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Abstract: In this paper, a novel group decision-making method is proposed based on the 

weighted SBM model of data envelopment analysis (DEA) and intuitionistic fuzzy preference 

relations (IFPRs). Indeed, for the data fuzzy numbers set, the main aim of this study is to 

measure the efficiency of different alternatives in the framework of IFPRs by the weighted 

SBM model. In this regard, first, the interval transform function is used to convert IFPRs into 

interval multiplicative preference relations. After calculating the efficiency, the optimal 

weights for each IFPR are identified using two cross-efficiency models to obtain the 

normalized intuitionistic fuzzy priority vector. Then, an algorithm for group decision-making 

is proposed using a goal programming, SBM model with ideal weights and IFPRs to rank the 

units. Finally, the model is implemented numerically, and the results are also compared with 

other models, including the output-oriented Charnes-Cooper-Rhodes) CCR (and basic Banker-

Charnes-Cooper (BCC) models. It is shown that the proposed method outperforms traditional 

CCR and BCC models and provides more reasonable results. 

Keywords: weighted SBM; data envelopment analysis; intuitionistic fuzzy preference relation; 

group decision-making; goal programming 

1. Introduction and preliminaries 

Group decision-making is a process where a collection of individuals comes 

together to reach a common decision by utilizing their knowledge, experiences, and 

diverse perspectives. This kind of decision-making method is widely used in various 

fields, including business, politics, education, and life; it is also a powerful tool for 

solving complex problems and achieving better outcomes. However, to succeed in this 

approach, it is essential to consider the challenges, influencing factors, and select 

appropriate methods. The complexity of social and economic systems leads to 

decision-making problems that involve considering numerous factors and indicators 

to reflect characteristics, performance, and various solutions. Although group 

decision-making seems to be a suitable solution for these complexities, some 

disagreements and differences in the level of confidence among individuals lead to 

uncertainty. To overcome this problem, fuzzy logic, introduced by Lotfi Zadeh in 1965, 

can be used; indeed, fuzzy logic is a well-suited approach to model the uncertainty and 

ambiguity present in human information and knowledge. This fact makes it ideal for 

decision-making problems that deal with incomplete or vague information. 

Additionally, using fuzzy logic can lead to more accurate and rational decisions. 

Furthermore, in the mid-1980s, Atanassov’s intuitionistic fuzzy set evolved, in which 

these sets are a powerful tool for modeling uncertainty and ambiguity in decision-

making problems. This concept allows us to model the complexities of the real world 
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much better and also make finer decisions. In fact, in classical fuzzy sets, each element 

is assigned a membership degree between zero and one, indicating the degree of 

element membership. While in intuitionistic fuzzy sets, each element is assigned two 

membership degrees: a membership degree and a non-membership degree, where the 

sum of these degrees is not necessarily equal to one. 

Meanwhile DEA is recognized as an efficient tool for ranking and prioritizing in 

various situations. By measuring the relative efficiency of organizations, DEA ranks 

them, identifies their strengths, weaknesses and provides suggestions for improving 

the efficiency of each organization. One of the appropriate methods for ranking in 

DEA, is using the cross-efficiency model, which has a high ability to discriminate 

between units. In this method, the performance of each decision-making unit is 

compared with respect to the optimal weights of the units.  The use of fuzzy logic, 

especially considering the type of needs (in comparisons) and intuitionistic fuzzy 

preference relations, can reduce the complexity of information and provide more 

reliable decision-making results due to its closer proximity to reality. Therefore, using 

cross-efficiency and preference relations can be useful in performing better pairwise 

comparisons, especially in group decision-making. In this regard,  the main purpose of 

this paper is to use intuitionistic fuzzy preference relations from fuzzy mathematics 

and the weighted SBM model of DEA for ranking and comparing. This paper is 

organized as follows: A literature review and some necessary backgrounds are 

presented in Section 2. Section 3 is devoted to some DEA preliminaries perspective 

on pairwise comparisons. Section 4 discusses a group decision-making algorithm 

based on fuzzy intuitive preference relation. In Section 5 a numerical example is 

presented and the results are compared to CCR and BCC Models. Finally, the last 

section is devoted to some concluding remarks . 

2. Literature review 

In the 1960s, by introducing the concept of membership degrees, Lotfi Zadeh 

paved the way for a more precise and mathematical representation of vague concepts. 

He introduced a new logic, that allows elements of a set to be belong to the set with a 

membership degree between 0 and 1, and called it fuzzy logic. Building upon fuzzy 

logic, the concept of fuzzy sets emerged and this concept has became a powerful tool 

for modeling complex and uncertain phenomena in various fields, including 

engineering, medicine, and economics. 

After that, the concept of intuitionistic fuzzy sets (IFS) was introduced as an 

extension of the fuzzy sets, by defining three components: membership degree, non-

membership degree, and hesitation degree. Atanassov also pointed out that in many 

cases, in addition to the membership degree, the non-membership degree is also 

important; in the other words, there may be hesitation about the membership of an 

element. By adding the hesitation degree component, IFS significantly enhanced the 

ability to model ambiguity. Indeed,  grasping the concept of flexibility and application 

of intuitionistic fuzzy sets, to address, ambiguity and uncertainty, is much simpler 

compared to fuzzy sets. Atanassov and Gargov [1] also generalized the IFS and 

defined the concept of an interval-valued intuitionistic fuzzy set (IVIFS), which 

enhances greatly the representation ability of uncertainty. 
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Intuitionistic Fuzzy Sets (IFS) have been widely applied to Multi-Attribute 

Decision Making (MADM) and Multi-Attribute Group Decision Making (MAGDM) 

problems. After that, Xu et al. [2], introduced the concept of IFPRs by integrating IFSs 

and preference relations. This concept provided a powerful tool for modeling decision-

making preferences under uncertainty and vagueness. Wang et al. [3], defined 

intuitionistic fuzzy weight vectors concept and also addressed how to optimize the 

decision-makers weights to achieve an optimal solution. In the sequence Zhang et al. 

[4], also presented a study on deriving priority weights from intuitionistic 

multiplicative preference relations under group decision-making settings. In the 

sequence, we know that Analytic Hierarchy Process (AHP) [5] is a popular and 

effective tool for multi-criteria decision-making (MCDM). AHP facilitates pairwise 

comparisons of criteria and alternatives by breaking down complex problems into 

hierarchical structures. It is considered superior to other MCDM methods due to its 

ease of use and ability to calculate both criteria weights and alternative priorities. 

Research on fuzzy preference relations encompasses various dimensions, 

including consistency, transitivity, weighting, and dealing with incompleteness. These 

studies provide valuable insights into effectively managing and utilizing fuzzy 

preference relations in decision-making processes. By considering these dimensions, 

fuzzy preference relations can be effectively applied to complex decision-making 

problems for achieving more accurate results. Meng et al. [6] proposed group decision 

making with intuitionistic triangular fuzzy preference relations (ITFPRs); they first 

introduced the concept of ITFPR and in the second stage, the concept of collective 

consistency for ITFPRs was presented. They also proposed a programming model 

ITFPRs for checking the consistency. It is worth to mention that Meng et al. [7] 

conducted research on the use of the advantages of linguistic intuitive fuzzy sets and 

preference relations, (LIFPRs) and studies their application in decision-making. Also, 

Ren et al. [8] published a paper on intuitive fuzzy sets to help decision-makers interpret 

and apply them in group decision-making. They show that supporting information, by 

intuitive fuzzy concepts, enabling decision-makers to express their evaluations and 

ensure effective scientific decision-making. Furthermore, Yang et al. [9] presented a 

new method for deriving intuitionistic fuzzy priority vectors (IFPVs) from 

intuitionistic fuzzy preference relations (IFPRs). 

Besides, over the past four decades, we have witnessed the extending of DEA in 

the field of measuring and evaluating the performance of organizations. This approach 

has taken a new step towards measuring the efficiency and effectiveness of 

organizations and has opened a new window for improving their performance. One of 

the remarkable achievements of this approach is the invention of the cross-efficiency 

model for ranking efficient units. This model, with its high discrimination power, is 

able to accurately distinguish between efficient and inefficient units. For instance, 

Doly and Green [10] introduced two benevolent and aggressive cross-efficiency 

models, which were a turning point in this field; Liu et al. [11], took a new step towards 

ranking units by using the cross-efficiency method. 

Liu et al. [12] proposed a novel method for group decision-making that utilizes 

both data envelopment analysis (DEA) and stochastic weight space to rank multiple 

alternatives. The primary advantage of this approach is that it reduces the complex 

adjustments and achieving complete consensus among decision-makers, empowering 
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decision-makers to select their options with greater confidence. Moreover, Liu et al. 

[13], proposed a new group decision making (GDM) method with probabilistic 

hesitant fuzzy preference relations (PHFPRs) based on a modified probability 

calculation and cross-efficiency method in DEA. After that Liu et al. [14], also 

presented a novel group decision-making method with interval linguistic fuzzy 

preference relations (ILFPRs) to model decision-makers preferences with uncertainty; 

this method integrates cooperative game, ordinal consistency improvement algorithm, 

DEA cross-efficiency model. Also, Song et al. [15], proposed a group decision-making 

method based on a multiplicative DEA cross-efficiency and also stochastic 

acceptability analysis with hesitant fuzzy linguistic preference relations (HFLPRs), 

which can avoid distorted information results in decision making distortion and obtain 

more credible. Furthermore Fan et al. [16], introduced a novel method for evaluating 

the performance of (DMUs) and building upon the foundational theories of prospect 

theory and regret theory, Zhang et al. [17], introduced a novel approach to group 

decision-making that leverages multi-granularity probabilistic linguistic Z-numbers 

(PLZN); In the sequence, here, we rely on the significant capabilities of the weighted 

SBM model in DEA and the use of fuzzy intuitionistic preference relations to improve 

this method and present a new achievement in this field. It is worth noting that the 

weighted SBM model, in comparison with other basic DEA models (CCR and BCC), 

has better discrimination power in the field of the units inefficiency. This model, based 

on the strengthened auxiliary variables of the aggregate model, provides a more 

accurate analysis of units performance. In addition, the weighted SBM model is much 

robust under changing the measurement units; in other words, this model provides a 

fixed and reliable criterion for measuring efficiency that is not affected by changes in 

measurement units. Relying on these advantages, we apply this to rank efficient units 

based on intuitionistic fuzzy preference relations, to do group decision making. 

3. Preliminaries and definitions 

Decision-making is a specific process that includes forecasting, evaluating, 

comparing existing results and solutions, and making a definitive choice of a solution 

to achieve desired goals and etc., which is known as a multi-criteria problem. In the 

decision-making process, it is assumed that the set of possible decisions, X, is a finite 

set. There are some important concepts related to this set where are explained as 

follows. 

Definition 1. A multiplicative preference relation (MPR) on a set of options X is a 

matrix R where each element 𝑟𝑖𝑗 of R, represents the relative preference of option i 

over option j. R satisfies the following properties [18]: 

. 1, 1, 0, , 1,2,...,ij ji ii ijr r r r i j n= =  =
, 

where 𝒓𝒊𝒋 represents the preference intensity of option 𝒙𝒊 over 𝒙𝒋 in X. 

Definition 2. A multiplicative preference relation (MPR) is considered as consistent 

if the preferences between options exhibit transitivity; that is, if option i is preferred 

to option j and option j is preferred to option k, then option i must also be preferred to 

option k. So, R satisfies the following properties [19]: 
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𝑟𝑖𝑘 × 𝑟𝑘𝑗 = 𝑟𝑖𝑗 (i, j, k = 1, 2, …, n). 

Definition 3. A normalized priority weight vector is the unique vector that satisfies 

all conditions specified in the definition. These conditions ensure that the vector, 

provides the best possible representation of the relative importance of the alternatives. 

So the vector w is a normalized priority weight vector of R iff [20]: 

1
,  , 1,2,..., ,  w 0,  1.

n
i

ij i ii
j

w
r i j n w

w =
= =  =

 

In order to express the decision maker uncertainty preferences, the interval of 

multiplicative preference relation (IMPR) R is introduced as follows: 

12 12 1 1
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[ , ][1,1]...[ , ]
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[ , ][ , ]...[1,1]
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r r r r

r r r r
R r

r r r r
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

− + − +

 
 
 

= =  
 
 
  , 

that, 𝑟𝑖𝑗
−, 𝑟𝑖𝑗

+ > 0, 𝒓𝒊𝒋
− < 𝒓𝒊𝒋

+ and 𝒓𝒊𝒋
−𝒓𝒊𝒋

+ = 𝟏, when for all i, j, 𝒓𝒊𝒋
− = 𝒓𝒊𝒋

+ this relation 

is equivalent to a multiplicative preference relation. 

Definition 4. An interval multiplicative preference relation is called consistent where 

it satisfies the follow property [18]: 

𝑟𝑖𝑘
−𝑟𝑖𝑘

+𝑟𝑘𝑗
− 𝑟𝑘𝑗

+ = 𝑟𝑖𝑗
−𝑟𝑖𝑗

+, (i, j, k = 1, 2, …, n). 

Based on to the above definition, an IMPR R is consistent iff: 

𝜌(𝑟𝑖𝑘)𝜌(𝑟𝑘𝑗) = 𝜌(𝑟𝑖𝑗), (i, j, k = 1, 2, …, n). 

that 𝜌(𝑟𝑖𝑗) = √𝑟𝑖𝑗
− × 𝑟𝑖𝑗

+. 

Definition 5. A specific set A, constitutes a refinement of the fuzzy set concept, where 

for each element within A, a degree of membership and a corresponding degree of 

non-membership are assigned. This dual valuation enables a more precise 

representation of ambiguity and uncertainty inherent in set membership.  Therefore, 

we can define an intuitionistic fuzzy set A on the set X (which essentially is an upgraded 

version of a fuzzy set) as follows [20]: 

 , ( ), ( ) |A AA x x x x X = 
, 

where 𝜇𝐴: 𝑋 → [0,1] represents the membership degree and 𝝂𝑨: 𝑿 → [𝟎, 𝟏] is the non-

membership degree of x in the set A, with the condition 0 ≤ 𝜇𝐴(𝑥) + 𝜈𝐴(𝑥) ≤ 1. 

In this regard, An intuitionistic fuzzy preference relation (IFPR) R on a set 𝑿 =

{𝒙𝟏, 𝒙𝟐, . . . , 𝒙𝒏} is represented by a matrix 𝑷 = (𝒑𝒊𝒋)𝒏×𝒏, where 𝒑𝒊𝒋 = ⟨𝝁𝒊𝒋, 𝝂𝒊𝒋⟩ is an 

intuitionistic fuzzy number, 𝝁𝒊𝒋 represents the degree of preference of 𝒙𝒊 over 𝒙𝒋, and 

𝝂𝒊𝒋 represents the non-preference of 𝒙𝒊 over 𝒙𝒋 [21]. An intuitionistic fuzzy preference 

relation is said to be consistent if and only if 

,  (1 )(1 )(1 ) (1 )(1 )(1 ).ij jk ki ik kj ji ij jk ki ik kj ji           = − − − = − − −
 

We note that consistency in IFPRs is much important because: 
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Ensures that preference relations are logical and reliable, 

Helps decision-makers to make more informed decisions,  

Prevents contradictions from arising in the decision-making process. 

Definition 6. For an intuitionistic fuzzy number 𝜶 = ⟨𝝁𝜶, 𝝂𝜶⟩ ∈ 𝝍+ , the interval 

transform function 𝝉:𝝍+ → 𝜴+ is defined as follows: 

1
( ) ( , ) [ , ]

1

 
 

 

 
    

 

−
= =

− , 

where 𝜓+ = {⟨𝜇𝛼 , 𝜈𝛼⟩: 𝜇𝛼 > 0, 𝜈𝛼 > 0, 𝜇𝛼 + 𝜈𝛼 ≤ 1} is a set of intuitionistic fuzzy 

numbers [11]. The interval transform function defined by Definition 6 can transform 

an intuitionistic fuzzy number into an interval value. 

Example: According to Definition 6, if the interval transform function τ is applied 

as follows: 

τ(α) = τ((0.6, 0.3)) = [0.6/(1 − 0.6), (1 − 0.3)/0.3], 

then we have: 

τ(α) = [0.6/0.4, 0.7/0.3] = [1.5, 2.33]. 

Hence, the intuitionistic fuzzy number α = (0.6, 0.3) is transformed into the 

interval [1.5, 2.33]. 

Definition 7. There is a score function that assigns a desirability value to each element 

of an intuitionistic fuzzy set; this value is determined by subtracting the degree of non-

membership from the degree of membership. For any 𝛼 = ⟨𝜇𝛼 , 𝜈𝛼⟩ , this score 

functions S is defined as follows [22]: 

( )S    = − . 

Theorem 1. Let 𝑝 = (𝑝𝑖𝑗)𝑛×𝑛
= (< 𝜇𝑖𝑗 , 𝜐𝑖𝑗 >)

𝑛×𝑛
 be an IFPR; then 𝐻 =

([ℎ𝑖𝑗
− , ℎ𝑖𝑗

+])
𝑛×𝑛

= (𝜏(𝑝𝑖𝑗))𝑛×𝑛
 is an IMPR. Moreover, if 𝑝  is a consistent 

multiplicative IFPR, then 𝐻 = ([ℎ𝑖𝑗
− , ℎ𝑖𝑗

+])
𝑛×𝑛

= (𝜏(𝑝𝑖𝑗))𝑛×𝑛
 is a consistent IMPR 

[11]. 

DEA perspective on pairwise comparisons 

The primary objective of this research is to assess the relative efficiency of each 

IFPR option using the DEA model. In the decision-making process under uncertainty, 

sometimes the decision-maker can select an IFPR option from a set of proposed 

alternatives. In this regard, in the decision-making process, each IFPR option can be 

considered as an independent DMU, If the decision-maker believes that alternative xi 

is better than xj for any k ∈ {1, 2, ..., n}, the certainty degree that alternative xi is 

preferred to xk is greater than the certainty degree that alternative xj is preferred to xk, 

i.e., μik ≥ μjk, and the certainty degree that alternative xi is non-preferred to xk is smaller 

than the certainty degree that alternative xj is non-preferred to xk, i.e., νik ≤ νjk; hence 

based on the provided definitions, the following mathematical relationship holds: 

11
, , ,  ,  ,  ( ) ( ).

1 1

jk jkik ik
ik ik ik jk jk jk ik jk

ik jk ik jk

p p p p
  

     
   

−−
=  =   

− −
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Therefore, each row of an IFPR is corresponded to a DMU, includes input and 

outputs and any column of an IFPR represents the outputs. So we consider a 

hypothetical fuzzy intuitive input as follows:  

𝑝0 = (〈0/5, 0/5〉), 

thus the relationships between inputs and outputs can be shown as below Table 1. 

Table 1. Relationships between inputs and outputs. 

 Output 1 Output 2 … Output n Dummy input 

DMU 1 𝜏(𝑝11) 𝜏(𝑝12) … 𝜏(𝑝1𝑛)  𝜏(𝑝0)  

DMU 2 𝜏(𝑝21)  𝜏(𝑝22)  … 𝜏(𝑝2𝑛)  𝜏(𝑝0)  

… … … … … … 

DMU N 𝜏(𝑝𝑛1) 𝜏(𝑝𝑛2)  … 𝜏(𝑝𝑛𝑛) 𝜏(𝑝0)  

4. Optimal fuzzy intuitive weights based on cross-efficiency 

We utilize the SBM model for better inefficiency detection and more accurate 

weight assignment [23]. Since SBM model deals with input surpluses and output 

shortfalls, it can identify inefficiencies more effectively than the CCR and BCC model. 

Although, SBM and CCR model are two common models in DEA, SBM considers 

both input slacks and output shortfalls simultaneously, while the CCR model only 

focuses on output shortfalls. Due to the consideration of input slacks, the SBM model 

tends to provide lower efficiency values compared to the CCR model. 

Theorem 2. The efficiency value in the optimal SBM solution is not greater than the 

efficiency value in the optimal CCR solution [24]. 

4.1. SBM and weighted SBM models 

The SBM and the weighted SBM (WSBM) model are two useful models in DEA 

used to evaluate the efficiency of DMUs [25] . The main difference between them lies 

in the consideration of inputs and outputs as: 

⚫ SBM model assumes that all inputs and outputs are equally important. 

⚫ WSBM model allows to assign different weights to inputs and outputs. 

In this regard, WSBM model has some applicable advantages in which the main 

of them could be listed as follows: 

⚫ Flexibility: since WSBM allows user to assign different weights to inputs and 

outputs, it can help user to reflect reality more accurately. 

⚫ Realism: WSBM model the production process more accurately, since it allows 

to consider the relative importance of different factors. 

⚫ Interpretability: WSBM can help to interpret DEA results better, since one can 

see how different weights affect the results. 

One of the primary limitations of traditional DEA methods is the inability to rank 

efficient DMUs, even researchers have proposed various methods for this ranking. In 

this study, we initially introduce the cross-efficiency method, which is used to rank 

efficient DMUs; where the performance of a DMU is compared against the optimal 

weights of other units. Based on the efficiency obtained from the WSBM model, now 
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for IFPR, we determine two new cross-efficiency models that are inspired by the 

benevolent and aggressive DEA cross-efficiency models, as follows: 

1 1

n n

rk jr

j r

Max u h −

= =


, 

S.to: . 1;k n =  

*

1
0;

n

rk kr kk kr
u h  +

=
− =  

1
0,

n

rk kr kr
u h +

=
−   ,j k  1,2,..., ;j n=  

(1) 

, 0,k rku  1,2,..., .k n=  

1 1

n n

rk jr

j r

Min u h −

= =


, 

S.to: 1;k n  =  

*

1
0;

n

rk kr kk kr
u h  +

=
− =  

1
0,

n

rk kr kr
u h +

=
−   1,2,..., ;j n= ;j k  

(2) 

, 0,k rku  1,2,..., .k n=   

In models (1) and (2) 𝛼𝑘𝑘
∗  is the efficiency score obtained from the WSBM model. 

To calculate the upper and lower bounds of cross- efficiency, one may obtain optimal 

weights 𝑢∗ = (𝑢1𝑘
∗ , 𝑢2𝑘

∗ , … , 𝑢𝑛𝑘
∗ )𝑇 and 𝜐𝑘

∗  for output and input by solving the above 

models, respectively; hence, using these optimal weights, one can calculate the 

following amounts [11]: 

𝜃𝑗𝑘
− = ∑ 𝑢𝑟𝑘

∗ ℎ𝑗𝑟
−

𝑛

𝑟=1

𝜐𝑘
∗⁄ , 𝜃𝑗𝑘

+ = ∑ 𝑢𝑟𝑘
∗ ℎ𝑗𝑟

+

𝑛

𝑟=1

𝜐𝑘
∗⁄ , 𝑗 = 1,2,… , 𝑛 (3) 

where the upper and lower bounds of cross-efficiency are shown by 𝜃𝑗𝑘
+  and  𝜃𝑗𝑘

− . 

Therefore, based on Liu et al [11]. we determine: 

𝛩 = (𝜃𝑗𝑘)
𝑛×𝑛

=

(

 
 

[𝜃11
− , 𝜃11

+ ][𝜃12
− , 𝜃12

+ ]… [𝜃1𝑛
− , 𝜃1𝑛

+ ]

[𝜃21
− , 𝜃21

+ ][𝜃22
− , 𝜃22

+ ]… [𝜃𝑛2
− , 𝜃𝑛2

+ ]
…

[𝜃𝑛1
− , 𝜃𝑛1

+ ][𝜃𝑛2
− , 𝜃𝑛2

+ ]… [𝜃𝑛𝑛
− , 𝜃𝑛𝑛

+ ]
)

 
 

 (4) 

For inconsistent IFPRs, we propose a novel method for obtaining the normalized 

fuzzy intuitive priority vector of IFPR. Now, based on the following relationship, we 

are able to calculate the average cross-efficiency value as well: 
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𝜃𝑗 = [𝜃𝑗
−, 𝜃𝑗

+] = [
1

𝑛
∑ 𝜃𝑗𝑘

−
𝑛

𝑘=1
,
1

𝑛
∑ 𝜃𝑗𝑘

+], 𝑗 = 1,2,… , 𝑛.
𝑛

𝑘=1
  (5) 

Regarding this average cross-efficiency value, the fuzzy intuitive priority weight 

vector can be demonstrated as: 

𝜔𝑗
𝜇 =

𝜃𝑗
−

𝜓
, 𝜔𝑗

𝜐 =
1

𝜓
∑ 𝜃𝑟

+𝑛

𝑟=1,𝑟≠𝑗
, 𝑗 = 1,2, … , 𝑛,  (6) 

where 𝜓 = ∑ 𝜃𝑟
+𝑛

𝑟=1 +
1

𝑛−2
𝑚𝑎𝑥{𝜃𝑘

+ − 𝜃𝑘
−}; then, the following important result can 

be presented in theorem 3. 

Theorem 3. For each IFPR, the obtained fuzzy intuitive priority weight vector from 

the above relationship, is normalized [11]. 

4.2. A group decision-making algorithm based on IFPR 

Let  D be the set of decision makers. Regarding the above discussions a new group 

decision-making process based on DEA cross-efficiency by SBM weight-dependent 

model and using fuzzy intuitive preference relations is performed as an algorithm as 

follows: 

Step 1: Convert 𝑃(𝐿) = (〈𝜇𝑖𝑗
(𝐿)

, 𝜐𝑖𝑗
(𝐿)

〉)
𝑛×𝑛

 to 𝐻(𝑙) = ([ℎ𝑖𝑗
(𝑙),−

, ℎ𝑖𝑗
(𝑙),+

])
𝑛×𝑛

 using the 

interval transform function (6). 

Step 2: Obtain the optimal weight vector 𝜆 = (𝜆1, 𝜆2, … , 𝜆𝑛) by solving the 

following goal programming model [26]: 

( ), ( ), ( ), ( ),

1 1 1

 [ , , , ]
n n m

l l l l

ij ij ij ij

i j i l

Min J    + − + −

= = + =

=  
, 

S.to: ℎ𝑖𝑗
(𝑙),−

− ∑ 𝜆𝑚
𝑙=1 lnℎ𝑖𝑗

(𝑙),−
− 𝜀𝑖𝑗

(𝑙),+
+ 𝜀𝑖𝑗

(𝑙),−
= 0, 𝑖 < 𝑗, 𝑖, 𝑗 = 1,2,… , 𝑛 𝑙 = 1,2, … ,𝑚; 

ℎ𝑖𝑗
(𝑙),+ − ∑ 𝜆

𝑚

𝑙=1
lnℎ𝑖𝑗

(𝑙),+ − 𝛾𝑖𝑗
(𝑙),+ + 𝛾𝑖𝑗

(𝑙),− = 0, 𝑖 < 𝑗, 𝑖, 𝑗 = 1,2,… .𝑛, 𝑙 = 1,2,… ,𝑚 (7) 

∑ 𝜆𝑙 = 1;
𝑚

𝑙=1
 

𝜆𝑙 , 𝜀𝑖𝑗
(𝑙),+

, 𝜀𝑖𝑗
(𝑙),−

, 𝛾𝑖𝑗
(𝑙),+

, 𝛾𝑖𝑗
(𝑙),−

 0, 𝑖 < 𝑗, 𝑖, 𝑗 = 1,2,… , 𝑛, 𝑙 = 1,2,… ,𝑚. 

For better expressing the concept, consider the goal function J; this function 

shows group consensus and can measure the agreement between individual preference 

relations and the synthetic preference relation. In this regard, the optimal value 𝐽∗ and 

𝜀𝑖𝑗
(𝑙),+

, 𝜀𝑖𝑗
(𝑙),−

, 𝛾𝑖𝑗
(𝑙),+

, 𝛾𝑖𝑗
(𝑙),−

 are deviation variables in model (7) [26]. 

Step 3: Prepare IFPRs by all m decision-makers of D, which aggregated into 

combined interval preference relation; that 𝐻(𝑙) = ([ℎ𝑖𝑗
(𝑙),−

, ℎ𝑖𝑗
(𝑙),+

])
𝑛×𝑛

and 𝐻(𝑠) =

([ℎ𝑖𝑗
(s),−

, ℎ𝑖𝑗
(s),+

])
𝑛×𝑛

 are transformed into combined preference relations  according to 

the following formula: 
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, ( ), , ( ),

1 1

( ) , ( ) , , 1, 2,..., .l l

m m
s l s l

ij ij ij ij

l l

h h h h i j n
 − − + +

= =

= = = 
 

(8) 

Step 4: For each IMPR, obtain normalized fuzzy intuitive priority weight vector 

based on the IFPR ranking method in subsection 4.1, which is shown by 𝜔𝑖 =

⟨𝜔𝑖
𝜇
, 𝜔𝑖

𝜐⟩. 

Step 5: Rank in descending order, the normalized fuzzy intuitive priority weight 

vector 𝜔𝑖 by using the score function. 

Step 6: Rank alternative 𝑥𝑖 according to the ranking of 𝜔𝑖. 

5. Numerical simulation 

In the context of economic knowledge, market competition is not only 

competition between companies, but also competition between supply chain alliances 

as well. Indeed supply chain is a complex system interconnected by production and 

organizations centers; the most evaluation for supply chain, includes level of customer 

service, financial status, level of innovation and flexibility of production. The 

evaluation process is somewhat subjective because experts may not be familiar enough 

with all the situations of supply chains that they evaluated. Therefore, it is appropriate 

for decision makers to use IFPR for their evaluation information. In the following 

example, five decision makers who provide their IFPRs on four supply chains, is 

considered. After pairwise comparisons, suppose that the decision makers provide the 

following five IFPRs (See for example Liu et al. [11]). 

(1)

0.50,0.50 0.50,0.20 0.70,0.10 0.50,0.30

0.20,0.50 0.50,0.50 0.60,0.20 0.30,0.60
;

0.10,0.70 0.20,0.60 0.50,0.50 0.30,0.60

0.30,0.50 0.60,0.30 0.60,0.30 0.50,0.50

P

 
 
 

=  
 
 
   

(2)

0.50,0.50 0.60,0.20 0.60,0.20 0.60,0.30

0.20,0.60 0.50,0.50 0.50,0.20 0.30,0.50
;

0.20,0.60 0.20,0.50 0.50,0.50 0.20,0.60

0.30,0.60 0.50,0.30 0.60,0.20 0.50,0.50

P

 
 
 

=  
 
 
   

(3)

0.50,0.50 0.55,0.25 0.65,0.20 0.35,0.55

0.25,0.55 0.50,0.50 0.40,0.25 0.55,0.30
;

0.20,0.65 0.25,0.40 0.50,0.50 0.60,0.20

0.55,0.35 0.30,0.55 0.20,0.60 0.50,0.50

P

 
 
 

=  
 
 
   
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(4)

0.50,0.50 0.60,0.30 0.70,0.20 0.60,0.30

0.30,0.60 0.50,0.50 0.50,0.40 0.30,0.40
;

0.20,0.70 0.40,0.50 0.50,0.50 0.30,0.60

0.30,0.60 0.40,0.30 0.60,0.30 0.50,0.50

P

 
 
 

=  
 
 
   

(5)

0.50,0.50 0.60,0.30 0.75,0.15 0.60,0.20

0.30,0.60 0.50,0.50 0.45,0.20 0.60,0.20
.

0.15,0.75 0.20,0.45 0.50,0.50 0.40,0.40

0.20,0.60 0.20,0.60 0.40,0.40 0.50,0.50

P

 
 
 

=  
 
 
   

More than simply implementing, in this example, we intend to have a numerical 

comparison between CCR and BCC and weighted SBM method. To solve this 

example, we follow the steps according to the presented algorithm in the previous 

section. 

Step1: We use the interval transform function (Definition 6) 𝜏(𝑝𝑖𝑗
(𝑙)

) =

[ℎ𝑖𝑗
(𝑙),−

, ℎ𝑖𝑗
(𝑙),+

] = [
𝜇𝑖𝑗

(𝑙)

1−𝜇
𝑖𝑗
(𝑙) ,

1−𝜐𝑖𝑗
(𝑙)

𝜐
𝑖𝑗
(𝑙) ] to achieve: 

H(1) = 

[
 
 
 

[1.0,1.0][1.0,4.0][2.33,9.0][1.0,2.33]
[0.25,1.0][1.0,1.0] [ 1.50,4.0] [0.4286,0.66]

[0.11,0.4286][0.25,0.66, ][1.0,1.0][0.4286,0.66]

[0.4286,1.0] [1.50,2.33][1.50,2.33][1.0,1.0] ]
 
 
 
, 

H(2)=

[
 
 
 

[1.00,1.00][1.50,4.00][1.50,4.00][1.50,2.33]
[0.25,0.66][1.00,1.00][1.00,4.00][0.4286,1.00]
[0.25,0.66][0.25,1.00][1.00,1.00][0.25,0.66]

[0.4286,0.66][1.00,2.33][1.50,4.00][1.00,1.00]]
 
 
 
, 

H(3)=

[
 
 
 
[1.00,1.00][1.22,3.00][1.8571,4.00][0.5358,0.8182]

[0.33,0.8182][1.00,1.00][0.66,3.00][1.22,2.33]
[0.25,0.5358][0.33,1.50][1.00,1.00][1.50,4.00]

[1.22,1.8571][0.4286,0.8182][0.25,0.66][1.00,1.00]]
 
 
 
, 

H(4)=

[
 
 
 

[1.00,1.00][1.50,2.33][2.33,4.00][1.50,2.33]
[0.4286,0.66][1.00,1.00][1.00,1.50][0.4286,1.50]
[0.25,0.4286][0.66,1.00][1.00,1.00][0.4286,0.66]
[0.4286,0.66][0.66,2.33][1.50,2.33][1.00,1.00] ]

 
 
 
, 

H(5)=

[
 
 
 

[1.00,1.00][1.50,2.33][3.00,5.66][1.50,4.00]
[0.4286,0.66][1.00,1.00][0.8182,4.00][1.50,4.00]
[0.1756,0.33][0.25,1.22][1.00,1.00][0.66,1.50]
[0.25,0.66][0.25,0.66][0.66,1.50][1.00,1.00] ]

 
 
 
. 

Step 2: By using the GAMS software Distribution 24.8.2 to solve the Goal 

programming model (7), we obtain the optimal weight vector for the five decision 

makers as follows: 

1) 0.08829066, 2) 0.36881986, 3) 0.09415188, 4) 0.26568974, 5) 0.18304786. 
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Step 3: Now, we introduce the combined interval preference relation by (8) as 

follows: 

    

    

    

   

1.0000,10000 1.4196,3.0567 2.0316,4.5796 1.3142,2.3333

0.3271,0.7044 1.0000,1.0000 0.9615,3.0000 0.5949,1.5000

0.2184,0.4922 0.3333,1.0399 1.0000,10000 0.4286,0.9154

0.4286,0.7609 0.6667,1.6809 1.0924,2.3333 1.00

SH =

 00,1.0000

 
 
 
 
 
 
  . 

Step 4: First, we use the DEA-Solver software to calculate the efficiencies under 

the weighted SBM, CCR and BCC models (DEA-Solver 13 was utilized for efficiency 

analyses in this study). In Table 2, it can be observed that as we expect the SBM model 

identifies inefficiencies better than CCR and BCC model, which leads to a more 

logical ranking in the end. 

Table 2. Efficiency based on BCC, CCR, and WSBM 

Efficiency WSBM Efficiency BCC-O Efficiency CCR-O Variables 

1 1 1 A 

0.5118 0.5568 0.5568 B 

0.3217 0.3577 0.3577 C 

0.542 0.5711 0.5711 D 

It is worth mentioning that generally WSBM model exhibited a higher CPU time 

(mean = 1.5 s) compared to the CCR (mean = 1 s) and BCC (mean = 1 s) models, due 

to its non-radial nature and slack-based calculations. Moreover, the algorithm 

demonstrates scalability, with CPU time increasing linearly with problem size. 

In Table 3, by applying the efficiency score obtained from the WSBM model, 

one can solve the cross-efficiency model (1) and obtain the optimal weights for outputs 

and input as follow: 

Table 3. Optimal weights 

*

11 0.25u =
 

*

12 0.1223u =
 

*

13 0.0943u =
 

*

14 0.0853u =
 

*

1 0.25v =
 

*

21 0.0u =
 

*

22 0.0417u =
 

*

23 0.0u =
 

*

24 0.0u =
 

*

2 0.25v =
 

*

31 0.0u =
 

*

32 0.0u =
 

*

33 0.0339u =
 

*

34 0.0u =
 

*

3 0.25v =
 

*

41 0.0u =
 

*

42 0.0u =
 

*

43 0.0u =
 

*

44 0.0705u =
 

*

4 0.25v =
 

Now, we calculate the cross-efficiency matrix (4) using MATLAB  R2024a 

software as follows: 

𝛩 = 

[
 
 
 
[1.0000,1.0000] [0.7266,1.0000] [0.6536,1.0000] [0.7123,1.0000]
[0.3271,0.7044] [0.3271,0.5118] [0.2542,0.6737] [0.2796,0.6639]
[0.2184,0.4922] [0.1626,0.4146] [0.2184,0.3217] [0.1955,0.4264]
[0.4286,0.7609] [0.3211,0.6232] [0.3103,0.6044] [0.4286,0.5420]]

 
 
 
. 

Then, the average cross-efficiency values by (5) are determined as: 
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𝜃1 = [0.773125,1.0000], 𝜃2 = [0.297,0.63845], 

𝜃3 = [0.198725,0.413725], 𝜃4 = [0.37215,0.632625]. 

Based on the above values, the fuzzy intuitive priority weight vector (6) can be 

calculated as follows: 

ω1 = <0.2707, 0.5900>, ω2 = <0.1040, 0.7166>, ω3 = <0.0695, 0.7953>, ω4 = <0.1303, 0.7186>. 

Step 5: According to the definition of the score function, the rank of normalized 

fuzzy intuitive priority vector is ω1 > ω4 > ω2 > ω3. We remind that it is the same 

ranking using the CCR and BCC model. 

Step 6: The final ranking of 4 supply chain options is A1 > A4 > A2 > A3. 

Therefore, it is concluded that A1 is the best supply chain. 

In Table 4, based on the obtained results of this example, application of the BCC, 

CCR, and WSBM DEA models is compered. As can be seen, the CCR and BCC 

models for the mentioned fuzzy situation determine the same efficiency and ranking. 

But overall, the proposed ranking method, shows that using the weighted SBM model 

provides more accurate efficiency than both. Furthermore, due to the more precise 

inefficiency detection of the weighted SBM model, more accurate weights also are 

obtained when using the cross-efficiency. Finally, obtained the normalized 

intuitionistic fuzzy weight vector was using the proposed method Causes that WSBM 

model penalizes units with weaknesses in specific input/output improvements more 

heavily due to its focus on reducing absolute inefficiencies (rather than relative ones). 

In contrast, CCR/BCC models may overlook such inefficiencies. 

Table 4. Comparison of models BCC, CCR, and WSBM. 

Models CCR BCC WSBM 

Fuzzy intuitive priority 

weight vector  

ω1 = <0.2798,0.5975>, 

ω2 = <0.1036,0.7164>, 

ω3 = <0.0694,0.7929>, 

ω4 = <0.1318,0.7133>. 

ω1 = <0.2798,0.5975>, 

ω2 = <0.1036,0.7164>, 

ω3 = <0.0694,0.7929>, 

ω4 = <0.1318,0.7133>. 

ω1 = <0.2707,0.5900>, 

ω2 = <0.1040,0.7166>, 

ω3 = <0.0695,0.7953>, 

ω4 = <0.1303,0.7186>. 

Ranking of the four-

supply chain 
A1 > A4 > A2 > A3 A1 > A4 > A2 > A3 A1 > A4 > A2 > A3 

Therefore, due to its more accurate detection of inefficiencies, it can be used in 

other financial sectors, such as banks. Banks due to the nature of their activities, banks 

are exposed to significant risks in financial markets, such as credit, liquidity, and 

operational risks. Therefore, the fragile and high-risk nature of the banking sector 

necessitates periodic monitoring, measurement, and evaluation of their’ performance. 

Additionally, a reliable and robust performance evaluation system helps banks 

objectively assess their operational results, make faster and more effective decisions, 

and enables them to achieve sustainable competitive advantages and create long-term 

value for stakeholders [27]. Thus, one of the sequence research could be applying such 

a proposed algorithm with the WSBM model to evaluate banks. 

6. Conclusion 

To purpose a new group decision making based on cross-efficiency in DEA with 

fuzzy intuitive preference relations, an interval conversion function is first defined. 
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This function establishes an important relationship between IFPRs and IMPRs that can 

ensure the consistency of the relationship. Then, the SBM weighted model based on 

the interval transform function is determined and applied to obtain the ranking vector 

of consistent IFPRs, so that each alternative is considered as a DMU. It is shown that 

this model can identify inefficiencies better than the CCR and BCC model for 

intuitionistic fuzzy data. Based on the interval conversion function, two DEA cross-

efficiency models are also constructed to obtain efficiency values and evaluate 

alternatives as well; after that, normalized fuzzy intuitive preference weight vector for 

each IFPR is illustrated based on the obtained cross-efficiency values. In the last step, 

a new way of group decision making based on cross-efficiency with IFPRs is proposed, 

which does not require consistency and can act as a normalized fuzzy intuitive 

preference weight vector. Specially, the proposed method is more applicable and can 

provide more reasonable results than some known methods when the IFPRs provided 

by decision makers, have poor consistency. This study compared the performance of 

DEA models CCR, BCC, and WSBM in evaluating efficiency in this process. While 

both CCR and BCC yielded identical efficiency scores and rankings, the WSBM 

model is able potentially for fairer ranking of DMUs. This finding emphasizes the 

importance of the distinguishing technical and managerial efficiency for a 

comprehensive understanding of performance. In addition, the proposed method can 

be integrated with group decision making with hesitant fuzzy preference relations 

(HFPRs) and interval linguistic fuzzy preference relations (ILFPRs) [28] and 

intuitionistic triangular fuzzy preference relations [29], in future studies. Also the 

integration of the CODAS method with the fuzzy data [30], intuitionistic fuzzy data, 

and the WSBM model can create a powerful approach for efficiency evaluation and 

ranking of options in future studies under uncertainty and multi-criteria conditions.  
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