters fine-tuning tool as

a means of obtaining guaranteed near-optimal solutions.

3.3. Background on Gurobi’s parameters tuning tool

Gurobi has a list of parameters that all have default values. When you optimize a

problem, Gurobi will automatically use the default settings for all parameters. Many

parameters have a default setting of −1, meaning that Gurobi will automatically decide

how to use that parameter. As an example, take the Cuts parameter. This parameter

can have an integer value of {−1, 0, 1, 2, 3} that decides how aggressive the cut

generation is. The default setting is −1, and Gurobi describes it as, “The default −1

value chooses automatically.” This means that Gurobi will decide how aggressive the

cuts should be depending on the problem it is optimizing.

While these parameters provide a tremendous amount of user control, the

immense number of possible choices can present a significant challenge when one is

searching for parameter settings that improve performance on a particular model.

Specifically, since there are 57 parameters that impact the performance of the Gurobi

(proprietary) search algorithms, it can be shown that there are more than 2 × 1034

possible parameter settings. Since trying to explore all possible settings is impractical,

the purpose of the Gurobi tuning tool is to automate this search. This tool is used to

help users choose parameter values that might lead to better performance on a problem.

Basically, the user selects a problem to be used as input to the Gurobi parameter tuning

tool to try to determine the best parameter values for this particular problem only. This

tool is typically executed for at least 12 hours to ensure that high quality parameter

values are obtained. More details on this tuning tool are available at [20] an general

information on Gurobi parameters is available at [21].

3.4. Empirical results using Gurobi’s parameters tuning tool

In order to try to obtain better parameter values to solve our 97 QKP instances,

we chose three instances that all had large mipgap values when Gurobi was terminated

at 1200 seconds. The Gurobi tuning tool was executed for 12 hours for each of these

three instances. The tuned parameter sets determined for these three instances were

Pure and New Mathematics in AI 2024, 1(1), 8052.

6

then used to solve all 97 QKP instances. We will only provide details for the parameter

set that gave the best results for the 97 QKP instances. These optimized parameter

values are given in Table 3.

Table 3. optimized parameter values based on 200 items by 75% density instance

#2.

Parameter Name Optimized Values Default Values

MIP Focus 2 0

Gomory Passes 5 −1 (none)

Pre-Q Linearize 2 −1

Branch Dir −1 0

Cuts 3 −1

In Table 3 we see that only 5 of the many Gurobi parameters needed to be tuned.

We will now give a brief description of each of these five parameters based on

information from Gurobi. Additional information is available at [21].

MIP Focus: The MIPFocus parameter allows you to modify your high-level

solution strategy, depending on your goals. By default, the Gurobi MIP solver strikes

a balance between finding new feasible solutions and proving that the current solution

is optimal. If you are more interested in finding feasible solutions quickly, you can

select MIPFocus = 1. If you believe the solver is having no trouble finding good

quality solutions, and wish to focus more attention on proving optimality, select

MIPFocus = 2. If the best objective bound is moving very slowly (or not at all), you

may want to try MIPFocus = 3 to focus on the bound.

Gomory Passes: A non-negative integer value indicates the maximum number of

Gomory cut passes performed. Overrides the Cuts parameter.

Pre-Q Linearize: Controls presolve Q matrix linearization. Binary variables in

quadratic expressions provide some freedom to state the same expression in multiple

different ways. Options 1 and 2 of this parameter attempt to linearize quadratic

constraints or a quadratic objective, replacing quadratic terms with linear terms, using

additional variables and linear constraints. This can potentially transform an MIQP or

MIQCP model into a MILP. Option 1 focuses on producing a MILP reformulation

with a strong LP relaxation, with a goal of limiting the size of the MIP search tree.

Option 2 aims for a compact reformulation, with a goal of reducing the cost of each

node. Option 0 attempts to leave Q matrices unmodified; it won’t add variables or

constraints, but it may still perform adjustments on quadratic objective functions to

make them positive semi-definite (PSD). The default setting (−1) chooses

automatically.

Branch Dir: Determines which child node is explored first in the branch-and-cut

search. The default value chooses automatically. A value of −1 will always explore

the down branch first, while a value of 1 will always explore the up branch first.

Cuts: This parameter controls how many cutting planes are generated and are

added to strengthen the LP relaxation. More cuts (Cuts = 2 or 3) in the problem also

means that solving every single node LP is more expensive. Additionally, adding lots

of cuts can also lead to numerical difficulties. Restricting the number of cuts (Cuts =

Pure and New Mathematics in AI 2024, 1(1), 8052.

7

1 or 0) on the other hand can weaken the LP relaxation and may lead to a higher

number of nodes until optimality.

The results of executing Gurobi to solve the 97 QKP instances using the tuned

parameter values from Table 3 are given in Table 4.

Table 4. Results executing Gurobi after fine-tuning for up to 1200s.

Number of variables Density
Average objective

function values
Average time Maximum time Average mipgap

Maximum

mipgap

Percent

optimums

100 25 32,255 0.7 1.1 0.000% 0.000% 100%

100 50 66,582 1.3 2.5 0.000% 0.000% 100%

100 75 97,007 3.2 8.4 0.001% 0.001% 100%

100 100 144,578 2.0 7.7 0.001% 0.001% 100%

200 25 137,816 10.1 38.5 0.000% 0.000% 100%

200 50 287,394 27.5 97.1 0.001% 0.001% 100%

200 75 281,754 113.6 802.9 0.001% 0.009% 100%

200 100 468,919 171.9 816.0 0.002% 0.009% 100%

300 25 241,045 25.1 44.4 0.003% 0.009% 100%

300 50 583,268 115.0 385.9 0.001% 0.006% 100%

Overall averages 235,905 48.4 0.001% 100%

From Table 4 we see that by adjusting just five parameters based on the Gurobi

tuning tool recommendation, we not only obtain proven optimums for ALL QKP

instances, but the average execution time is only 48.4 seconds! It is important to note

that the objective function values for all three of the scenarios discussed are exactly

the same. To the OR practitioner, the significant benefit of using the Gurobi tuning

tool when solving these QKPs is that guaranteed optimums were obtained for all of

these instances. It is important to have high confidence in the model outcomes when

major decisions are going to be made based on these results.

Since only five parameter adjustments resulted in such a major improvement in

obtaining optimums and reducing execution time, we were curious of the impact of

adjusting each of these five parameters one at a time. Because we did not want to incur

excessive execution times, we executed the seven scenarios given in Table 5 for a

maximum of 120 seconds per QKP instance. Additionally, we were interested in the

impact of setting Pre-Q Linearize equal to 1.

Table 5. Sensitivity results with maximum execution time of 120s.

Parameter adjusted and

value

Average objective function

value

Average execution time

(seconds)
Average final mipgap

Number of proven

optimums

All defaults 235,905 72 9.9% 42

MIP Focus = 2 235,902 68 7.3% 49

Gomory Passes =5 235,905 51 5.0% 62

Branch Dir = −1 235,905 76 10.4% 39

Cuts = 3 227,986 64 6.1% 52

PreQLinearize = 2 235,904 21 0.2% 86

PreQLinearize = 1 233,338 42 2.1% 71

Pure and New Mathematics in AI 2024, 1(1), 8052.

8

From Table 5 we see that the parameter with the single largest impact on solution

quality is when PreQLinearize is set to a value of 2. This is not surprising since we are

dealing with quadratic programming problems.

Another takeaway from the table is the difference between option 1 and 2 of

PreQLinearize. Gurobi’s fine-tuning tool chose the value of PreQLinearize to be set

to 2; however, the parameter still has a great effect on the mipgap and number of

proven optimums even when set to 1. Interestingly, the average objective function

value is much lower than most other runs, and this is due to how each parameter option

works. When using option 1, the tree has less nodes to traverse, so each solution found

has a great impact on the mipgap. However, since nodes take longer to traverse, Gurobi

is not able to find better solutions as quickly. This results in a low mipgap and a low

average objective function. On the other hand, Option 2 focuses on cutting the

traversal time between nodes, but has no impact on the size of the tree. This

modification greatly decreases the mipgap and solve time, suggesting that the solving

difficulty stems from the traversal time for each node in the MIP search tree.

Linearizing the QKP can have significant benefits. However, when solving a QKP

based on these empirical results, we recommend setting the PreQLinerize parameter

value to 2.

4. Summary and observations

In this short paper using quadratic knapsack problem (QKP) instances from the

literature, we use the general-purpose integer programming software Gurobi to try to

obtain proven optimums for these problems. Gurobi default parameter settings fail to

obtain optimums for even a majority of these instances in reasonable execution times.

However, after using parameter settings recommended by Gurobi’s parameter tuning

tool, proven optimums were obtained for all QKP instances in an average of only 48

seconds on a standard PC. The single most significant parameter setting for solving

these QKPs was setting PreQLinearize = 2.

Based on our experience solving over 50,000 binary integer programming

problems, the authors suggest first trying to solve the problems with all default Gurobi

parameter values. If these values do not provide desired results, then consider using

the Gurobi tuning tool.

Author contributions: Conceptualization, YL, DR, MSS and FJV; methodology, YL,

DR, MSS and FJV; software, DR; validation, YL, DR, MSS and FJV; formal analysis,

YL, DR, MSS and FJV; investigation, YL, DR, MSS and FJV; resources, DR; data

curation, DR; writing—original draft preparation, FJV; writing—review and editing,

YL, DR, MSS and FJV; visualization, YL, DR, MSS and FJV; supervision, YL and

FJV; project administration, YL. All authors have read and agreed to the published

version of the manuscript.

Conflict of interest: The authors declare no conflict of interest.

References

1. Witzgall, C.: Mathematical methods of site selection for electronic message system (ems). Technical Report, NBS Internal

Report, 1975.

Pure and New Mathematics in AI 2024, 1(1), 8052.

9

2. Johnson, E., Mehrotra, A., Nemhauser, G.: Min-cut clustering. 1993. Math. Program. 1993, 62, 133–151.

3. Rhys, J.: A selection problem of shared fixed costs and network flows. 1970, Manag. Sci. 17, 200–207.

4. Quan, N., Harrison, K. M., A tight upper bound for quadratic knapsack problems in grid-based wind farm layout

optimization. Eng. Optim. 2024, 50,3, 367-381.

5. Caprara, A., Pisinger, D., Toth, P. Exact solution of the quadratic knapsack problem. INFORMS J. Comput. 1998, 11: 125–

137.

6. Gallo, G., Hammer, P.L., Simeone, B. Quadratic knapsack problems, Math. Program. Stud. 1980, 12: 132–149.

7. Pisinger, D. The quadratic knapsack problem — a survey. Discrete Appl. Math. 2007, 155: 623–648.

8. Cacchiani, V., Lori, M., Locvatelli, A., Martello, S. Knapsack problems-an overview of recent advances. Part II: multiple,

multidimensional, and quadratic knapsack problems. Computers & Operations Research. 2022, 143. 105693.

9. Billionnet, A., Soutif, E. An exact method based on Lagrangian decomposition for the 0–1 quadratic knapsack problem.

European J. Oper. Res. 2004, 157: 565–575.

10. Pisinger, D., Rasmussen, A.B., Sandvik. R. Solution of large quadratic knapsack problems through aggressive reduction.

INFORMS J. Comput. 2007, 19: 280–290.

11. Cunha, J.O., Simonetti, L., Lucena, A. Lagrangian heuristics for the Quadratic Knapsack Problem. Comput Optim Appl.

2016, 63: 97-120. https://doi.org/10.1007/s10589-015-9763-3.

12. Fomeni, F.D., Kaparis, K., Letchford, A.N. A cut-and-branch algorithm for the Quadratic Knapsack Problem. Discrete

Optimization. 2022, 44: 1-18. https://doi.org/10.1016/j.dispot.2020.100579.

13. Fomeni. F.D. A lifted-space dynamic programming algorithm for the Quadratic Knapsack Problem. Discrete Applied

Mathematics. 2023, 335: 52-68. https://doi.org/10.1016/j.dam.2023./02.003.

14. Fampa, M., Lubke, D., Wang, F., Wolkowicz, H., 2020. Parametric convex quadratic relaxation of the quadratic knapsack

problem. Eur. J. Oper. Res. 281, 36–49.

15. Wu, Z., Jiang, B., Karimi, H.R., 2020. A logarithmic descent direction algorithm for the quadratic knapsack problem. Appl.

Math. Comput. 369, 124854. Xie, X.F., Liu, J., 2007.

16. Song, M. S., Lin, P. H., Lu, Y., Shively-ertas, E., Vasko, F. J. 2024 A practical approach for dealing with hard knapsack

problems using general-purpose integer programming software, Intl. Trans. In Op. Res. 1-22.

https://doi.org/10.1111/itor.13449

17. Lu, Y., McNally, B., Shively-Ertas, E., Vasko, F. J. 2021."A Simple and Efficient Technique to Generate Bounded Solutions

for the Multidimensional Knapsack Problem: a Guide for OR Practitioners", International Journal of Circuits, Systems and

Signal Processing. https://doi.org/10.46300/9106.2021.15.178

18. https://support.gurobi.com/hc/en-us/articles/8265539575953-What-is-the-MIPGap.

19. Vasko, F.J., Lu, Y., Song, M.S. Solving hard combinatorial optimization problems with general purpose integer

programming software: a guide for OR practitioners. Inside OR. 2023, 627: 13.

20. https://www.gurobi.com/documentation/current/refman/parameter_tuning_tool.html

21. https://www.gurobi.com/documentation/current/refman/parameters.html

