
Pure and New Mathematics in AI 2024, 1(1), 8052. 

https://doi.org/10.24294/pnmai8052 

1 

Article 

The importance of fine-tuning Gurobi parameters when solving quadratic 

knapsack problems: A guide for OR practitioners 

Dominic Rando
1
, Yun Lu

2
, Myung Soon Song

2
, Francis J. Vasko

2,*
 

1 Computer Science Department, Kutztown University, Kutztown, PA 19530, USA 
2 Department of Mathematics, Kutztown University, Kutztown, PA 19530, USA 

* Corresponding author: Francis J. Vasko, vasko@kutztown.edu 

Abstract: In the operations research (OR) literature several highly efficient solution methods 

for the Quadratic Knapsack Problem (QKP) have been documented. However, these solution 

approaches are not readily available for industrial applications. In this short paper, we 

demonstrate that OR practitioners must be careful in their use of general-purpose integer 

programming software such as Gurobi when solving QKPs. We verify the very positive impact 

of fine-tuning parameters when solving QKPs with Gurobi. 
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1. Introduction 

The Quadratic Knapsack Problem (QKP) has many real-world industrial 

applications in diverse areas such as telecommunications [1], computer compilers [2], 

location of freight terminals [3], and wind farm layout optimization [4]. Hence 

operations research (OR) practitioners need solution methods that will provide 

guaranteed optimal or near-optimal solutions in a timely and cost-effect manner. 

Although there are a number of highly efficient algorithms for solving the QKP that 

appear in the OR literature, their computer codes are not readily available for industrial 

use. As an example, the highly efficient QKP code QUADKNAP discussed in Caprara 

et al. [5] comes with the following statement “This code can be used free of charge for 

research and academic purposes only”. Additionally, even if such codes were offered 

there would be no technical support available. For the OR practitioner to thoroughly 

understand one of the QKP algorithms documented in the literature, then code it, test 

and validate it and implement it for industrial use would be very time-consuming and 

costly. Alternatively, many corporations (as of 12 March 2024 Gurobi claims over 

2500 industrial customers spanning 40 industries world-wide) own Gurobi software 

and routinely solve optimization problems using this software. In this short paper we 

will demonstrate that when using Gurobi to solve QKPs, parameter fine-tuning is 

critical to getting proven optimal solutions in a timely manner. 

In the next section we will provide a mathematical formulation for the QKP. This 

will be followed by a brief summary of the best performing algorithms for solving the 

QKP. Then we analyze how well Gurobi performs when solving QKP instances from 

the literature—first without and then with parameter fine-tuning.  Several observations 

will conclude the paper. 
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2. Literature review of algorithms for solving the quadratic 

knapsack problem 

The QKP was first introduced by Gallo et al. [6]. Pisinger [7] provided a 

comprehensive survey of the QKP. More recently, Cacchiani et al. [8] gave an 

overview on recent advances dealing with the QKP. After giving the mathematical 

formulation that appeared in Cacchiani et al. [8], we will focus on the main solution 

algorithms that have appeared in the literature. 

In the QKP we are given a knapsack with capacity c and n items having profit pj 

and weight wj (j = 1, …, n). An extra non-negative profit pij is earned if both items i 

and j are selected (i, j = 1, …, n; i > j). The objective function maximizes overall profit, 

calculated as the sum of the profits of the selected items and of their pairwise profits. 

This objective is achieved by inserting items into the knapsack such that the capacity 

is not exceeding. Formally: 

max ∑ 𝑝𝑗𝑥𝑗 + ∑ ∑ 𝑝𝑖𝑗𝑥𝑖𝑥𝑗

𝑛

𝑖=1+𝑗

𝑛−1

𝑗=1

𝑛

𝑗=1

 

s.t. ∑ 𝑤𝑗𝑥𝑗
𝑛
𝑗=1 ≤ 𝑐 

𝑥𝑗 ∈ {0, 1} 𝑗 = 1, ⋯ , 𝑛 

We will briefly review (in chronological order of publication) the main QKP 

solution algorithms that appear in the literature. 

Caprara et al. [5] introduce a branch and bound algorithm (Quadknap) for the 

QKP, where upper bounds are computed by considering a Lagrangian that is solvable 

through a series of continuous KPs. Notably, the C code for Quadknap is available for 

research purposes only. Similarly, Billionnet and Soutif [9] propose a branch and 

bound algorithm based on a Lagrangian decomposition. Building on these methods, 

Pisinger et al. [10] develop an exact algorithm that employs a variable fixing procedure, 

called aggressive reduction, which utilizes the upper bound suggested by Billionnet 

and Soutif [9], along with another upper bound from Caprara et al. [5], while also 

integrating several heuristic algorithms to compute lower bounds. Meanwhile, Cunha 

et al. [11] describe two Lagrangian heuristics based on linear reformulations of the 

problem, where Lagrangian dual bounds are generated, and their corresponding 

solutions are applied as input to a primal heuristic. In contrast, Fomeni et al. [12] 

present a cut-and-branch algorithm in which a sophisticated cutting plane phase is 

followed by a branch-and-bound phase. Finally, Fomeni et al. [13] introduce a 

heuristic that combines dynamic programming with a local search procedure, both of 

which are adapted and implemented in the space of lifted variables of the QKP. 

Although the above list is not all inclusive, it serves to demonstrate that there are 

a significant number of highly specialized solution approaches for the QKP that have 

been documented in the OR literature. Two more recent papers dealing with the QKP 

are Fampa et al. [14] and Wu et al. [15]. However, since none of the computer codes 

associated with these solution approaches are available for industrial use, it would 
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require significant time and effort to implement one of these solution approaches for 

an industrial application. 

In the next section, using QKP instances available from Beasley’s OR Library, 

we will analyze how well Gurobi can solve these instances; first without any parameter 

fine-tuning and then with parameter fine-tuning. 

3. Empirical results using QKP instances from Billionnet and Soutif 

[9] 

3.1. Description of the QKP instances 

It is important to remember that the purpose of this paper is to demonstrate the 

significant value in using Gurobi’s fine-tuning tool specifically when using Gurobi to 

solve QKPs. Although the are other general-purpose integer programming software 

packages available, we chose Gurobi because it had performed well on other binary 

integer programming problems and its tuning tool had performed well for us in the 

past. 

We are not trying to solve all or most of the QKP instances that appear in the 

literature. This paper is more a proof-of-concept paper instead of a comprehensive 

computational study. We will consider the impact of parameter fine tuning on larger 

QKP instances in future work. We downloaded from Beasley’s OR-Library the 100 

QKP instances that are discussed in Billionnet and Soutif [9]. There are 10 instances 

for the following combination of number of items and density. Where density refers 

to the number of non-zero pij values. For example, if density is 25%, then only 25% of 

the possible pij values are non-zero. The number of item-density combinations are: 

100-25%, 100-50%, 100-75%, 100-100%, 200-25%, 200-50%, 200-75%, 200-100%, 

300-25%, and 300-50% for a total of 100 instances. However, three of the files (100-

100%-#4, 200-25%-#3, 300-25%-#3) were corrupted and could not be used. Hence 

the results are based on 97 QKP instances. Unless otherwise stated, all Gurobi (version 

10.0) runs were executed on a PC with the following specifications: Intel® Core™ i3-

1005G1 CPU at 1.20 GHz with 8 GB of RAM at 2667 MHz. 

3.2. Empirical results using all default parameter values 

The authors have successfully solved more than 50,000 binary integer 

programming problems using general-purpose integer programming software with 

default parameter values. Among these instances were a large number of hard 0–1 

knapsack problems [16] and multidimensional knapsack problems [17]. Hence, it 

seemed reasonable to try Gurobi with all default parameter values to solve these QKP 

instances. Using Gurobi in a default mode to solve an integer programming problem 

means that either a mipgap value less than 0.0001 is achieved or the maximum time 

has been reached. For a maximization problem mipgap is the difference between the 

best upper bound minus the best current solution divided by the best current solution 

[18]. Table 1 summaries the results of using Gurobi to solve these QKP instances with 

a maximum execution time of 600s. Results are averaged over problem instances for 

each number of items and density combination. 
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Out of the 97 instances only 44 (45%) are solved to proven optimality in 600s or 

less. The average execution time over all 97 QKP instances was 341.1 seconds. Only 

the 100 items by 25% density case had all instances solved to proven optimality. When 

using Gurobi to solve industrial applications it is important that the solutions are either 

guaranteed to be optimal or that the solutions are guaranteed to be very close to the 

optimums (very small mipgap values-- usually 0.2% or less). The large final mipgap 

values in Table 1 are totally unacceptable to report to management. 

Table 1. Results executing Gurobi with all defaults for up to 600s. 

Number of 

variables 
Density 

Average objective 

function values 
Average time 

Maximum 

time 

Average 

Final mipgap 

Maximum 

final mipgap 

Percent Optimal 

solutions 

100 25 32,255 0.5 0.9 0.001% 0.006% 100% 

100 50 66,582 246.0 600 2.716% 7.168% 60% 

100 75 97,007 361.4 600 9.416% 27.464% 40% 

100 100 144,578 337.5 600 4.308% 13.683% 44% 

200 25 137,816 335.2 600 5.455% 26.523% 44% 

200 50 287,394 481.1 600 9.646% 31.718% 20% 

200 75 281,754 422.1 600 10.732% 33.339% 30% 

200 100 468,919 492.8 600 26.966% 127.527% 20% 

300 25 241,045 342.7 600 16.258% 119.683% 44% 

300 50 583,268 396.0 600 5.406% 26.517% 50% 

Overall averages 235,905 341.1  9.137%  45% 

A simple second step to try to improve the Gurobi results is to increase the 

maximum execution time. In Table 2 we show the results of executing Gurobi for a 

maximum of 1200 seconds. Unfortunately, doubling the execution time had very little 

impact on the solutions. Notice that there were no changes in any of the 97 objective 

function values. Only three more proven optimal solutions were obtained. However, 

the average execution time increased from 341.1 to 664.8 seconds and the average 

final mipgap was only reduced from 9.137% to 8.831%. Hence, even with an average 

execution time of over 11 minutes, less than 50% of the instances had obtained proven 

optimums. 

A number of recent papers that have appeared in the literature have reported 

successfully obtaining tightly bounded solutions quickly on standard PCs. This is 

achieved by systematically loosening the acceptable terminal mipgap value. This 

approach is called the simple sequential increasing tolerance (SSIT) methodology and 

an overview of SSIT is provided in Vasko et al. [19]. 

Table 2. Results executing Gurobi with all defaults for up to 1200s. 

Number of 

variables 
Density 

Average objective 

function values 

Average 

time 

Maximum 

time 

Average Final 

mipgap 

Maximum 

final mipgap 

Percent Optimal 

solutions 

100 25 32,255 0.5 1.0 0.001% 0.006% 100% 

100 50 66,582 486.3 1200 2.426% 10.553% 60% 

100 75 97,007 704.2 1200 8.698% 38.802% 50% 

100 100 144,578 671.4 1200 3.922% 12.770% 44% 
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Table 2. (Continued). 

Number of 

variables 
Density 

Average objective 

function values 

Average 

time 

Maximum 

time 

Average Final 

mipgap 

Maximum 

final mipgap 

Percent Optimal 

solutions 

200 25 137,816 668.8 1200 5.325% 16.255% 44% 

200 50 287,394 952.4 1200 9.406% 31.084% 20% 

200 75 281,754 842.1 1200 10.400% 32.637% 30% 

200 100 468,919 972.2 1200 26.385% 89.499% 20% 

300 25 241,045 676.4 1200 16.247% 119.683% 44% 

300 50 583,268 677.4 1200 5.060% 26.154% 60% 

Overall averages 235,905 664.8  8.831%  48% 

Regrettably, because for many of these QKP instances the mipgap values are still 

very large, the SSIT approach is inappropriate for solving these instances because it 

cannot be expected to yield tight bounds in short execution times. In the next section 

we will explore the possible benefit of using Gurobi’s parameters fine-tuning tool as 

a means of obtaining guaranteed near-optimal solutions. 

3.3. Background on Gurobi’s parameters tuning tool 

Gurobi has a list of parameters that all have default values. When you optimize a 

problem, Gurobi will automatically use the default settings for all parameters. Many 

parameters have a default setting of −1, meaning that Gurobi will automatically decide 

how to use that parameter. As an example, take the Cuts parameter. This parameter 

can have an integer value of {−1, 0, 1, 2, 3} that decides how aggressive the cut 

generation is. The default setting is −1, and Gurobi describes it as, “The default −1 

value chooses automatically.” This means that Gurobi will decide how aggressive the 

cuts should be depending on the problem it is optimizing. 

While these parameters provide a tremendous amount of user control, the 

immense number of possible choices can present a significant challenge when one is 

searching for parameter settings that improve performance on a particular model. 

Specifically, since there are 57 parameters that impact the performance of the Gurobi 

(proprietary) search algorithms, it can be shown that there are more than 2 × 1034 

possible parameter settings. Since trying to explore all possible settings is impractical, 

the purpose of the Gurobi tuning tool is to automate this search. This tool is used to 

help users choose parameter values that might lead to better performance on a problem. 

Basically, the user selects a problem to be used as input to the Gurobi parameter tuning 

tool to try to determine the best parameter values for this particular problem only. This 

tool is typically executed for at least 12 hours to ensure that high quality parameter 

values are obtained. More details on this tuning tool are available at [20] an general 

information on Gurobi parameters is available at [21]. 

3.4. Empirical results using Gurobi’s parameters tuning tool 

In order to try to obtain better parameter values to solve our 97 QKP instances, 

we chose three instances that all had large mipgap values when Gurobi was terminated 

at 1200 seconds. The Gurobi tuning tool was executed for 12 hours for each of these 

three instances. The tuned parameter sets determined for these three instances were 
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then used to solve all 97 QKP instances. We will only provide details for the parameter 

set that gave the best results for the 97 QKP instances. These optimized parameter 

values are given in Table 3. 

Table 3. optimized parameter values based on 200 items by 75% density instance 

#2. 

Parameter Name Optimized Values Default Values 

MIP Focus 2 0 

Gomory Passes 5 −1 (none) 

Pre-Q Linearize 2 −1 

Branch Dir −1 0 

Cuts 3 −1 

In Table 3 we see that only 5 of the many Gurobi parameters needed to be tuned. 

We will now give a brief description of each of these five parameters based on 

information from Gurobi. Additional information is available at [21]. 

MIP Focus: The MIPFocus parameter allows you to modify your high-level 

solution strategy, depending on your goals. By default, the Gurobi MIP solver strikes 

a balance between finding new feasible solutions and proving that the current solution 

is optimal. If you are more interested in finding feasible solutions quickly, you can 

select MIPFocus = 1. If you believe the solver is having no trouble finding good 

quality solutions, and wish to focus more attention on proving optimality, select 

MIPFocus = 2. If the best objective bound is moving very slowly (or not at all), you 

may want to try MIPFocus = 3 to focus on the bound. 

Gomory Passes: A non-negative integer value indicates the maximum number of 

Gomory cut passes performed. Overrides the Cuts parameter. 

Pre-Q Linearize: Controls presolve Q matrix linearization. Binary variables in 

quadratic expressions provide some freedom to state the same expression in multiple 

different ways. Options 1 and 2 of this parameter attempt to linearize quadratic 

constraints or a quadratic objective, replacing quadratic terms with linear terms, using 

additional variables and linear constraints. This can potentially transform an MIQP or 

MIQCP model into a MILP. Option 1 focuses on producing a MILP reformulation 

with a strong LP relaxation, with a goal of limiting the size of the MIP search tree. 

Option 2 aims for a compact reformulation, with a goal of reducing the cost of each 

node. Option 0 attempts to leave Q matrices unmodified; it won’t add variables or 

constraints, but it may still perform adjustments on quadratic objective functions to 

make them positive semi-definite (PSD). The default setting (−1) chooses 

automatically. 

Branch Dir: Determines which child node is explored first in the branch-and-cut 

search. The default value chooses automatically. A value of −1 will always explore 

the down branch first, while a value of 1 will always explore the up branch first. 

Cuts: This parameter controls how many cutting planes are generated and are 

added to strengthen the LP relaxation. More cuts (Cuts = 2 or 3) in the problem also 

means that solving every single node LP is more expensive. Additionally, adding lots 

of cuts can also lead to numerical difficulties.  Restricting the number of cuts (Cuts = 
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1 or 0) on the other hand can weaken the LP relaxation and may lead to a higher 

number of nodes until optimality. 

The results of executing Gurobi to solve the 97 QKP instances using the tuned 

parameter values from Table 3 are given in Table 4. 

Table 4. Results executing Gurobi after fine-tuning for up to 1200s. 

Number of variables Density 
Average objective 

function values 
Average time Maximum time Average mipgap 

Maximum 

mipgap 

Percent 

optimums 

100 25 32,255 0.7 1.1 0.000% 0.000% 100% 

100 50 66,582 1.3 2.5 0.000% 0.000% 100% 

100 75 97,007 3.2 8.4 0.001% 0.001% 100% 

100 100 144,578 2.0 7.7 0.001% 0.001% 100% 

200 25 137,816 10.1 38.5 0.000% 0.000% 100% 

200 50 287,394 27.5 97.1 0.001% 0.001% 100% 

200 75 281,754 113.6 802.9 0.001% 0.009% 100% 

200 100 468,919 171.9 816.0 0.002% 0.009% 100% 

300 25 241,045 25.1 44.4 0.003% 0.009% 100% 

300 50 583,268 115.0 385.9 0.001% 0.006% 100% 

Overall averages 235,905 48.4  0.001%  100% 

From Table 4 we see that by adjusting just five parameters based on the Gurobi 

tuning tool recommendation, we not only obtain proven optimums for ALL QKP 

instances, but the average execution time is only 48.4 seconds! It is important to note 

that the objective function values for all three of the scenarios discussed are exactly 

the same. To the OR practitioner, the significant benefit of using the Gurobi tuning 

tool when solving these QKPs is that guaranteed optimums were obtained for all of 

these instances. It is important to have high confidence in the model outcomes when 

major decisions are going to be made based on these results. 

Since only five parameter adjustments resulted in such a major improvement in 

obtaining optimums and reducing execution time, we were curious of the impact of 

adjusting each of these five parameters one at a time. Because we did not want to incur 

excessive execution times, we executed the seven scenarios given in Table 5 for a 

maximum of 120 seconds per QKP instance. Additionally, we were interested in the 

impact of setting Pre-Q Linearize equal to 1. 

Table 5. Sensitivity results with maximum execution time of 120s. 

Parameter adjusted and 

value 

Average objective function 

value 

Average execution time 

(seconds) 
Average final mipgap 

Number of proven 

optimums 

All defaults 235,905 72 9.9% 42 

MIP Focus = 2 235,902 68 7.3% 49 

Gomory Passes =5 235,905 51 5.0% 62 

Branch Dir = −1 235,905 76 10.4% 39 

Cuts = 3 227,986 64 6.1% 52 

PreQLinearize = 2 235,904 21 0.2% 86 

PreQLinearize = 1 233,338 42 2.1% 71 
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From Table 5 we see that the parameter with the single largest impact on solution 

quality is when PreQLinearize is set to a value of 2. This is not surprising since we are 

dealing with quadratic programming problems. 

Another takeaway from the table is the difference between option 1 and 2 of 

PreQLinearize. Gurobi’s fine-tuning tool chose the value of PreQLinearize to be set 

to 2; however, the parameter still has a great effect on the mipgap and number of 

proven optimums even when set to 1. Interestingly, the average objective function 

value is much lower than most other runs, and this is due to how each parameter option 

works. When using option 1, the tree has less nodes to traverse, so each solution found 

has a great impact on the mipgap. However, since nodes take longer to traverse, Gurobi 

is not able to find better solutions as quickly. This results in a low mipgap and a low 

average objective function. On the other hand, Option 2 focuses on cutting the 

traversal time between nodes, but has no impact on the size of the tree. This 

modification greatly decreases the mipgap and solve time, suggesting that the solving 

difficulty stems from the traversal time for each node in the MIP search tree. 

Linearizing the QKP can have significant benefits. However, when solving a QKP 

based on these empirical results, we recommend setting the PreQLinerize parameter 

value to 2. 

4. Summary and observations 

In this short paper using quadratic knapsack problem (QKP) instances from the 

literature, we use the general-purpose integer programming software Gurobi to try to 

obtain proven optimums for these problems. Gurobi default parameter settings fail to 

obtain optimums for even a majority of these instances in reasonable execution times. 

However, after using parameter settings recommended by Gurobi’s parameter tuning 

tool, proven optimums were obtained for all QKP instances in an average of only 48 

seconds on a standard PC. The single most significant parameter setting for solving 

these QKPs was setting PreQLinearize = 2. 

Based on our experience solving over 50,000 binary integer programming 

problems, the authors suggest first trying to solve the problems with all default Gurobi 

parameter values. If these values do not provide desired results, then consider using 

the Gurobi tuning tool. 
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