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Abstract: This paper presents a class of novel recurrent neural network approaches for a 

distributed partitioned optimization scenario, where the objective function is separable, 

strongly convex, and possibly nonsmooth, with the computation of a part of the solution 

being distributed to a vertex for execution. In our proposed algorithmic framework, the block 

splitting method allows the solution to be partitioned among vertices according to the 

divisible structure of the problem, so that each neuron only holds a local memory of the 

decision variable rather than the memory of the entire decision variable. A local timer is 

installed for each neuron. If a neuron is triggered by its own timer and a neighbor timer, it 

will reach an activated state and then update and transmit its own variable information. This 

asynchronous evolution strategy with time helps to save computational resources. The 

proposed algorithm is distributed and scalable, with the computation of a single neuron not 

depending on the size of the vertex network, and the convergence of the algorithm can be 

guaranteed. 

Keywords: recurrent neural network; distributed partitioned optimization; block splitting; 

asynchronous evolution; local memory 

1. Introduction 

Distributed optimization is a technique that performs optimization tasks on 

multiple computing vertices and is designed to handle large-scale datasets and 

computational problems. In the modern computing environment, especially with the 

dramatic increase in the amount of data, a single computing unit is often unable to 

effectively deal with large-scale data or complex computing tasks. Distributed 

optimization technology makes the overall computing process more efficient and 

scalable by distributing tasks and data among multiple computing vertices. This 

technology distributes computing tasks to multiple vertices over the network, which 

makes the computing process more efficient and scalable. This kind of computing 

framework is widely used in robotics [1], data processing [2], transportation [3], and 

other scenarios. 

For some parts of the distributed optimization problems, where the information 

over the network may be redundant or unavailable, such as resource allocation [4], 

network utility maximization [5], and energy management [6,7], an additional 
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property should be introduced to describe the situation, in which each vertex only 

performs the computation of a part of the solution, and the whole solver can be 

constructed by aggregating these local computations. This kind of distributed 

optimization problem is graphically called distributed partitioned optimization 

problem, and it is commonly found in modern big data computing applications, such 

as distributed matrix completion [8], power transfer [9], sparse reconstruction [10]. 

As far as the standard formalization is concerned, the goal is to minimize a sum of  

local objective functions 𝑓𝑖(𝑥)  for 𝑥 ∈ ℝ𝑛 , and the information of each 𝑓𝑖(𝑥)  is 

stored in a vertex of the network. Different from the standard distributed problems, 

the decision space is split into 𝑚(𝑚 ≤ 𝑛) blocks, and the computation of each 𝑓𝑖(𝑥) 

may depend on only a subset of blocks. This sparse structure causes previous 

standard methods [11,12] to appear inefficient, as they require each vertex to store 

and send the entire decision vector instead of storing and exchanging local decision 

vector that have an impact on its objective 𝑓𝑖(𝑥) with other vertices. 

The theory of distributed algorithms for such additional properties does not 

seem to have received much attention. Necoara and Clipici [13] introduced a 

stochastic coordinate descent approach with parallelizability for minimizing the sum 

of a partially separable smooth convex function and a fully separable nonsmooth 

convex function and also provided instructions on the algorithm implementation and 

convergence rate guarantee. Notarnicola et al. [14] designed an asynchronous dual 

decomposition algorithm to solve such problems, providing a proof of its asymptotic 

convergence. Bastianello et al. [15] presented a distributed algorithm based on the 

relaxed ADMM for solving a class of optimization problems with separable convex 

cost functions. These previous approaches require each vertex not only to store the 

objective information but also to retain the memory of the corresponding variable 

block, which can lead to redundant computation when computing gradients for all 

variables. 

At present, the main challenges in solving such problems are that the storage 

capacity and computation power of vertices depend on the scale of the network, and 

additionally, all vertices update and transmit data simultaneously, which may lead to 

unnecessary computing consumption. Recurrent neural networks (RNNs) are widely 

used in the field of optimization by virtue of their parallel computing and distributed 

storage and memory functions [16–21]. Especially for large-scale optimization 

problems, Xia et al. [22] developed an RNN system to address the Clifford-valued 

distributed optimization with linear equality and inequality constraints. Jia et al. [23] 

proposed a recurrent neural network (RNN) model with a novel auxiliary function 

for addressing distributed optimization problems over multi-agent networks. Rajesh 

et al. [24] presented a hybrid approach of dynamic differential annealed optimization 

and recalling enhanced RNN. Liu et al. [25] proposed an RNN approach for the 

minimization of the sum of a set of fuzzy convex functions in the differential 

inclusion framework. Sherstinsky [26] provided a significant explanation and 

theoretical derivation of the basic principles of RNN and LSTM networks. Lin et al. 

[27] presented an efficient route programming for multiple automated guided 

vehicles by using deep reinforcement learning and RNN. Considering the maturity of 

RNNs in solving optimization problems, we attempt to apply an RNN model to solve 

https://www.sciencedirect.com/topics/chemical-engineering/auxiliaries
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distributed partitioned optimization problems in this paper. RNN can not only predict 

the future state through the storage memory of historical decisions but also process 

multiple inputs about local information in time to ensure real-time feedback on 

optimization performance. 

In the algorithm design, we also consider the block splitting method [28]. Conor 

et al. [29] designed two distributed network optimization algorithms based on the 

function splitting and the quadratically approximated method, which simplify the 

local subproblems that must be solved in each update iteration for vertices and 

improve the computational efficiency on distributed processors. Latafat et al. [30] 

proposed a triangularly preconditioned primal-dual algorithm to solve the 

minimization problem of the sum of a Lipschitz-differentiable convex function and 

two possibly nonsmooth convex functions, one of which consists of a linear map. 

Based on their research, Li et al. [31] considered the case of a linear function as 

composite and nonsmooth, providing a distributed primal-dual splitting algorithm 

along with its asynchronous version. The advantages of block splitting in ensuring 

convergence and reducing computational load are considerable. To routinizing 

distributed partitioned optimization problems and their dual forms, we propose an 

RNN with block splitting. Not only that, the RNN is implanted with an asynchronous 

update mechanism in the state evolution of neurons, which can improve the 

computational efficiency of the network, especially in the distributed computing 

environment. Neurons can be updated independently and in parallel to obtain faster 

training speed [32]. A considerable conclusion is that asynchronously updated RNNs 

can dynamically adapt to changing input conditions without requiring the entire 

network to process each input simultaneously, which will lead to better performance 

in tasks where input patterns change over time [33]. 

The main contributions of this paper are as follows. Firstly, the proposed RNN 

algorithm is full of scalability, in the sense that each neuron processes only a part of 

the vector of decision information, and neither the data information stored nor the 

computation performed by each neuron depends on the scale of the distributed 

network. Second, when a neuron is triggered by its local timer or neighbor timer, it 

reaches an active state, then updates and transmits its decision information to 

neighbors. This asynchronous evolution mechanism, based on block splitting, helps 

reduce communication overhead and save computing resources. Finally, the 

subgradient update for the dual partitioned problem follows a gradient ascent path, 

and a reasonable time step ensures that the algorithm finds the optimal decision with 

a high probability. This paper is organized as follows. In Section 2, we give some 

prerequisites and a formulation description of the partitioned optimization problem. 

In Section 3, a novel asynchronous RNN algorithm and its theoretical analysis are 

mentioned. Finally, two numerical examples about resource allocation and square-

root loss elastic-net are dispensed in Section 4, and some conclusions are drawn in 

Section 5. 

2. Preliminaries and problem description 

2.1. Notation and definitions 
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Consider a undirected graph 𝒢 = (𝒱, ℰ), where 𝒱 = (1, ⋯ , 𝑁) denotes the set 

of vertices, and ℰ ⊆ 𝒱 × 𝒱 denotes the set of edges. The -th and -th vertices can 

exchange information if (𝑖, 𝑗) ∈ ℰ . Denote 𝒩𝑖 = {𝑗 ∈ {1, ⋯ , 𝑁}: (𝑖, 𝑗) ∈ ℰ}  by the 

neighbor vertices of the -th vertex. For a vector 𝑥 ∈ ℝ𝑛, expand it in the form of 
 

blocks as 𝑥 = [𝑥1
𝑇 , ⋯ , 𝑥𝑁

𝑇 ]𝑇 , in which 𝑥𝑖 ∈ ℝ𝑛𝑖  satisfies ∑ 𝑛𝑖 = 𝑛𝑁
𝑖=1 . Divide the 

identity matrix 𝐼 ∈ ℝ𝑁×𝑁 into 𝑁
 
blocks in form 𝐼 = [𝐼1, ⋯ , 𝐼𝑁], in which 𝐼𝑖 ∈ ℝ𝑛×𝑛𝑖, 

one gets 𝑥𝑖 = 𝐼𝑖
𝑇𝑥  and 𝑥 = ∑ 𝐼𝑖

𝑇𝑥𝑖
𝑁
𝑖=1 . For a nonsmooth function 𝑓:ℝ𝑛 ↦ ℝ , its 

subdifferential at  is denoted by 𝜕𝑓(𝑥), its partitioned subdifferential with respect 

to 𝑥𝑖  is denoted by 𝜕𝑥𝑖
𝑓(𝑥)  and 𝜕𝑥𝑖

𝑓(𝑥) = 𝑈𝑖
𝑇𝜕𝑓(𝑥)

. 
Denote 𝜇(𝑥) ∈ 𝜕𝑓(𝑥)  and 

𝜇𝑖(𝑥) ∈ 𝜕𝑥𝑖
𝑓(𝑥)  as a subgradient of 𝑓  at 𝑥  and the corresponding partitioned 

subgradient with respect to𝑥𝑖, respectively. The optimal value of a function 𝑓 over its 

domain 𝑑𝑜𝑚𝑓 is denoted by 𝑓opt. 

Definition 1 [33]. For a function 𝑓:ℝ𝑛 ↦ ℝ, its conjugate function 𝑓∗:ℝ𝑛 ↦ ℝ 

is defined by 𝑓∗(𝑦) = 𝑠𝑢𝑝
𝑥∈𝑑𝑜𝑚𝑓

(𝑦𝑇𝑥 − 𝑓(𝑥)). 

Definition 2 [33]. Consider an optimization model: 

minmize     𝑓(𝑥) 

subjectto   ℎ𝑘(𝑥) = 0,  𝑘 ∈ {1, ⋯ , 𝑚} 

                  𝑔𝑙(𝑥) ≤ 0,  𝑙 ∈ {1, ⋯ , 𝑛}. 

(1) 

The Lagrangian function is constructed as 

𝐿(𝑥, 𝜆, 𝜈) = 𝑓(𝑥) + ∑ 𝜆𝑘ℎ𝑘(𝑥)

𝑚

𝑘=1

+ ∑ 𝑣𝑙𝑔𝑙(𝑥)

𝑛

𝑙=1

, 𝑣𝑙 ≥ 0 (2) 

where 𝜆 = [𝜆1, ⋯ , 𝜆𝑚]𝑇
 
and 𝜈 = [𝑣1, ⋯ , 𝑣𝑛]𝑇  denote the Lagrangian multiplier 

vector. The Lagrangian dual function is defined by 

𝜓𝑑(𝜆, 𝜈) = inf
𝑥

𝐿(𝑥, 𝜆, 𝜈) (3) 

which is independent of 𝑥. 

2.2. Problem model 

We consider the minimization of a class of distributed partitioned optimization 

problems subject to local constraints, where the structure of the objective function is 

separable. The specific form is as follows: 

minmize     ∑ 𝑓𝑖(𝑥)

𝑁

𝑖=1

 

subjectto   𝑥 ∈ 𝑋𝑖 ⊂ ℝ𝑛,  𝑖 ∈ {1, ⋯ , 𝑁} 

(4) 

where the local objective function 𝑓𝑖:ℝ𝑛 ↦ ℝ is continuous, convex and possibly 

nonsmooth. The local objective
 
𝑓𝑖 

and constraint 𝑋𝑖 
are accessible only to the 𝑖 -th 

vertex. The decision variable 𝑥 ∈ ℝ𝑛 can be partitioned by 𝑥 = [𝑥1
𝑇 , ⋯ , 𝑥𝑁

𝑇 ]𝑇, where 

𝑥𝑖 ∈ ℝ𝑛𝑖 satisfies ∑ 𝑛𝑖
𝑁
𝑖=1 = 𝑛. Since the restricted relationship 𝑥 ∈ 𝑋𝑖 applies to any 

𝑖 ∈ {1, ⋯ , 𝑁}, then 𝑥 ∈ 𝑋 ≜ ⋂ 𝑋𝑖
𝑁
𝑖=1 . We introduce block set 𝒳𝑖 ⊂ ℝ𝑛𝑖 to implement 
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block decomposition on the constraint set 𝑋 , i.e., 𝑋 = ∏ 𝒳𝑖
𝑁
𝑖=1 = 𝒳1 × ⋯ × 𝒳𝑁 , 

where 𝒳𝑖  can be understood as the restriction set of the 𝑖  -th decision block and 

×denotes the Cartesian product. Additionally, the local objective functions and 

constraints are consistent with the sparsity of the communication topology, that is, 𝑓𝑖 
and 𝒳𝑖 

are rely only on the decision block of the 𝑖 -th vertex and its neighbors. This 

problem can be represented in the following distributed way: 

minmize     ∑ 𝑔𝑖 (𝑥𝑖, [𝑥𝑗]
𝑗∈𝒩𝑖

)

𝑁

𝑖=1

 

subjectto   (𝑥𝑖, [𝑥𝑗]
𝑗∈𝒩𝑖

) ∈ 𝒳𝑖 × ∏ 𝒳𝑗

𝑗∈𝒩𝑖

,  𝑖 ∈ {1, ⋯ , 𝑁} 

(5) 

where 𝑔𝑖: ℝ𝑛𝑖+∑ 𝑛𝑗𝑗∈𝒩𝑖 ↦ ℝ is viewed as the local objective function determined by 

the variables 𝑥𝑖 and [𝑥𝑗]
𝑗∈𝒩𝑖

. It can be seen that the constraint is actually applied to 

the 𝑖 -th vertex and its neighbors, not just the 𝑖 -th vertex. This seemingly trivial 

feature actually brings more generality to the problem model and adds significant 

challenges. The following assumptions about objective function and constraints are 

applicable to the research work in this paper. 

Assumption 1. Each local objective function𝑔𝑖: ℝ𝑛𝑖+∑ 𝑛𝑗𝑗∈𝒩𝑖 ↦ ℝ
 
is strongly 

convex with parameter

 

𝛿𝑖 > 0
. 

Assumption 2. The constraint block set 𝒳𝑖 ⊂ ℝ𝑛𝑖  is nonempty compact and 

convex, and the relatively feasible interior 𝑟𝑖𝑛𝑡(𝒳𝑖) is nonempty. 

Remark 1. Assumptions 1 and 2 ensure the solvability of distributed partitioned 

optimization problem (5), and it is determined that the sum of local objective 

function 𝑔𝑖  obtains a unique optimal solution at some (𝑥𝑖
∗, [𝑥𝑗

∗]
𝑗∈𝒩𝑖

)  within the 

feasible set. The nonemptiness of the relative interior of 𝑟𝑖𝑛𝑡(𝒳𝑖) ensures the strong 

duality of the dual method. 

Considering a meticulous treatment of problem (4) in a distributed manner, the 

notation 𝑅𝑖𝑥 ∈ ℝ𝑛

 
is introduced, which is regarded as a local memory of the overall 

decision information stored at the 𝑖 -th vertex, and all the memories should be equal. 

Then, problem (4) can be equivalently presented by the following distributed form:  

minmize     ∑ 𝑓𝑖(𝑅𝑖𝑥)

𝑁

𝑖=1

 

subjectto   R𝑖𝑥 ∈ 𝑋𝑖,  𝑖 ∈ {1, ⋯ , 𝑁} 

                  R𝑖𝑥 = 𝑅𝑗𝑥, (𝑖, 𝑗) ∈ ℰ. 

(6) 

If the variable partition details are performed directly according to the idea of 

problem (5), due to the special structure of 𝑓𝑖  
and 𝑋𝑖 , problem (4) appears rather 

unwieldy to solve. Our idea is to modify Equation (6) with the help of the partitioned 

structure to strictly grasp the range of equivalence relations between the decision 

variables, and then limit their diffusion in the communication graph. 

The local memory repository with respect to the overall decision information is 

created for the 𝑖 -th vertex, and the partitioned decision variable 𝑥𝑖 corresponding to 
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the 𝑖 -th vertex is stipulated to be consistent only with its neighbors. Thus, problem 

(5) can be rewritten as follows: 

minmize     ∑ �̃�𝑖 (𝑅𝑖𝑥𝑖 , [𝑅𝑖𝑥𝑗]
𝑗∈𝒩𝑖

)

𝑁

𝑖=1

 

subjectto   (𝑅𝑖𝑥𝑖, [𝑅𝑖𝑥𝑗]
𝑗∈𝒩𝑖

) ∈ 𝒳𝑖 × ∏ 𝒳𝑗

𝑗∈𝒩𝑖

,  𝑖 ∈ {1, ⋯ , 𝑁}  

                  R𝑖𝑥𝑖 = 𝑅𝑗𝑥𝑖 , 𝑅𝑖𝑥𝑗 = 𝑅𝑗𝑥𝑗,  𝑗 ∈ 𝒩𝑖 

(7) 

in which [𝑅𝑖𝑥𝑗]
𝑗∈𝒩𝑖

∈ ℝ
∑ 𝑛𝑗𝑗∈𝒩𝑖

 

represents the local memory of the partitioned 

variable 𝑥𝑗(𝑗 ∈ 𝒩𝑖)  of the 𝑗  -th vertex stored in the 𝑖  -th vertex, and 𝑅𝑖𝑥𝑖 ∈ ℝ𝑛𝑖 

represents the memory of the 𝑖 -th vertex for its own decision. Figure 1 illustrates 

the vertex network topology and the distribution of memories of its partitioned 

decision variables. It can be seen from the vertical column that the memory 

information 𝑅𝑖𝑥𝑖 ∪ {𝑅𝑗𝑥𝑖: 𝑗 ∈ 𝒩𝑖}  depends on the 𝑖  -th vertex, and along the 

horizontal row it can be found that the memory of individual decision 𝑅𝑖𝑥𝑗  or 

𝑅𝑖𝑥𝑗(𝑗 ∈ 𝒩𝑖) is related to the corresponding block set 𝒳𝑖. 

 

Figure 1. Vertex network topology and partitioned memories. 

Remark 2. Equation (7) intuitively presents the blockized configuration of 

distributed partitioned optimization problem (4). For a pair of vertices (𝑖, 𝑗) ∈ ℰ , 

𝑅𝑖𝑥𝑖 = 𝑅𝑗𝑥𝑖 and 𝑅𝑖𝑥𝑗 = 𝑅𝑗𝑥𝑗 need to be satisfied simultaneously, and this redundant 

structure is necessary, which provides inspiration for constructing block splitting 

optimization algorithms. 

The notation 𝑅𝑖�̄�  is introduced to represent the aggregated form of memory 

stored by the 𝑖 -th vertex about the decision information, both the neighbor vertices 

and itself, i.e., 𝑅𝑖�̄� = (𝑅𝑖𝑥𝑖, [𝑅𝑖𝑥𝑗]
𝑗∈𝒩𝑖

)
, 

which makes the design and analysis of the 

algorithm more compact. Based on this representation, the form of problem (4) can 

be rewritten as 

1

8

2

3

7 4

6 5

Block set

Decision Memories setVertex network topology
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minmize     ∑ �̃�𝑖(𝑅𝑖�̄�)

𝑁

𝑖=1

 

subjectto   R𝑖�̄� ∈ 𝒳𝑖 × ∏ 𝒳𝑗

𝑗∈𝒩𝑖

,  𝑖 ∈ {1, ⋯ , 𝑁}  

                  R𝑗�̄� = 𝑅𝑖�̄�,   𝑗 ∈ 𝒩𝑖 

(8) 

where 𝑅𝑗�̄� = (𝑅𝑗𝑥𝑖 , [𝑅𝑗𝑥𝑗]
𝑗∈𝒩𝑖

) . We adopt a strategy of dual decomposition by 

letting  denote the stacking of all dual variables in the communication topology. 

Construct the following Lagrangian function with block splitting structure:  

𝐿(𝑥, 𝛩) = ∑ [�̃�𝑖 (𝑅𝑖𝑥𝑖, [𝑅𝑖𝑥𝑗]
𝑗∈𝒩𝑖

) + ∑ [(𝑅𝑖𝑗𝜃𝑖)
𝑇

(𝑅𝑖𝑥𝑖 − 𝑅𝑗𝑥𝑖)

𝑗∈𝒩𝑖

𝑁

𝑖=1

 

            + (𝑅𝑖𝑗𝜃𝑗)
𝑇

(𝑅𝑖𝑥𝑗 − 𝑅𝑗𝑥𝑗)]] 

(9) 

in which 𝛩 = [𝛩1
𝑇 , ⋯ , 𝛩𝑁

𝑇 ]𝑇  with each chunking 𝛩𝑖 =

([𝑅𝑖𝑗𝜃𝑖]
𝑗∈𝒩𝑖

, [𝑅𝑖𝑗𝜃𝑗]
𝑗∈𝒩𝑖

). Based on the undirected and connectivity properties of 

communication graph, the split Lagrangian function (9) can be converted as follows:  

𝐿(𝑥, 𝛩) = ∑ [�̃�𝑖 (𝑅𝑖𝑥𝑖, [𝑅𝑖𝑥𝑗]
𝑗∈𝒩𝑖

) + (𝑅𝑖𝑥𝑖)𝑇 ∑ (𝑅𝑖𝑗𝜃𝑖 − 𝑅𝑗𝑖𝜃𝑖)

𝑗∈𝒩𝑖

𝑁

𝑖=1

 

            + ∑ (𝑅𝑖𝑥𝑗)
𝑇

(𝑅𝑖𝑗𝜃𝑗 − 𝑅𝑗𝑖𝜃𝑗)

𝑗∈𝒩𝑖

] 

(10) 

the local constraints (𝑅𝑖𝑥𝑖, [𝑅𝑖𝑥𝑗]
𝑗∈𝒩𝑖

) ∈ 𝒳𝑖 × ∏ 𝒳𝑗𝑗∈𝒩𝑖
 will not dualized in 

the split Lagrangian functions (9) and (10), they will be handed in the local 

optimization problem corresponding to the vertex. We define the Lagrangian dual 

function 𝜓𝑑 
to be the infimum of the Lagrangian function 𝐿(𝑥, 𝛩) on the set 𝑥 ∈ 𝑋, 

i.e.,  

𝜓𝑑(𝛩) = 𝑖𝑛𝑓
𝑥∈𝑋

 𝐿(𝑥, 𝛩) = ∑ 𝜓𝑑𝑖 ([𝑅𝑖𝑗𝜃𝑖, 𝑅𝑗𝑖𝜃𝑖, 𝑅𝑖𝑗𝜃𝑗, 𝑅𝑗𝑖𝜃𝑗]
𝑗∈𝒩𝑖

)

𝑁

𝑖=1

 (11) 

in which
 

𝜓𝑑𝑖 ([𝑅𝑖𝑗𝜃𝑖, 𝑅𝑗𝑖𝜃𝑖, 𝑅𝑖𝑗𝜃𝑗, 𝑅𝑗𝑖𝜃𝑗]
𝑗∈𝒩𝑖

) 

= 𝑖𝑛𝑓
(𝑅𝑖𝑥𝑖,[𝑅𝑖𝑥𝑗]

𝑗∈𝒩𝑖
)

[�̃�𝑖 (𝑅𝑖𝑥𝑖, [𝑅𝑖𝑥𝑗]
𝑗∈𝒩𝑖

) + (𝑅𝑖𝑥𝑖)𝑇 ∑ (𝑅𝑖𝑗𝜃𝑖 − 𝑅𝑗𝑖𝜃𝑖)

𝑗∈𝒩𝑖

  

      + ∑ (𝑅𝑖𝑥𝑗)
𝑇

(𝑅𝑖𝑗𝜃𝑗 − 𝑅𝑗𝑖𝜃𝑗)

𝑗∈𝒩𝑖

]. 

(12) 
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Since (𝑅𝑖𝑥𝑖 , [𝑅𝑖𝑥𝑗]
𝑗∈𝒩𝑖

) ∈ 𝒳𝑖 × ∏ 𝒳𝑗𝑗∈𝒩𝑖

 

and each 𝒳𝑖  is compact and 

nonempty, the minimum of in (12) can be uniquely determined, and 𝜓𝑑𝑖 is always 

finite. Then, the dual problem of (11) can be transformed into an unconstrained 

optimization problem as follows: 

maximize  ∑ 𝜓𝑑𝑖 ([𝑅𝑖𝑗𝜃𝑖, 𝑅𝑗𝑖𝜃𝑖, 𝑅𝑖𝑗𝜃𝑗, 𝑅𝑗𝑖𝜃𝑗]
𝑗∈𝒩𝑖

)

𝑁

𝑖=1

. (13) 

Coming back to distributed optimization problem (7), we know that primal 

variables always follow 

(𝑅𝑖𝑥𝑖 , [𝑅𝑖𝑥𝑗]
𝑗∈𝒩𝑖

) ∈ − 𝑎𝑟𝑔𝑚𝑖𝑛
(𝑥𝑖,[𝑥𝑗]

𝑗∈𝒩𝑖
)

(𝑔𝑖 (𝑥𝑖, [𝑥𝑗]
𝑗∈𝒩𝑖

) + (𝑥𝑖)𝑇 ∑ (𝑅𝑖𝑗𝜃𝑖(𝑡)

𝑗∈𝒩𝑖

 

−𝑅𝑗𝑖𝜃𝑖(𝑡)) + ∑ (𝑥𝑗)
𝑇

(𝑅𝑖𝑗𝜃𝑖(𝑡) − 𝑅𝑗𝑖𝜃𝑖(𝑡))

𝑗∈𝒩𝑖

) 

(14) 

in which (𝑥𝑖, [𝑥𝑗]
𝑗∈𝒩𝑖

) ∈ 𝒳𝑖 × ∏ 𝒳𝑗𝑗∈𝒩𝑖
. Let �̃�𝑖

∗
 
be a conjugate of �̃�𝑖, then  

𝜓𝑑𝑖 ([𝑅𝑖𝑗𝜃𝑖, 𝑅𝑗𝑖𝜃𝑖, 𝑅𝑖𝑗𝜃𝑗, 𝑅𝑗𝑖𝜃𝑗]
𝑗∈𝒩𝑖

) 

= −�̃�𝑖
∗ ( ∑ (𝑅𝑖𝑗𝜃𝑖 − 𝑅𝑗𝑖𝜃𝑖)

𝑗∈𝒩𝑖

, [𝑅𝑖𝑗𝜃𝑗 − 𝑅𝑗𝑖𝜃𝑗]
𝑗∈𝒩𝑖

). 
(15) 

It can be seen that the split Lagrangian dual function 𝜓𝑑𝑖 does not depend on 

the whole set of dual variables 𝛩, but exhibits some sparsity and is only related to the 

dual variables of neighbor vertices. 

3. Recurrent neural network approach 

3.1. Basic framework 

In the light of the analysis in Section 2, a science basic framework of RNN with 

block splitting and dual subgradient is proposed to solve distributed partitioned 

optimization problem (4). In the communication graph 𝒢, each vertex performs the 

update and storage of the primal and dual variables driven by the recurrent neural 

network. Taking the 𝑖  -th vertex as a reference, along with the activation and 

memory of the 𝑖 -th neuron in neural network, it will wake up and update its own 

decision 𝑥𝑖  
and the decisions [𝑥𝑗]

𝑗∈𝒩𝑖
 of its neighboring vertices, as well as the 

corresponding dual variables 𝑅𝑖𝑗𝜃𝑖, [𝑅𝑖𝑗𝜃𝑗]
𝑗∈𝒩𝑖

. For any pair of vertices (𝑖, 𝑗) ∈ ℰ, 

we design the following distributed algorithm based on the neuronal memory 

evolution function of RNN: 

(𝑅𝑖𝑥𝑖(𝑡 + 1), [𝑅𝑖𝑥𝑗(𝑡 + 1)]
𝑗∈𝒩𝑖

) ∈ (𝑅𝑖𝑥𝑖(𝑡), [𝑅𝑖𝑥𝑗(𝑡)]
𝑗∈𝒩𝑖

) (16) 
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        −𝜕
(𝑥𝑖,[𝑥𝑗]

𝑗∈𝒩𝑖
)

(𝑓𝑖 (𝑥𝑖 , [𝑥𝑗]
𝑗∈𝒩𝑖

) + (𝑥𝑖)𝑇 ∑ (𝑅𝑖𝑗𝜃𝑖(𝑡) − 𝑅𝑗𝑖𝜃𝑖(𝑡))

𝑗∈𝒩𝑖

 

        + ∑ (𝑥𝑗)
𝑇

(𝑅𝑖𝑗𝜃𝑖(𝑡) − 𝑅𝑗𝑖𝜃𝑖(𝑡))

𝑗∈𝒩𝑖

) 

𝑅𝑖𝑗𝜃𝑖(𝑡 + 1) = 𝑅𝑖𝑗𝜃𝑖(𝑡) + 𝛾𝑖 (𝑅𝑖𝑥𝑖(𝑡 + 1) −   𝑅𝑗𝑥𝑖(𝑡 + 1))
 

(17) 

𝑅𝑖𝑗𝜃𝑗(𝑡 + 1) = 𝑅𝑖𝑗𝜃𝑗(𝑡) + 𝛾𝑖 (𝑅𝑖𝑥𝑗(𝑡 + 1) −   𝑅𝑗𝑥𝑗(𝑡 + 1))

 

(18) 

where 𝛾𝑖  
is the time step in RNN, which can be viewed as the interval between 

adjacent moments of the 𝑖 -th neuron. The computational framework of RNN (16)–

(18) is applicable to primal variables
 
(𝑅𝑖𝑥𝑖, [𝑅𝑖𝑥𝑗]

𝑗∈𝒩𝑖
) ∈ ℝ𝑛𝑖 × ℝ

∑ 𝑛𝑗𝑗∈𝒩𝑖  and dual 

variables (𝑅𝑖𝑗𝜃𝑖, [𝑅𝑖𝑗𝜃𝑗]
𝑗∈𝒩𝑖

) ∈ ℝ𝑛𝑖 × ℝ
∑ 𝑛𝑗𝑗∈𝒩𝑖  with any initial states, whose 

evolution follows neuronal activity. Figure 2 illustrates the architecture of the RNN 

(16)–(18), where the top half shows the evolution of the primal variable space under 

neuron induction, and the bottom half shows the evolutionary behavior of the dual 

variable space induced by neurons. It can be seen that the output state of the neuron 

at the current time is determined by the output state at the previous time and the 

input state at the current time. In this optimization model, each neuron corresponds 

to each vertex and has the ability to store objective and decision information. 

 

Figure 2. Architecture of RNN (16)–(18). 

Remark 3. The design philosophy of RNN (16)–(18) does not impose strict 

requirements on the symmetry of the dual variables 𝑅𝑖𝑗𝜃𝑖(𝑡) = −𝑅𝑗𝑖𝜃𝑖(𝑡). When the 

time step size 𝛾𝑖 is chosen reasonably, the RNN algorithm can be simplified to only 

require one round of communication to perform local minimization and the update of 

the subgradient, which means that RNN (16)–(18) has better generality in solving 

distributed partitioned optimization problems (4). 

Primal variable space

Dual variable space
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Theorem 1. Assumptions 1–2 hold. If time step𝛾𝑖  in (17)–(18) is a constant 

satisfying 𝛾𝑖 ∈ 0,1/𝑁𝜉𝑖, 
with 𝜉𝑖 = √2 ∑ (

1

𝛿𝑖
+

1

𝛿𝑗
)

2

𝑗∈𝒩𝑖
, the objective function 𝑔𝑖 in 

problem (5) can converge to the optimal value 𝑔𝑖opt by following the dual variable 

sequence {𝛩1(𝑡), ⋯ , 𝛩𝑁(𝑡)} induced by RNN (16)–(18), and the recurrent primal 

variable sequence {𝑅𝑘𝑥𝑖(𝑡): 𝑘 ∈ {𝑖} ∪ 𝒩𝑖}  motivated by Equation (16) satisfies 

𝑙𝑖𝑚
𝑡→∞

‖𝑅𝑘𝑥𝑖(𝑡) − 𝑥𝑖
∗‖ = 0

 
for any 𝑖 ∈ {1, ⋯ , 𝑁}, in which 𝑥𝑖

∗is the 𝑖 -th block of the 

unique optimal solution 𝑥∗ = [𝑥1
∗𝑇 , ⋯ , 𝑥𝑁

∗𝑇]𝑇. 

Proof of Theorem 1. Based on Assumption 1, there exists the Lipschitz 

continuous subgradient 
𝜕𝜓𝑑(𝛩)

𝜕𝑅𝑖𝑗𝜃𝑖
,

𝜕𝜓𝑑(𝛩)

𝜕𝑅𝑖𝑗𝜃𝑗
 of the Lagrangian dual function 𝜓𝑑  with 

splitting slackness. With the help of the conjugate function, for any 𝑗 ∈ 𝒩𝑖 , there 

exist 𝜈𝑖
∗ ∈ 𝜕�̃�𝑖

∗, 𝜈𝑗
∗ ∈ 𝜕�̃�𝑗

∗ such that 

𝜕𝜓𝑑(𝛩)

𝜕𝑅𝑖𝑗𝜃𝑖
= [𝜈𝑖

∗]𝑖 − [𝜈𝑗
∗]

𝑖
 

(19) 

𝜕𝜓𝑑(𝛩)

𝜕𝑅𝑖𝑗𝜃𝑗
= [𝜈𝑖

∗]𝑗 − [𝜈𝑗
∗]

𝑗
 

(20) 

where [𝜈𝑖
∗]𝑖  the 𝑖 -th component of the subgradient 𝜈𝑖

∗. It follows from the strong 

convexity of 𝑔𝑖  that the subgradient of its conjugate function 𝜕𝑔𝑖
∗

 

is Lipschitz 

continuous with 
1

𝛿𝑖
 [34] (Theorem 4.2.2). Combining Equations (19) and (20), we can 

obtain 𝜉𝑖 = √2 ∑ (
1

𝛿𝑖
+

1

𝛿𝑗
)

2

𝑗∈𝒩𝑖
. Next, define the diagonal positive definite matrix 

ϒ ≜ diag{𝛾1, ⋯ , 𝛾𝑁}  with respect to the time step, where 𝛾𝑖 ≤
1

𝑁𝜉𝑖
 for any 𝑖 ∈

{1, ⋯ , 𝑁} , then the neuronal groups evolving behavior with respect to the 

combination of dual variables can be described as 

𝛩(𝑡 + 1) = 𝛩(𝑡) + ϒ𝜂(𝛩(𝑡)) (21) 

where 𝜂(𝛩(𝑡)) ∈ 𝜕𝜓𝑑(𝛩(𝑡)). Since all diagonal elements satisfy 𝛾𝑖 ∈ 0,
1

𝑁𝜉𝑖
, then 

for any disturbance 𝜁, we have 

𝜓𝑑(𝛩(𝑡) + 𝜁) ≥ 𝜓𝑑(𝛩(𝑡)) + 𝜂(𝛩(𝑡))𝜁 −
1

2
𝑁𝜁𝑇diag{𝜉1, ⋯ , 𝜉𝑁}𝜁.

 

(22) 

On the basis of the proof of the optimality of the nonsmooth optimization 

problem and its dual form [35], (Theorem 2), it is known that a finite sequence 

{𝛩(𝑡)} will be generated to converge to the optimal solution 𝛩∗ of problem (11).

 Meanwhile, Equation (21) can be split in the following components: 

𝛩𝑖(𝑡 + 1) ∈  Θ𝑖(𝑡) + 𝛾𝑖𝜕𝛩𝑖
𝜓𝑑(𝛩(𝑡)),  for 𝑖 ∈ {1, ⋯ , 𝑁}. (23) 
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According to the method of conjugate functions, the solution of the primal 

minimization problem (2) can be obtained by computing 𝜕�̃�𝑖
∗  at the point 

(∑ (𝑅𝑖𝑗𝜃𝑖 − 𝑅𝑗𝑖𝜃𝑖)𝑗∈𝒩𝑖
, [𝑅𝑖𝑗𝜃𝑗 − 𝑅𝑗𝑖𝜃𝑗]

𝑗∈𝒩𝑖
), and for any 𝑗 ∈ 𝒩𝑖, one obtains 

𝜕𝜓𝑑(𝛩(𝑡))

𝜕𝑅𝑖𝑗𝜃𝑖(𝑡)
= 𝑅𝑖𝑥𝑖(𝑡 + 1) − 𝑅𝑗𝑥𝑖(𝑡 + 1) (24) 

𝜕𝜓𝑑(𝛩(𝑡))

𝜕𝑅𝑖𝑗𝜃𝑗(𝑡)
= 𝑅𝑖𝑥𝑗(𝑡 + 1) − 𝑅𝑗𝑥𝑗(𝑡 + 1).

 

(25) 

Thus, the evolutionary behavior of the dual neuronal groups can be viewed as 

the scaled gradient ascent (23). We know from Assumption 2 that the strong duality 

between the optimization problems (7) and (13) holds, and there is an equivalence 

relation between optimization problems (7) and (5), then the optimal value 𝜓𝑑𝑖opt
=

𝑔𝑖opt  holds. Hence, the objective function 𝑔𝑖  in problem (5) can converge to the 

optimal value 𝑔𝑖opt  by following the dual variable sequence {𝛩1(𝑡), ⋯ , 𝛩𝑁(𝑡)} 

driven by RNN (16)–(18). 

By Assumption 1, we know that distributed optimization problem (5) has a 

unique optimal solution 𝑥∗ = [𝑥1
∗𝑇 , ⋯ , 𝑥𝑁

∗𝑇]𝑇 , and it follows from the equivalence 

that 𝑥* is also the unique optimal solution to problem (7). Moreover, the first-order 

optimality condition for the dual problem is given by 0 ∈ 𝜕𝜓𝑑(𝛩∗), in which 𝛩∗ = [ 

Θ1
∗𝑇 , ⋯ , 𝛩𝑁

∗𝑇]
𝑇
 denotes a limit point of the sequence {𝛩(𝑡)}, and 𝛩𝑖

∗ can be regarded 

as an equilibrium state of system (23). It obtains from (24) and (25) that there exists 

a limit point (𝑅𝑖𝑥𝑖
∗, [𝑅𝑖𝑥𝑗

∗]
𝑗∈𝒩𝑖

)  of the neural memory sequence of the primal 

variable, and according to the evolution behavior of this sequence, the neuron state 

𝑥𝑖 
can search for the unique optimal solution 𝑥𝑖

* in problem (5). This completes the 

proof. 

3.2. Asynchronous RNN (AsyRNN) 

In terms of the execution power of the RNN algorithm (16)–(18), we 

incorporate the asynchronous evolution mechanism. The activated neurons perform 

information updating and transmission during each evolution of the RNN, whereas 

the dormant neurons wait to be triggered by a local timer or neighborly information, 

and finally, the decision information of each vertex on the time series of the RNN 

can reach the optimal state. Specifically, each neuron in the RNN is assigned a local 

timer, and the timer of each neuron is random and independent. When the 𝑖  -th 

neuron is dormant, it continues to receive information from its neighbors until it is 

activated by its local timer or by information from neighboring neurons. After being 

activated, the 𝑖  -th neuron updates its local variables and transmits the updated 

information to other neighbors. The timer is established on a local timer 𝜐𝑖 ∈ ℝ+ and 

a randomly generated waiting time 𝑇𝑖. The 𝑖 -th timer activates the 𝑖 -th neuron when 

𝜐𝑖 = 𝑇𝑖, so that the 𝑖 -th neuron enters the activated mode. After performing the local 

evolution, the local time resets 𝜐𝑖 = 0  and the next waiting time 𝑇𝑖  
is randomly 
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generated. The waiting times between consecutive triggers are independent and 

identically distributed random variables that follow the same exponential distribution. 

Specifically, when the 𝑖  -th neuron is dormant, it continuously receives 

information from its activated neighbors. If the local timer 𝜐𝑖 
is triggered or receives 

new dual information 𝑅𝑗𝑖𝜃𝑖 
and 𝑅𝑗𝑖𝜃𝑗, then the -th neuron is activated to perform 

the update and transmission of the primal variable 𝑅𝑖�̄� = (𝑅𝑖𝑥𝑖, [𝑅𝑖𝑥𝑗]
𝑗∈𝒩𝑖

). If the 

activation state is caused by the local timer triggering of the 𝑖 -th neuron itself, the 

update and transmission work is performed on the local dual information 𝑅𝑖𝑗𝜃𝑖 
and 

𝑅𝑖𝑗𝜃𝑗. Considering that there is no global timer, denote by 𝑅𝑖𝑥𝑖
▲, 𝑅𝑖𝑗𝜃𝑖

▲ the variables 

for which the -th neuron performs an update in the activated state, while by default 

denote by 𝑅𝑖𝑥𝑖, 𝑅𝑖𝑗𝜃𝑖 the variables whose updates are not performed. We assign a 

state (𝑅𝑖𝑥𝑖 , [𝑅𝑖𝑥𝑗]
𝑗∈𝒩𝑖

) and a dual state ([𝑅𝑖𝑗𝜃𝑖]
𝑗∈𝒩𝑖

, [𝑅𝑖𝑗𝜃𝑗]
𝑗∈𝒩𝑖

) to each neuron, 

and design the asynchronous RNN (AsyRNN) algorithm as follows: 

Algorithm 1 Asynchronous RNN (AsyRNN) 

1: Preset. Set 𝜐𝑖 = 0 and randomly generate a waiting time . 

2: Evolution. Dormancy Phase: While 𝜐𝑖 < 𝑇𝑖  
do 

3: Receive 𝑅𝑖𝑥𝑖 , 𝑅𝑖𝑥𝑗 
and

 
𝑅𝑖𝑗𝜃𝑖, 𝑅𝑖𝑗𝜃𝑗 from the 𝑗(𝑗 ∈ 𝒩𝑖)-th neuron. 

4: If 𝑅𝑖𝑗𝜃𝑖, 𝑅𝑖𝑗𝜃𝑗 are received switch to Activation Phase. 

5: 

Activation Phase: Calculation and transinformation

 

(𝑅𝑖𝑥𝑖
▲, [𝑅𝑖𝑥𝑗

▲]
𝑗∈𝒩𝑖

) ∈ (𝑅𝑖𝑥𝑖
▲, [𝑅𝑖𝑥𝑗

▲]
𝑗∈𝒩𝑖

) 

− 𝜕
(𝑥𝑖,[𝑥𝑗]

𝑗∈𝒩𝑖
)

(𝑓𝑖 (𝑥𝑖, [𝑥𝑗]
𝑗∈𝒩𝑖

) + (𝑥𝑖)𝑇 ∑ (𝑅𝑖𝑗𝜃𝑖
▲(𝑡) − 𝑅𝑗𝑖𝜃𝑖(𝑡))

𝑗∈𝒩𝑖

 

+ ∑ (𝑥𝑗)
𝑇

(𝑅𝑖𝑗𝜃𝑖
▲(𝑡) − 𝑅𝑗𝑖𝜃𝑖(𝑡))

𝑗∈𝒩𝑖

) 

(26) 

6: If 𝜐𝑖 = 𝑇𝑖 

7: Then calculation and transinformation 

𝑅𝑖𝑗𝜃𝑖
▲ = 𝑅𝑖𝑗𝜃𝑖 + 𝛾𝑖(𝑅𝑖𝑥𝑖

▲ −   𝑅𝑗𝑥𝑖) (27) 

𝑅𝑖𝑗𝜃𝑗
▲ = 𝑅𝑖𝑗𝜃𝑗 + 𝛾𝑖(𝑅𝑖𝑥𝑗

▲ −   𝑅𝑗𝑥𝑗) (28) 

8: Set 𝜐𝑖 = 0 and randomly generate a new waiting time 𝑇𝑖. 

9: Switch to Dormancy Phase. 

Figure 3 shows the evolution mechanism of AsyRNN (26)–(28) in the primal 

and dual variable spaces under the dormant and activation phases. The dormancy and 

activation states of the 𝑖  -th neuron are switched by local timers and local 

information without any central timer. The time taken for the computation of the 

dormancy phase is negligible compared to that of the activation phase. Besides, a 

constant local step 𝛾𝑖 is employed in the ascent step, which can be initialized by local 

information exchange between neighboring neurons. Each neuron is performing each 

computation by the latest value available locally. 
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Figure 3. Architecture of AsyRNN (26)–(28). 

Remark 4. Relying on the designed asynchronous update strategy triggered by 

local timers, AsyRNN (26)–(28) can better achieve steady state of gradient flow 

during training and prevent the vanishing and exploding gradient problems, which is 

due to the uncoordinated and more gradual propagation of neuron evolution 

throughout the network. Neurons adapt more flexibly to large or highly dynamic 

network environments based on their sensitivity to current inputs and local 

information. 

Remark 5. For randomly generated updates, the time-sensitive performance 

feedback of AsyRNN (26)–(28) can adjust the local firing frequency and memory of 

the neurons to better adapt to the task requirements. Moreover, the inherent 

predictive and approximation capabilities of RNN enable it to hold a coexistence 

attitude towards time-sensitive decisions and effectively handle synchronization 

among neurons. 

Theorem 2. Assumptions 1–2 hold. The local timer 𝜐𝑖 is constructed following 

the principle of AsyRNN (26)–(28), and the time step𝛾𝑖 in (27)–(28) is a constant 

satisfying 𝛾𝑖 ∈ 0,1/𝜉𝑖 , in which 𝜉𝑖  is given in Theorem 1. Then, the objective 

function 𝑔𝑖 in problem (5) can converge to the optimal value 𝑔𝑖opt by following the 

dual sequence {𝛩(𝑡)}  generated by AsyRNN (26)–(28). Moreover, for target 

confidence 𝜌 ∈ (0,1) and 𝜖 ∈ (0, 𝜓𝑑0) with𝜓𝑑0 ≜ 𝜓𝑑(𝛩(0)), there exists a relevant 

time parameter 𝜏(𝜖, 𝜌) such that for any 𝑡 ≥ 𝜏(𝜖, 𝜌), the Lagrangian dual function 

𝜓𝑑(𝛩(𝑡)) satisfies Pr(|𝜓𝑑(𝛩(𝑡)) − ∑ 𝑔𝑖opt
𝑁
𝑖=1 | ≤ 𝜖) ≥ 1 − 𝜌. 

Proof of Theorem 2. The dual variable 𝛩 is split and assigned to 𝑁 neurons to 

perform the update, and the variable component driven by the -th neuron at time 𝑙 

is denoted as 𝛩𝑖𝑙
. The evolution of AsyRNN (26)–(28) at each moment involves only 

one variable component, that is, 𝛩𝑖𝑙
 is updated at time 𝑙, while all other components 

𝛩𝑗(𝑗 ≠ 𝑖𝑙) maintain their state at the previous time. Here the evolution of the dual 

information is as follows: 

𝛩𝑖𝑙
(𝑡 + 1) ∈  Θ𝑖𝑙

(𝑡) + 𝜕𝛩𝑖𝑙
𝜓𝑑(𝛩(𝑡)) (29) 

𝛩𝑗(𝑡 + 1) = 𝛩𝑗(𝑡),  𝑗 ≠ 𝑖𝑙 .
 

(30) 

Primal variable space

Dual variable space

Activation

Activation

Dormancy

Dormancy
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Given that the timers 𝜐𝑖  are triggered independently following the same 

exponential distribution, from a global view, each evolution of the AsyRNN (26)–

(28) involves only one neuron being randomly, uniformly, and independently awoke 

from its previous state. Therefore, each triggering induces an evolution of the 

AsyRNN (26)–(28), labeled by 𝑙, while prompting the communication vertices in the 

corresponding distributed optimization problem perform the update and transmission 

tasks. 

After the 𝑖-th neuron is activated, it will perform the update process with its 

own primal variable information 𝑅𝑖𝑥𝑖 
and 𝑅𝑖𝑥𝑗(𝑗 ∈ 𝒩𝑖), which are explicitly updated 

because the index  is the variable that updated them. Meanwhile, the 𝑖 -th neuron 

will also store and use the variable information 𝑅𝑗𝑥𝑖 
and 𝑅𝑗𝑥𝑗(𝑗 ∈ 𝒩𝑖) received from 

its neighbors 𝑗 ∈ 𝒩𝑖. These variables perform the update process with the index 𝑗 if 

the 𝑗 -th neuron itself or one of its neighbors is activated, and then the 𝑗 -th neuron 

sends the updated variable to its neighbors, which include the 𝑖  -th neuron. The 

update process for the dual variables follows a similar pattern. 

Since 𝑅𝑖𝑙𝑗𝜃𝑖𝑙
 and 𝑅𝑖𝑙𝑗𝜃𝑗(𝑗 ∈ 𝒩𝑖𝑙

) are the components of𝛩𝑖𝑙
, and the index 𝑖𝑙 

follows a random uniform distribution, it follows from the modification of the index 

𝑖𝑙 the evolution Equations (29) and (30) correspond to the updating Equations (27) 

and (28). On the basis of Theorem 1, for the unconstrained optimization problem 

(13), it follows from block splitting method that there exists the Lipschitz continuous 

subgradient of the objective function 𝜓𝑑 
with respect to block 𝛩𝑖𝑙

. By invoking [36] 

(Theorem 5), it can be known that the evolutionary behavior of neurons following 

(26)–(28) can search for the optimal value 𝜓𝑑𝑖opt of the local objective function in 

problem (13) with a high probability. Next, 𝜓𝑑𝑖opt = 𝑔𝑑𝑖opt 
is known by virtue of the 

strong duality of problems (5) and (13). This completes the proof. 

4. Numerical instances 

4.1. Distributed network resource allocation 

Example 1. Firstly, we consider an instance of resource allocation enjoying the 

partitioned property over a transmission network 𝒢 = (𝒱,ℰ)
 
with |𝒱| = 100

 
[37], 

where the local objective function 𝑔𝑖 (𝑥𝑖, [𝑥𝑗]
𝑗∈𝒩𝑖

) is a quadratic function, and the 

set of local constraints {(𝑥𝑖 , [𝑥𝑗]
𝑗∈𝒩𝑖

) : (𝑥𝑖 , [𝑥𝑗]
𝑗∈𝒩𝑖

) ∈ 𝒳𝑖 × ∏ 𝒳𝑗𝑗∈𝒩𝑖
} is expressed 

by linearity. The distributed partitioned optimization is formally described as follows: 

minmize     ∑ (𝑥𝑖, [𝑥𝑗]
𝑗∈𝒩𝑖

)
𝑇

𝑃𝑖 (𝑥𝑖, [𝑥𝑗]
𝑗∈𝒩𝑖

) + 𝛼𝑖‖ (𝑥𝑖, [𝑥𝑗]
𝑗∈𝒩𝑖

) − 𝜛𝑖‖

𝑁

𝑖=1

 

subjectto   𝐴𝑖 (𝑥𝑖, [𝑥𝑗]
𝑗∈𝒩𝑖

) ≼ 𝑏𝑖, 𝑖 ∈ {1, ⋯ , 𝑁} 

(31) 

where the decision variable 𝑥𝑖 ∈ ℝ𝑛𝑖 and 𝑛𝑖 is uniformly selected from {1,2,3,4}, 𝑃𝑖 

is a positive definite matrix with eigenvalues uniformly generated by [1,5], 𝛼𝑖  is 

uniformly generated in [0,1], and each entry of the vector 𝜛𝑖  is chosen randomly 

from [0,10]. Each pair (𝐴𝑖 , 𝑏𝑖)
 
characterizes a linear constraint with the number of 
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rows selected uniformly from {1,2} . The entries of each 𝐴𝑖  follow a standard 

Gaussian distribution 𝒩(0,1), while  are generated in accordance with feasible 

linear constraints. In the algorithm execution, each time step 𝛾𝑖 =
1

𝜉𝑖
. The initial 

states of all dual variables are set to zero vectors. Given the asynchronous nature of 

the algorithm, we normalize the time 𝑡 with respect to the number of vertices 𝑁
 
and 

obtain the time scale 
𝑡

𝑁
. Figure 4a,b show the error evolution curves of primal and 

dual variables for each vertex driven by AsyRNN (26)–(28), respectively. In Figure 

5a, the convergence of the AsyRNN algorithm can be obtained from the difference 

between the dual functions 𝜓𝑖𝑑 at time scale 
𝑡

𝑁
 and the optimal value 𝜓𝑑𝑖opt = 𝑔𝑑𝑖opt 

of problem (5). To show the value of the proposed AsyRNN (26)–(28) in solving 

distributed partitioned optimization, we introduce two other RNN models [21,23] 

with dynamic evolution capability as a comparison and perform technical block 

splitting on the neuronal states inside them in order to adapt to problem (5). Figure 

5b shows that our proposed AsyRNN algorithm possesses better optimization 

convergence performance on the same time scale. 

    
(a) (b) 

Figure 4. Error evolution of variables in Example 1. (a) Error evolution curves of primal variables guided by 

AsyRNN (26)–(28) in Example 1; (b) error evolution curves of dual variables guided by AsyRNN (26)–(28) in 

Example 1. 

    
(a) (b) 

Figure 5. Error evolution and comparison of average convergence rates on dual functions in Example 1. (a) Error 

evolution curves of dual functions guided by AsyRNN (26)–(28) in Example 1; (b) Average convergence rates of dual 

functions driven by AsyRNN (26)–(28), RNN [21] and RNN [23] in Example 1. 
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4.2. Distributed elastic-net problem with square-root loss 

Example 2. This example presents a distributed elastic-net problem with square-

root loss and partition [38], reified as follows: 

minmize     ∑ (‖𝐵𝑖 (𝑥𝑖 , [𝑥𝑗]
𝑗∈𝒩𝑖

) − 𝑐𝑖‖ +
𝜎1

2
‖ (𝑥𝑖 , [𝑥𝑗]

𝑗∈𝒩𝑖
) ‖2

𝑁

𝑖=1

 

+ 𝜎2‖ (𝑥𝑖, [𝑥𝑗]
𝑗∈𝒩𝑖

) ‖1) 

(32) 

where ‖𝐵𝑖 (𝑥𝑖, [𝑥𝑗]
𝑗∈𝒩𝑖

) − 𝑐𝑖‖ is a nonsmooth term, the previous algorithms such as 

FISTA [39] are not applicable, and 
𝜎1

2
‖(𝑥𝑖, [𝑥𝑗]

𝑗∈𝒩𝑖
)‖

2
+ 𝜎2 ‖(𝑥𝑖, [𝑥𝑗]

𝑗∈𝒩𝑖
)‖

1
 is a 

strongly convex term. In this example, the number of vertices in distributed elastic-

net is 𝑁=300. The entries of each 𝐵𝑖 ∈ ℝ
𝑝𝑖×(𝑛𝑖+∑ 𝑛𝑗𝑗∈𝒩𝑖

)
 follow a standard Gaussian 

distribution 𝒩(0,1), and then it is normalized by 
1

√𝑝𝑖
, where 𝑝𝑖 

and 𝑛𝑖 are uniformly 

selected from {1,2,3,4} . Given a sparse vector (𝑥𝑖 , [𝑥𝑗]
𝑗∈𝒩𝑖

)
#

 involving nonzero 

entries sampling from the standard Gaussian distribution 𝒩(0,1)  as the true 

parameter vector, then the observation measurement can be expressed as 𝑐𝑖 =

𝐵𝑖 (𝑥𝑖, [𝑥𝑗]
𝑗∈𝒩𝑖

)
#

+ 𝜍𝒩(0,1)  , in which 𝜍 = 10−3  denotes the parameter in the 

noisy environment. 𝜎1 > 0

 

and 𝜎2 > 0

 

are two regularization parameters, which are 

set to 𝑟1=0.1,𝑟2=0.01 in this example. In the AsyRNN (26)–(28), the time step of 

the 𝑖 -th neuron is fixed as 𝛾𝑖 =
1

𝜉𝑖
, and the initial states of all dual variables are set to 

zero vectors. Figure 6a,b show the error evolution curves of primal and dual 

variables over time scale 
𝑡

𝑁
 guided by AsyRNN (26)–(28), respectively. We can 

intuitively see that the convergence accuracy of the primal and dual variables of each 

vertex under the guidance of the neuron is not the same, and the convergence rate 

shows the fusion of linear and sublinear. Figure 7a displays the error evolution on 

the dual function over time scale. It can be seen that the error on the dual function 

corresponding to some vertices can reach below 10−10 at a certain time scale, which 

is due to the asynchronous transmission mechanism that makes the activation time 

and frequency of some vertices different. Besides, in order to reflect the 

advancement of the designed AsyRNN model, we use the previous two RNN models 

[21,23] for comparison experiments, where the evolution of neuronal groups should 

be divided into blocks to match the partition structure of the distributed optimization 

problem. The results in Figure 7b show that the proposed AsyRNN algorithm has a 

better average convergence performance for solving problem (32). 
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(a) (b) 

Figure 6. Error evolution of variables in Example 2. (a) Error evolution curves of primal variables guided by 

AsyRNN (26)–(28) in Example 2; (b) error evolution curves of dual variables guided by AsyRNN (26)–(28) in 

Example 2. 

    
(a) (b) 

Figure 7. Error evolution and comparison of average convergence rates on dual functions in Example 2. (a) Error 

evolution curves of dual functions guided by AsyRNN (26)–(28) in Example 2; (b) average convergence rates of dual 

functions driven by AsyRNN (26)–(28), RNN [21] and RNN [23] in Example 2. 

Remark 6. The simulation results of the above two examples show that the 

proposed AsyRNN (26)–(28) algorithm is feasible and effective for solving some 

specific distributed partitioned optimization problems. Neurons are allocated to all 

vertices one by one for optimization guidance, and the calculation and memory 

storage of a single neuron do not depend on the scale of the entire vertex network. 

The probability conclusion of the Lagrangian function is transplanted by the results 

in [36], and the verification on specific performance needs to be further analyzed, 

which will be the future research work. 

5. Conclusion 

In this paper, a recurrent neural network algorithm based on dual subgradient 

and block splitting has been presented for a class of distributed partitioned 

optimization problems. We have constructed a Lagrangian dual function enjoying 
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block structure and make all primal and dual variables follow the guidance of the 

neuron. In the switching mechanism of activation and dormancy state of neurons, we 

have introduced local timers for asynchronous responses, which are of great benefit 

to save computing resources. Finally, the convergence of the proposed AsyRNN has 

been proved theoretically and verified by numerical simulations. The future work is 

to continue to explore the probability of convergence accuracy while considering the 

application of the proposed AsyRNN model in big data optimization. 
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