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Abstract: New estimations on settling-time for fixed-time stabilization of nonlinear sys-
tems are derived. By using the new proposed results on fixed-time stable and design-
ing proper effective event-triggered control (ETC), fixed-time stabilization (FTS) for a
kind of delayed neural networks is investigated. The new estimations on settling-time
for fixed-time stabilization can be used to discussed other systems, such as complex
networks, multi-agent systems and so on. At last, example simulations are given to
corroborate the effectiveness of the derived results.

Keywords: fixed-time stabilization; neural networks; distributed delays; event-triggered con-
trol

1. Introduction
Neural networks(NNs) have important applications in lots of fields such as information se-

curity [1] and forecasting [2], and these applications heavily depend on the dynamic behaviours
of NNs [3–7]. Among them, stabilization has been given more discussions and many good re-
ports have been found in these years. In 2010, Phat and Trinh [5] discussed exponential stabi-
lization of NNs with various activation functions and mixed time-varying delays via feedback
controllers. In 2019, Wang et al. [6] investigated finite-time stabilization(FS) of memristor-
based inertial NNs with distributed delays with feedback controller. In 2020, Zhang and Zeng
[5] studied global stabilization of second-order memristive NNs via feedback controller and
non-reduced order method.

Unfortunately, the previous works [5–7] are all about asymptotic stabilization or FS for
NNs. Convergence time of asymptotic stabilization will tend to infinite that do not satisfy in-
stantaneous motion control. Because the settling-time function(STF) of FS depends on initial
values of NNs, which settling-time is difficult to estimate if the initial values of NNs can not be
got. In 2012, Polyakov [8] showed the fixed-time stability results, and the upper bound of STF
for fixed-time stability is a fixed positive constant. In recent years, fixed-time stabilization(FTS)
and synchronization of NNs has attracted the attention of scholars and many meaningful results
have been achieved. In 2017, Hu et al. [9] studied fixed-time stability of coupled discontinu-
ous NNs. In 2019, Chen et al. [10] obtained synchronization in fixed-time of memristive NNs.
In 2023, Zhang and Cao [11] showed fixed-time synchronization of delayed fuzzy inertial dis-
continuous NNs with non-reduced order approach. Zhang et al. [12] given further results on
fixed-time projective lag synchronization control of delayed hybrid inertial NNs via feedback
controller.

Noteworthy, the above works [5–7,9–12] all use feedback control to investigate stabiliza-
tion or synchronization. Feedback control usual causes high control costs and low efficiency.
Unlike feedback control, event-triggered control(ETC) has both advantages in enhancing ef-
ficiency and saving costs due to its control signals update only if the preassigned triggering
condition is triggered. In these years, many meaningful results on ETC of NNs are reported,
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e.g., see [13–16]. In 2021, by event-triggered impulsive control, Chen et al. [15] gave some
effective results on synchronization of multiple NNs. In 2023, Zhang [16] derived some novel
results on FTS of delayed discontinuous NNs with ETC.

However, the fixed-time lemma used in most of the previous works are given by Polyakov
[8]. The upper bound of the settling-time showed in Polyakov [8] is more bigger and need re-
estimate to get more accurate one. Therefore, the authors of [9, 10] extended the fixed-time
lemma given in Polyakov [8]. And with the development of analysis, more accurate settling-
time of fixed-time stable will be reached. So, in this article, wewill further extend the fixed-time
lemmas to get more accurate settling-time, then, the new extended lemmas on fixed-time stable
are applied to discuss FTS of NNs with distributed delays. The new points of this article are:

(1) New estimations on settling-time of fixed-time stable are given, which are more accurate
than the previous one showed in [8, 10], and some details are also listed to show the
advantages of the proposed results.

(2) Some corresponding flexible algebraic criteria on FTS of NNs with distributed delays are
given. Here, the time delays do not need differentiable and their derivatives less than
one.

(3) Different from the feedback control used in [5–7,9–12], an effective ETC is constructed
in this article to realize FTS of the delayed NNs. We think that the proposed method
and ETC can be used to discuss more complex systems, such as NNs with inertial items
[11,12] and NNs with state-based switching [14,15].

The following structures are: Part 2 shows the preliminaries. Part 3 gives new results on
FTS of delayed NNs. Part 4, simulations are reached. Finally, conclusions are given.

For convenience, Table 1 is given following to show some mathematical notations.

Table 1. Mathematical notations of this article.

Notation Mathematical description

P Set {1, 2, 3, ...m}
Rm m-dimensional Euclidean space
∥k∥1 1− norm of vector k ∈ Rm

τ maxl∈P{σl, ϱl}
Lj max{|L−

j |, |L
+
j |}

C([−τ, 0],Rm) All continuous functions in Banach space
C1(Rm,R+) All nonnegative differentiable functions

2. Preliminaries

2.1. Model, assumption, definitions and Lemmas
The NNs with distributed delays is

dxl(t)
dt

=− αlxl(t) +

m∑
j=1

βljΓj(xj(t)) +

m∑
j=1

γlj

× Γj(xj(t− σj(t))) +

m∑
j=1

δlj (1)

×
∫ t

t−ϱj(t)

Γj(xj(s))ds, l ∈ P , t ⩾ 0

where xl(t) is the l-th neural state, αl > 0, βlj , γlj , δlj are connect weights, Γj(·) is the bounded
feedback function, and time delays σj(t) > 0, ϱj(t) ⩾ 0 which satisfy σj(t) ⩽ σj , ϱj(t) ⩽ ϱj .
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Initional positions of NNs (1) are xl(s) = 𝟋l(s), and 𝟋l(s) ∈ C([−τ, 0],R), l ∈ P .

Assumption 1. For ∀S1,S2 ∈ R, Γj(·) in NNs (1) fulfils Γj(0) = 0 and

L−
j ≤ Γj(S1)− Γj(S2)

S1 − S2
≤ L+

j , |Γj(·)| ⩽ Mj

where S1 ̸= S2, L−
j ,L

+
j are constants, Mj > 0, j ∈ P .

Definition 1. SupposeT(x(0)) is the STF, and exists a positive constantTmax such thatT(x(0)) ⩽
Tmax and limt→Tmax ∥x(t)∥1 = 0, then, NNs (1) is fixed-time stable, where Tmax is settling-time,
x(t) = (x1(t), x2(t), ..., xm(t))T , x(0) ∈ Rm.

Lemma 1. [8]: Suppose V(x) : Rm → R+ ∪ {0} is the radially unbounded and positive
definite function, and any solutions of NNs (1) fulfil

dV(x(t))
dt

⩽ −(pVλ(x(t)) + qVµ(x(t)))k (2)

where p, q, λ, k > 0, λ ⩾ 0, λk < 1, µk > 1, then, NNs (1) is fixed-time stable and setting-time
is

T1
max =

1

pk(1− λk)
+

1

qk(µk − 1)
(3)

Lemma 2. [10]: Suppose V(x) : Rm → R+ ∪ {0} is the radially unbounded and positive
definite function, and any solutions of NNs (1) fulfil

dV(x(t))
dt

⩽ −pVλ(x(t))− qVµ(x(t))− c (4)

where p, q, c > 0, 0 < λ < 1, µ > 1, then, NNs (1) is fixed-time stable and setting-time is

T2
max =

1

p
1
λ (1− λ)

[(p
1
λ + c

1
λ )1−λ − c

1−λ
λ ]

+
2µ−1

q
1
µ (µ− 1)

(q
1
µ + c

1
µ )1−µ (5)

Lemma 3. [17]: Suppose s1, s2, . . . , sm ⩾ 0, 0 < z1 ⩽ 1, z2 > 1, then

m∑
l=1

sz1l ⩾
( m∑

l=1

sl

)z1
,

m∑
l=1

sz2l ⩾ m1−z2
( m∑

l=1

sl

)z2
(6)

2.2. New estimations on settling-time for Lemmas 1 and 2
Lemma 4. Suppose V(x) : Rm → R+ ∪ {0} is regular, and the radially unbounded and
positive definite function, and for almost all solutions of NNs (1) fulfil (2), then, NNs (1) is
fixed-time stable and setting-time is

T3
max =

1

pk(1− λk)
+

(p
1
µ + q

1
µ )1−kµ

2k−kµ(µk − 1)q
1
µ

(7)

Proof. One can get STF is

Tmax(x(0)) =

∫ V(x(0))

0

1

(pVλ + qVµ)k
dV (8)
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And from Equation (8), we know

Tmax(x(0)) ⩽
∫ +∞

0

1

(pVλ + qVµ)k
dV

=

∫ 1

0

1

(pVλ + qVµ)k
dV

+

∫ +∞

1

1

(pVλ + qVµ)k
dV

⩽
∫ 1

0

1

pkVkλ
dV+

∫ +∞

1

1

(p+ qVµ)k
dV

(9)

By using Lemma 3, one has p+ qVµ ⩾ 21−µ(p
1
µ + q

1
µV)µ, from Equation (9), we get

Tmax(x(0)) ⩽
∫ 1

0

1

pkVkλ
dV

+

∫ +∞

1

1

2k−kµ(p
1
µ + q

1
µV)kµ

dV

=
1

pk(1− λk)
+

(p
1
µ + q

1
µ )1−kµ

2k−kµ(µk − 1)q
1
µ

(10)

From Equation (10), one gets the Lemma 3 holds. This proof is end. □

Lemma 5. Suppose V(x) : Rm → R+ ∪ {0} is regular, and the radially unbounded and
positive definite function, k = 1 and for almost all solutions of NNs (1) fulfil (2), then, NNs (1)
is fixed-time stable and setting-time is

T3∗
max =

1

p(1− λ)
+

(p
1
µ + q

1
µ )1−µ

21−µ(µ− 1)q
1
µ

(11)

Remark 1. If k ⩾ 1, p ⩾ q, one can get T3
max < T1

max.

Lemma 6. Suppose V(x) : Rm → R+ ∪ {0} is regular, and the radially unbounded and
positive definite function, and for almost all solutions of NNs (1) fulfil (4), then, NNs (1) is
fixed-time stable and setting-time is

T4
max =

1

p
1
λ (1− λ)

[(p
1
λ + c

1
λ )1−λ − c

1−λ
λ ]

+
[(p+ c)

1
µ + q

1
µ ]1−µ

21−µ(µ− 1)q
1
µ

(12)

Proof. One can get STF is

Tmax(x(0)) =

∫ V(x(0))

0

dV
pVλ + qVµ + c

(13)

From Equation (13), we have
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Tmax(x(0)) ⩽
∫ +∞

0

dV
pVλ + qVµ + c

⩽
∫ 1

0

1

pVλ + c
dV

+

∫ +∞

1

1

qVµ + p+ c
dV

(14)

By using Lemma 3, one has p+ c+ qVµ ⩾ 21−µ[(p+ c)
1
µ + q

1
µV]µ, pVλ + c ⩾ (p

1
λV+

c
1
λ )λ, from Equation (14), we get

Tmax(x(0)) ⩽
∫ 1

0

1

(p
1
λV+ c

1
λ )λ

dV

+

∫ +∞

1

1

21−µ[(p+ c)
1
µ + q

1
µV]µ

dV

⩽
∫ 1

0

1

(p
1
λV+ c

1
λ )λ

dV

+
[(p+ c)

1
µ + q

1
µ ]1−µ

21−µ(µ− 1)q
1
µ

=
1

p
1
λ (1− λ)

[(p
1
λ + c

1
λ )1−λ − c

1−λ
λ ]

+
[(p+ c)

1
µ + q

1
µ ]1−µ

21−µ(µ− 1)q
1
µ

(15)

From Equation (15), one has the Lemma 6 holds. This proof is finished.□

Remark 2. From Equations (5) and (12), one can easily find that settling-time T4
max < T2

max,
that is, Lemma 6 of this paper is more accurate than Lemma 2.

3. Main results
In this part, as an application based on new estimation result given in Lemma 6, we show

some results on FTS of NNs (1). If the parameters of NNs choose properly, the NNs (1) will oc-
cur oscillation and even get chaotic behaviours, under these cases, the following control model
of NNs (1) is considered

dxl(t)
dt

=− αlxl(t) +

m∑
j=1

βljΓj(xj(t)) +

m∑
j=1

γlj

× Γj(xj(t− σj(t))) +

m∑
j=1

δlj

×
∫ t

t−ϱj(t)

Γj(xj(s))ds+ ul(t), l ∈ P

(16)

where, the controller ul(t) (l ∈ P) in Equation (16) is

ul(t) =− ξlxl(ti)−
(
ϖl|xλl (ti)|+ ρl|xµl (ti)|+ ωl

)
× sign(xl(ti)), t ∈ [ti, ti+1), i = 0, 1, 2, ...

(17)

in which ξl, ϖl, ρl, ωl > 0 and 0 < λ < 1, µ > 1.

For t ∈ [ti, ti+1), letUl(t) = −ξlxl(t)−
(
ϖl|xλl (t)|+ρl|x

µ
l (t)|+ωl

)
sign(xl(t)), measure
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error is el(t) = Ul(t)− ul(t), and event-triggering is defined as follows:

ti+1 =
{
t|t > ti, |el(t)| ⩾θl|xl(t)|+ ϑlϖl|xλl (t)|+ κlρl

× |xµl (t)|+ ςl(1− εl)
t
} (18)

where ϑl, κl, εl ∈ (0, 1), θp, ςp > 0 and the i th triggering instant is ti (i = 0, 1, 2, ..., l ∈ P).

Let
ψl = αl + ξl − θl −

∑m

j=1
Ll|βjl|,

φl = ωl − ςl −
m∑
j=1

(
Mj(|γlj |+ ϱj |δlj |)

)
, l ∈ P

(19)

Theorem 1. With Assumption 1 and ETC (17)–(18), if ψl > 0, φl > 0, c =
∑m

l=1 φl (l ∈ P)

hold, then, NNs (1) is FTS, and settling-time is T4
max. endtheorem

Proof. Consider

V(t) =
∑m

l=1
|xl(t)| (20)

For t ∈ [ti, ti+1), i = 0, 1, 2, ..., we get the derivative of V(t) with solutions of Equation
(16), then,

dV(t)
dt

=
∑m

l=1
sign(xl(t)) ·

dxl(t)
dt

=
∑m

l=1
sign(xl(t))

[
− αlxl(t) +

m∑
j=1

βljΓj(xj(t))

+

m∑
j=1

γljΓj(xj(t− σj(t))) +

m∑
j=1

δlj

×
∫ t

t−ϱj(t)

Γj(xj(s))ds+ ul(t)
]

⩽
∑m

l=1

[
− αl|xl(t)|+

m∑
j=1

|βljΓj(xj(t))|

+

m∑
j=1

|γljΓj(xj(t− σj(t)))|+
m∑
j=1

|δlj |

×
∫ t

t−ϱj(t)

|Γj(xj(s))|ds+ sign(xl(t))ul(t)
]

(21)

From Assumption 1, one has

|Γj(xj(t))| ⩽ Lj |xj(t)|, |Γj(xj(t− σj(t)))| ⩽ Mj (22)
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Then, one knows

dV(t)
dt

⩽
∑m

l=1

[
− αl|xl(t)|+

m∑
j=1

Lj |βlj ||xj(t)|

+

m∑
j=1

Mj |γlj |+
m∑
j=1

ϱjMj |δlj |

+ sign(xl(t))ul(t)
]

⩽
∑m

l=1

[
− αl|xl(t)|+

m∑
j=1

Lj |βlj ||xj(t)|

+

m∑
j=1

Mj |γlj |+
m∑
j=1

ϱjMj |δlj |

+ sign(xl(t))(Ul(t)− el(t))
]

(23)

From ETC (17)–(18) and (23), then

dV(t)
dt

⩽
m∑
l=1

[
−
(
αl + ξl − θl −

∑m

j=1
Ll|βjl|

)
|xl(t)|

−
[
ωl − ςl −

m∑
j=1

(
Mj(|γlj |+ ϱj |δlj |)

)]
+ |el(t)| − θl|xl(t)| − ϑlϖl|xλl (t)| − κlρl|xµl (t)|

− ςl(1− εl)
t − (1− ϑl)ϖl|xλl (t)|

− (1− κl)ρl|xµl (t)|
]

(24)

Under the conditions of Theorem 1 and the triggering condition (18), we have

dV(t)
dt

⩽
m∑
l=1

(
− (1− ϑl)ϖl|xλl (t)| − (1− κl)ρl|xµl (t)|

)
− c

Now, let p = min1⩽l⩽m{(1− ϑl)ϖl}, q1 = min1⩽l⩽m{(1− κl)ρl}. Then,

dV(t)
dt

⩽ −p
m∑
l=1

|xλl (t)| − q1

m∑
l=1

|xµl (t)| (25)

From the Lemma 2, one gets

−p
m∑
l=1

|xλl (t)| ⩽ −p
( m∑

l=1

|xl(t)|
)λ

(26)

and

−q1
m∑
l=1

|xµl (t)| ⩽ −q1m1−µ
( m∑

l=1

|xl(t)|
)µ

(27)

Let q = q1m
1−µ. From Equations (25)–(27), one knows

dV(t)
dt

⩽ −pVλ(t)− qVµ(t)− c (28)
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Now, from Lemma 6, we get that NNs (1) realize FTS with ETC (17)–(18). And settling-
time is T4

max. This proof is end. □

Theorem 2. No Zeno-behaviour with ETC (17)–(18).

Proof. For t ∈ [ti, ti+1), i = 0, 1, 2, ...,

d|el(t)|
dt

⩽|dUl(t)

dt
|

⩽(ξl + λϖl|xλ−1
l (t)|+ µρl|xµ−1

l (t)|)|ėl(t)|
(29)

For system (16), one has

|del(t)
dt

| ⩽
(
αl|xl(t)|+

m∑
j=1

Lj |βlj ||xj(t)|

+

m∑
j=1

Mj |γlj |+
m∑
j=1

ϱjMj |δlj |+ |ul(t)|
) (30)

Because dV(t)
dt < 0, therefore, |xj(t)| ⩽ V(0), then,

|del(t)
dt

| ⩽
(
(αl +

m∑
j=1

Lj |βlj |)V(0) +
m∑
j=1

Mj |γlj |

+

m∑
j=1

ϱjMj |δlj |+ |ul(t)|
)
= l(ti)ג

(31)

Let ℸl = maxt∈[ti, ti+1)(ξl +λϖl|xλ−1
l (t)|+µρl|xµ−1

l (t)|), and from Equation (29), we
have

d|el(t)|
dt

⩽ ℸlגl(ti) (32)

Noted that |el(ti)| = 0, then

|el(t)| ⩽
∫ t

ti

ℸlגl(ti)ds = ℸlגl(ti)(t− ti) (33)

By ETC (18), we know

|el(ti+1)| ⩾θl|xl(ti+1)|+ ϑlϖl|xλl (ti+1)|+ κlρl

× |xµl (ti+1)|+ ςl(1− εl)
ti+1

⩾ςl(1− εl)
ti+1 > 0

(34)

From Equations (33)–(34), we get

ti+1 − ti ⩾
ςl(1− εl)

ti+1

ℸlגl(ti)
> 0 (35)

This proof is end. □
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4. Example and comparison
Example 1. NNs (1) with two-dimensional is

dxl(t)
dt

=− αlxl(t) +

2∑
j=1

βljΓj(xj(t)) +

2∑
j=1

γlj

× Γj(xj(t− σj(t))) +

2∑
j=1

δlj

×
∫ t

t−ϱj(t)

Γj(xj(s))ds, l = 1, 2, t ⩾ 0

(36)

in which Γj(xj) = 1
2 (|xj + 1| − |xj − 1|) and α1 = α2 = 1, β11 = 2, β12 = −1, γ11 =

1, γ12 = −1, δ11 = −0.1, δ12 = −0.1, β21 = 2, β22 = −0.5, γ21 = 0.5, γ22 = −0.5, δ21 =

0.1, δ22 = 0.1, σj(t) = ϱj(t) =
exp(t)

exp(t)+1 .

Initial values of NNs (30) are x1(s) = 0.5, x2(s) = −0.6, ∀s ∈ [−1, 0). And the states
x1(t), x2(t) of NNs (36) without control input are showed in Figure 1.

X
1
(t)

0 50 100 150 200 250 300

X 2(t)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

X
1
(t) X

2
(t)

Figure 1. State trajectories x1(t), x2(t) without ETC (17)–(18).

From Equation (30), we know Lj = Mj = ϱj = 1. Now, let ξ1 = 20, ξ2 = 15, ϖ1 =

ϖ2 = 2, ω1 = 3, ω2 = 2, ρ1 = ρ2 = 1, ϑ1 = ϑ2 = κ1 = κ2 = ς1 = ς2 = 0.1, θ1 = θ1 =

1, λ = 0.7, µ = 1.2, then, ψ1 = 16, ψ2 = 13.5, φ1 = φ2 = 0.6, p = 1.8, q = 0.6364 and
T4
max = 0.8429 < T2

max = 0.8734,T3
max = 8.4635 < T1

max = 9.2456.

Now, all conditions of Theorem 1 hold, by using Theorem 1, we get Equation (36) is FTS
with ETC (17)–(18), randomly choose 30 initial values, Figure 2 show that state trajectories
x1(t), x2(t) of Equation (3) are FTS with ETC (17)–(18). Transmission intervals ti+1 − ti of
ECT (17)–(18) are showed in Figure 3. Measure errors |U1(t) − u1(t)|, |U2(t) − u2(t)| and
their thresholds in triggering condition (18) are given in Figure 4. From Figures 2–4, we can
find that the results on FTS of NNs (1) derived in this paper are very effective. And Table 2
shows that the fixed-time stable Lemma 4 and Lemma 6 of this paper are more accurate than
the previous works [8] and [10].
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Table 2. Comparisons of settling-time with Lemma 6 of this article.

Settling-time on FTS Values

T1
max [8] 9.2456

T3
max used in Lemma 4 8.4635

T2
max [10] 0.8734

T4
max in Lemma 6 of this paper 0.8429

time(s)
0 0.2 0.4 0.6 0.8 1

X
1(t)

-1

-0.5

0

0.5

1

time(s)
0 0.2 0.4 0.6 0.8 1

X
2(t)

-1

-0.5

0

0.5

1

T
Max
4 =0.8429

T
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Figure 2. State trajectories x1(t), x2(t) with ETC (17)–(18).
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Figure 3. Transmission intervals ti+1 − ti of ECT (17)–(18).
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Figure 4. Measure errors and their thresholds in triggering condition (18).

5. Conclusions
By using the new estimations of settling-time for FTS and designing an effective ETC, new

criteria on FTS for delayed neural networks was investigated. And example simulations showed
the effectiveness of the derived results. As we know, NNs with complex-valued has better
performance when dealing with 3D or 4D data than real network systems, therefore, basing
on the new estimations proposed in this paper, the FTS of NNs with complex-valued will be
investigated in our future works.
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