
Pure and New Mathematics in AI 2024, 1(1), 8499.

https://doi.org/10.24294/pnmai8499

1

Article

Asynchronous recurrent neural networks with block splitting for distributed

partitioned optimization

Jingxin Liu1,2,*, Jun Peng1,*, Amin Mansoori3, Chaoran Zhan4, Ye Huang5, Huanbin Wang6

1 Chongqing Research Institute of Intelligent Mathematics and Autonomous AI (RI-IM·AI*), School of Mathematics and Physics Sciences,

Chongqing University of Science and Technology, Chongqing 401331, China
2 Center for Applied Mathematics of Guangxi, Guangxi Minzu University, Guangxi 530006, China
3 Department of Applied Mathematics, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
4 School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL, U.K.
5 School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
6 College of Computing and Data Science, Nanyang Technological University, Singapore 639798, Singapore

* Corresponding authors: Jingxin Liu, jingxinliu9@126.com; Jun Peng, jpeng@cqust.edu.cn

Abstract: This paper presents a class of novel recurrent neural network approaches for a

distributed partitioned optimization scenario, where the objective function is separable,

strongly convex, and possibly nonsmooth, with the computation of a part of the solution

being distributed to a vertex for execution. In our proposed algorithmic framework, the block

splitting method allows the solution to be partitioned among vertices according to the

divisible structure of the problem, so that each neuron only holds a local memory of the

decision variable rather than the memory of the entire decision variable. A local timer is

installed for each neuron. If a neuron is triggered by its own timer and a neighbor timer, it

will reach an activated state and then update and transmit its own variable information. This

asynchronous evolution strategy with time helps to save computational resources. The

proposed algorithm is distributed and scalable, with the computation of a single neuron not

depending on the size of the vertex network, and the convergence of the algorithm can be

guaranteed.

Keywords: recurrent neural network; distributed partitioned optimization; block splitting;

asynchronous evolution; local memory

1. Introduction

Distributed optimization is a technique that performs optimization tasks on

multiple computing vertices and is designed to handle large-scale datasets and

computational problems. In the modern computing environment, especially with the

dramatic increase in the amount of data, a single computing unit is often unable to

effectively deal with large-scale data or complex computing tasks. Distributed

optimization technology makes the overall computing process more efficient and

scalable by distributing tasks and data among multiple computing vertices. This

technology distributes computing tasks to multiple vertices over the network, which

makes the computing process more efficient and scalable. This kind of computing

framework is widely used in robotics [1], data processing [2], transportation [3], and

other scenarios.

For some parts of the distributed optimization problems, where the information

over the network may be redundant or unavailable, such as resource allocation [4],

network utility maximization [5], and energy management [6,7], an additional

CITATION

Liu J, Peng J, Mansoori A, et al.

Asynchronous recurrent neural

networks with block splitting for

distributed partitioned optimization.

Pure and New Mathematics in AI.

2024; 1(1): 8499.

https://doi.org/10.24294/pnmai8499

ARTICLE INFO

Received: 9 August 2024

Accepted: 20 September 2024

Available online: 8 October 2024

COPYRIGHT

Copyright © 2024 by author(s).

Pure and New Mathematics in AI is

published by EnPress Publisher,

LLC. This work is licensed under the

Creative Commons Attribution (CC

BY) license.

https://creativecommons.org/licenses/

by/4.0/

Pure and New Mathematics in AI 2024, 1(1), 8499.

2

property should be introduced to describe the situation, in which each vertex only

performs the computation of a part of the solution, and the whole solver can be

constructed by aggregating these local computations. This kind of distributed

optimization problem is graphically called distributed partitioned optimization

problem, and it is commonly found in modern big data computing applications, such

as distributed matrix completion [8], power transfer [9], sparse reconstruction [10].

As far as the standard formalization is concerned, the goal is to minimize a sum of

local objective functions 𝑓𝑖(𝑥) for 𝑥 ∈ ℝ𝑛 , and the information of each 𝑓𝑖(𝑥) is

stored in a vertex of the network. Different from the standard distributed problems,

the decision space is split into 𝑚(𝑚 ≤ 𝑛) blocks, and the computation of each 𝑓𝑖(𝑥)

may depend on only a subset of blocks. This sparse structure causes previous

standard methods [11,12] to appear inefficient, as they require each vertex to store

and send the entire decision vector instead of storing and exchanging local decision

vector that have an impact on its objective 𝑓𝑖(𝑥) with other vertices.

The theory of distributed algorithms for such additional properties does not

seem to have received much attention. Necoara and Clipici [13] introduced a

stochastic coordinate descent approach with parallelizability for minimizing the sum

of a partially separable smooth convex function and a fully separable nonsmooth

convex function and also provided instructions on the algorithm implementation and

convergence rate guarantee. Notarnicola et al. [14] designed an asynchronous dual

decomposition algorithm to solve such problems, providing a proof of its asymptotic

convergence. Bastianello et al. [15] presented a distributed algorithm based on the

relaxed ADMM for solving a class of optimization problems with separable convex

cost functions. These previous approaches require each vertex not only to store the

objective information but also to retain the memory of the corresponding variable

block, which can lead to redundant computation when computing gradients for all

variables.

At present, the main challenges in solving such problems are that the storage

capacity and computation power of vertices depend on the scale of the network, and

additionally, all vertices update and transmit data simultaneously, which may lead to

unnecessary computing consumption. Recurrent neural networks (RNNs) are widely

used in the field of optimization by virtue of their parallel computing and distributed

storage and memory functions [16–21]. Especially for large-scale optimization

problems, Xia et al. [22] developed an RNN system to address the Clifford-valued

distributed optimization with linear equality and inequality constraints. Jia et al. [23]

proposed a recurrent neural network (RNN) model with a novel auxiliary function

for addressing distributed optimization problems over multi-agent networks. Rajesh

et al. [24] presented a hybrid approach of dynamic differential annealed optimization

and recalling enhanced RNN. Liu et al. [25] proposed an RNN approach for the

minimization of the sum of a set of fuzzy convex functions in the differential

inclusion framework. Sherstinsky [26] provided a significant explanation and

theoretical derivation of the basic principles of RNN and LSTM networks. Lin et al.

[27] presented an efficient route programming for multiple automated guided

vehicles by using deep reinforcement learning and RNN. Considering the maturity of

RNNs in solving optimization problems, we attempt to apply an RNN model to solve

https://www.sciencedirect.com/topics/chemical-engineering/auxiliaries

Pure and New Mathematics in AI 2024, 1(1), 8499.

3

distributed partitioned optimization problems in this paper. RNN can not only predict

the future state through the storage memory of historical decisions but also process

multiple inputs about local information in time to ensure real-time feedback on

optimization performance.

In the algorithm design, we also consider the block splitting method [28]. Conor

et al. [29] designed two distributed network optimization algorithms based on the

function splitting and the quadratically approximated method, which simplify the

local subproblems that must be solved in each update iteration for vertices and

improve the computational efficiency on distributed processors. Latafat et al. [30]

proposed a triangularly preconditioned primal-dual algorithm to solve the

minimization problem of the sum of a Lipschitz-differentiable convex function and

two possibly nonsmooth convex functions, one of which consists of a linear map.

Based on their research, Li et al. [31] considered the case of a linear function as

composite and nonsmooth, providing a distributed primal-dual splitting algorithm

along with its asynchronous version. The advantages of block splitting in ensuring

convergence and reducing computational load are considerable. To routinizing

distributed partitioned optimization problems and their dual forms, we propose an

RNN with block splitting. Not only that, the RNN is implanted with an asynchronous

update mechanism in the state evolution of neurons, which can improve the

computational efficiency of the network, especially in the distributed computing

environment. Neurons can be updated independently and in parallel to obtain faster

training speed [32]. A considerable conclusion is that asynchronously updated RNNs

can dynamically adapt to changing input conditions without requiring the entire

network to process each input simultaneously, which will lead to better performance

in tasks where input patterns change over time [33].

The main contributions of this paper are as follows. Firstly, the proposed RNN

algorithm is full of scalability, in the sense that each neuron processes only a part of

the vector of decision information, and neither the data information stored nor the

computation performed by each neuron depends on the scale of the distributed

network. Second, when a neuron is triggered by its local timer or neighbor timer, it

reaches an active state, then updates and transmits its decision information to

neighbors. This asynchronous evolution mechanism, based on block splitting, helps

reduce communication overhead and save computing resources. Finally, the

subgradient update for the dual partitioned problem follows a gradient ascent path,

and a reasonable time step ensures that the algorithm finds the optimal decision with

a high probability. This paper is organized as follows. In Section 2, we give some

prerequisites and a formulation description of the partitioned optimization problem.

In Section 3, a novel asynchronous RNN algorithm and its theoretical analysis are

mentioned. Finally, two numerical examples about resource allocation and square-

root loss elastic-net are dispensed in Section 4, and some conclusions are drawn in

Section 5.

2. Preliminaries and problem description

2.1. Notation and definitions

Pure and New Mathematics in AI 2024, 1(1), 8499.

4

Consider a undirected graph 𝒢 = (𝒱, ℰ), where 𝒱 = (1, ⋯ , 𝑁) denotes the set

of vertices, and ℰ ⊆ 𝒱 × 𝒱 denotes the set of edges. The -th and -th vertices can

exchange information if (𝑖, 𝑗) ∈ ℰ . Denote 𝒩𝑖 = {𝑗 ∈ {1, ⋯ , 𝑁}: (𝑖, 𝑗) ∈ ℰ} by the

neighbor vertices of the -th vertex. For a vector 𝑥 ∈ ℝ𝑛, expand it in the form of

blocks as 𝑥 = [𝑥1
𝑇 , ⋯ , 𝑥𝑁

𝑇]𝑇 , in which 𝑥𝑖 ∈ ℝ𝑛𝑖 satisfies ∑ 𝑛𝑖 = 𝑛𝑁
𝑖=1 . Divide the

identity matrix 𝐼 ∈ ℝ𝑁×𝑁 into 𝑁

blocks in form 𝐼 = [𝐼1, ⋯ , 𝐼𝑁], in which 𝐼𝑖 ∈ ℝ𝑛×𝑛𝑖,

one gets 𝑥𝑖 = 𝐼𝑖
𝑇𝑥 and 𝑥 = ∑ 𝐼𝑖

𝑇𝑥𝑖
𝑁
𝑖=1 . For a nonsmooth function 𝑓:ℝ𝑛 ↦ ℝ , its

subdifferential at is denoted by 𝜕𝑓(𝑥), its partitioned subdifferential with respect

to 𝑥𝑖 is denoted by 𝜕𝑥𝑖
𝑓(𝑥) and 𝜕𝑥𝑖

𝑓(𝑥) = 𝑈𝑖
𝑇𝜕𝑓(𝑥)

.
Denote 𝜇(𝑥) ∈ 𝜕𝑓(𝑥) and

𝜇𝑖(𝑥) ∈ 𝜕𝑥𝑖
𝑓(𝑥) as a subgradient of 𝑓 at 𝑥 and the corresponding partitioned

subgradient with respect to𝑥𝑖, respectively. The optimal value of a function 𝑓 over its

domain 𝑑𝑜𝑚𝑓 is denoted by 𝑓opt.

Definition 1 [33]. For a function 𝑓:ℝ𝑛 ↦ ℝ, its conjugate function 𝑓∗:ℝ𝑛 ↦ ℝ

is defined by 𝑓∗(𝑦) = 𝑠𝑢𝑝
𝑥∈𝑑𝑜𝑚𝑓

(𝑦𝑇𝑥 − 𝑓(𝑥)).

Definition 2 [33]. Consider an optimization model:

minmize 𝑓(𝑥)

subjectto ℎ𝑘(𝑥) = 0,  𝑘 ∈ {1, ⋯ , 𝑚}

 𝑔𝑙(𝑥) ≤ 0,  𝑙 ∈ {1, ⋯ , 𝑛}.

(1)

The Lagrangian function is constructed as

𝐿(𝑥, 𝜆, 𝜈) = 𝑓(𝑥) + ∑ 𝜆𝑘ℎ𝑘(𝑥)

𝑚

𝑘=1

+ ∑ 𝑣𝑙𝑔𝑙(𝑥)

𝑛

𝑙=1

, 𝑣𝑙 ≥ 0 (2)

where 𝜆 = [𝜆1, ⋯ , 𝜆𝑚]𝑇

and 𝜈 = [𝑣1, ⋯ , 𝑣𝑛]𝑇 denote the Lagrangian multiplier

vector. The Lagrangian dual function is defined by

𝜓𝑑(𝜆, 𝜈) = inf
𝑥

𝐿(𝑥, 𝜆, 𝜈) (3)

which is independent of 𝑥.

2.2. Problem model

We consider the minimization of a class of distributed partitioned optimization

problems subject to local constraints, where the structure of the objective function is

separable. The specific form is as follows:

minmize ∑ 𝑓𝑖(𝑥)

𝑁

𝑖=1

subjectto 𝑥 ∈ 𝑋𝑖 ⊂ ℝ𝑛,  𝑖 ∈ {1, ⋯ , 𝑁}

(4)

where the local objective function 𝑓𝑖:ℝ𝑛 ↦ ℝ is continuous, convex and possibly

nonsmooth. The local objective

𝑓𝑖

and constraint 𝑋𝑖
are accessible only to the 𝑖 -th

vertex. The decision variable 𝑥 ∈ ℝ𝑛 can be partitioned by 𝑥 = [𝑥1
𝑇 , ⋯ , 𝑥𝑁

𝑇]𝑇, where

𝑥𝑖 ∈ ℝ𝑛𝑖 satisfies ∑ 𝑛𝑖
𝑁
𝑖=1 = 𝑛. Since the restricted relationship 𝑥 ∈ 𝑋𝑖 applies to any

𝑖 ∈ {1, ⋯ , 𝑁}, then 𝑥 ∈ 𝑋 ≜ ⋂ 𝑋𝑖
𝑁
𝑖=1 . We introduce block set 𝒳𝑖 ⊂ ℝ𝑛𝑖 to implement

Pure and New Mathematics in AI 2024, 1(1), 8499.

5

block decomposition on the constraint set 𝑋 , i.e., 𝑋 = ∏ 𝒳𝑖
𝑁
𝑖=1 = 𝒳1 × ⋯ × 𝒳𝑁 ,

where 𝒳𝑖 can be understood as the restriction set of the 𝑖 -th decision block and

×denotes the Cartesian product. Additionally, the local objective functions and

constraints are consistent with the sparsity of the communication topology, that is, 𝑓𝑖
and 𝒳𝑖

are rely only on the decision block of the 𝑖 -th vertex and its neighbors. This

problem can be represented in the following distributed way:

minmize ∑ 𝑔𝑖 (𝑥𝑖, [𝑥𝑗]
𝑗∈𝒩𝑖

)

𝑁

𝑖=1

subjectto (𝑥𝑖, [𝑥𝑗]
𝑗∈𝒩𝑖

) ∈ 𝒳𝑖 × ∏ 𝒳𝑗

𝑗∈𝒩𝑖

,  𝑖 ∈ {1, ⋯ , 𝑁}

(5)

where 𝑔𝑖: ℝ𝑛𝑖+∑ 𝑛𝑗𝑗∈𝒩𝑖 ↦ ℝ is viewed as the local objective function determined by

the variables 𝑥𝑖 and [𝑥𝑗]
𝑗∈𝒩𝑖

. It can be seen that the constraint is actually applied to

the 𝑖 -th vertex and its neighbors, not just the 𝑖 -th vertex. This seemingly trivial

feature actually brings more generality to the problem model and adds significant

challenges. The following assumptions about objective function and constraints are

applicable to the research work in this paper.

Assumption 1. Each local objective function𝑔𝑖: ℝ𝑛𝑖+∑ 𝑛𝑗𝑗∈𝒩𝑖 ↦ ℝ

is strongly

convex with parameter

𝛿𝑖 > 0
.

Assumption 2. The constraint block set 𝒳𝑖 ⊂ ℝ𝑛𝑖 is nonempty compact and

convex, and the relatively feasible interior 𝑟𝑖𝑛𝑡(𝒳𝑖) is nonempty.

Remark 1. Assumptions 1 and 2 ensure the solvability of distributed partitioned

optimization problem (5), and it is determined that the sum of local objective

function 𝑔𝑖 obtains a unique optimal solution at some (𝑥𝑖
∗, [𝑥𝑗

∗]
𝑗∈𝒩𝑖

) within the

feasible set. The nonemptiness of the relative interior of 𝑟𝑖𝑛𝑡(𝒳𝑖) ensures the strong

duality of the dual method.

Considering a meticulous treatment of problem (4) in a distributed manner, the

notation 𝑅𝑖𝑥 ∈ ℝ𝑛

is introduced, which is regarded as a local memory of the overall

decision information stored at the 𝑖 -th vertex, and all the memories should be equal.

Then, problem (4) can be equivalently presented by the following distributed form:

minmize ∑ 𝑓𝑖(𝑅𝑖𝑥)

𝑁

𝑖=1

subjectto R𝑖𝑥 ∈ 𝑋𝑖,  𝑖 ∈ {1, ⋯ , 𝑁}

 R𝑖𝑥 = 𝑅𝑗𝑥, (𝑖, 𝑗) ∈ ℰ.

(6)

If the variable partition details are performed directly according to the idea of

problem (5), due to the special structure of 𝑓𝑖
and 𝑋𝑖 , problem (4) appears rather

unwieldy to solve. Our idea is to modify Equation (6) with the help of the partitioned

structure to strictly grasp the range of equivalence relations between the decision

variables, and then limit their diffusion in the communication graph.

The local memory repository with respect to the overall decision information is

created for the 𝑖 -th vertex, and the partitioned decision variable 𝑥𝑖 corresponding to

Pure and New Mathematics in AI 2024, 1(1), 8499.

6

the 𝑖 -th vertex is stipulated to be consistent only with its neighbors. Thus, problem

(5) can be rewritten as follows:

minmize ∑ �̃�𝑖 (𝑅𝑖𝑥𝑖 , [𝑅𝑖𝑥𝑗]
𝑗∈𝒩𝑖

)

𝑁

𝑖=1

subjectto (𝑅𝑖𝑥𝑖, [𝑅𝑖𝑥𝑗]
𝑗∈𝒩𝑖

) ∈ 𝒳𝑖 × ∏ 𝒳𝑗

𝑗∈𝒩𝑖

,  𝑖 ∈ {1, ⋯ , 𝑁} 

 R𝑖𝑥𝑖 = 𝑅𝑗𝑥𝑖 , 𝑅𝑖𝑥𝑗 = 𝑅𝑗𝑥𝑗,  𝑗 ∈ 𝒩𝑖

(7)

in which [𝑅𝑖𝑥𝑗]
𝑗∈𝒩𝑖

∈ ℝ
∑ 𝑛𝑗𝑗∈𝒩𝑖

represents the local memory of the partitioned

variable 𝑥𝑗(𝑗 ∈ 𝒩𝑖) of the 𝑗 -th vertex stored in the 𝑖 -th vertex, and 𝑅𝑖𝑥𝑖 ∈ ℝ𝑛𝑖

represents the memory of the 𝑖 -th vertex for its own decision. Figure 1 illustrates

the vertex network topology and the distribution of memories of its partitioned

decision variables. It can be seen from the vertical column that the memory

information 𝑅𝑖𝑥𝑖 ∪ {𝑅𝑗𝑥𝑖: 𝑗 ∈ 𝒩𝑖} depends on the 𝑖 -th vertex, and along the

horizontal row it can be found that the memory of individual decision 𝑅𝑖𝑥𝑗 or

𝑅𝑖𝑥𝑗(𝑗 ∈ 𝒩𝑖) is related to the corresponding block set 𝒳𝑖.

Figure 1. Vertex network topology and partitioned memories.

Remark 2. Equation (7) intuitively presents the blockized configuration of

distributed partitioned optimization problem (4). For a pair of vertices (𝑖, 𝑗) ∈ ℰ ,

𝑅𝑖𝑥𝑖 = 𝑅𝑗𝑥𝑖 and 𝑅𝑖𝑥𝑗 = 𝑅𝑗𝑥𝑗 need to be satisfied simultaneously, and this redundant

structure is necessary, which provides inspiration for constructing block splitting

optimization algorithms.

The notation 𝑅𝑖�̄� is introduced to represent the aggregated form of memory

stored by the 𝑖 -th vertex about the decision information, both the neighbor vertices

and itself, i.e., 𝑅𝑖�̄� = (𝑅𝑖𝑥𝑖, [𝑅𝑖𝑥𝑗]
𝑗∈𝒩𝑖

)
,

which makes the design and analysis of the

algorithm more compact. Based on this representation, the form of problem (4) can

be rewritten as

1

8

2

3

7 4

6 5

Block set

Decision Memories setVertex network topology

Pure and New Mathematics in AI 2024, 1(1), 8499.

7

minmize ∑ �̃�𝑖(𝑅𝑖�̄�)

𝑁

𝑖=1

subjectto R𝑖�̄� ∈ 𝒳𝑖 × ∏ 𝒳𝑗

𝑗∈𝒩𝑖

,  𝑖 ∈ {1, ⋯ , 𝑁} 

 R𝑗�̄� = 𝑅𝑖�̄�,   𝑗 ∈ 𝒩𝑖

(8)

where 𝑅𝑗�̄� = (𝑅𝑗𝑥𝑖 , [𝑅𝑗𝑥𝑗]
𝑗∈𝒩𝑖

) . We adopt a strategy of dual decomposition by

letting denote the stacking of all dual variables in the communication topology.

Construct the following Lagrangian function with block splitting structure:

𝐿(𝑥, 𝛩) = ∑ [�̃�𝑖 (𝑅𝑖𝑥𝑖, [𝑅𝑖𝑥𝑗]
𝑗∈𝒩𝑖

) + ∑ [(𝑅𝑖𝑗𝜃𝑖)
𝑇

(𝑅𝑖𝑥𝑖 − 𝑅𝑗𝑥𝑖)

𝑗∈𝒩𝑖

𝑁

𝑖=1

            + (𝑅𝑖𝑗𝜃𝑗)
𝑇

(𝑅𝑖𝑥𝑗 − 𝑅𝑗𝑥𝑗)]]

(9)

in which 𝛩 = [𝛩1
𝑇 , ⋯ , 𝛩𝑁

𝑇]𝑇 with each chunking 𝛩𝑖 =

([𝑅𝑖𝑗𝜃𝑖]
𝑗∈𝒩𝑖

, [𝑅𝑖𝑗𝜃𝑗]
𝑗∈𝒩𝑖

). Based on the undirected and connectivity properties of

communication graph, the split Lagrangian function (9) can be converted as follows:

𝐿(𝑥, 𝛩) = ∑ [�̃�𝑖 (𝑅𝑖𝑥𝑖, [𝑅𝑖𝑥𝑗]
𝑗∈𝒩𝑖

) + (𝑅𝑖𝑥𝑖)𝑇 ∑ (𝑅𝑖𝑗𝜃𝑖 − 𝑅𝑗𝑖𝜃𝑖)

𝑗∈𝒩𝑖

𝑁

𝑖=1

            + ∑ (𝑅𝑖𝑥𝑗)
𝑇

(𝑅𝑖𝑗𝜃𝑗 − 𝑅𝑗𝑖𝜃𝑗)

𝑗∈𝒩𝑖

]

(10)

the local constraints (𝑅𝑖𝑥𝑖, [𝑅𝑖𝑥𝑗]
𝑗∈𝒩𝑖

) ∈ 𝒳𝑖 × ∏ 𝒳𝑗𝑗∈𝒩𝑖
 will not dualized in

the split Lagrangian functions (9) and (10), they will be handed in the local

optimization problem corresponding to the vertex. We define the Lagrangian dual

function 𝜓𝑑
to be the infimum of the Lagrangian function 𝐿(𝑥, 𝛩) on the set 𝑥 ∈ 𝑋,

i.e.,

𝜓𝑑(𝛩) = 𝑖𝑛𝑓
𝑥∈𝑋

 𝐿(𝑥, 𝛩) = ∑ 𝜓𝑑𝑖 ([𝑅𝑖𝑗𝜃𝑖, 𝑅𝑗𝑖𝜃𝑖, 𝑅𝑖𝑗𝜃𝑗, 𝑅𝑗𝑖𝜃𝑗]
𝑗∈𝒩𝑖

)

𝑁

𝑖=1

 (11)

in which

𝜓𝑑𝑖 ([𝑅𝑖𝑗𝜃𝑖, 𝑅𝑗𝑖𝜃𝑖, 𝑅𝑖𝑗𝜃𝑗, 𝑅𝑗𝑖𝜃𝑗]
𝑗∈𝒩𝑖

)

= 𝑖𝑛𝑓
(𝑅𝑖𝑥𝑖,[𝑅𝑖𝑥𝑗]

𝑗∈𝒩𝑖
)

[�̃�𝑖 (𝑅𝑖𝑥𝑖, [𝑅𝑖𝑥𝑗]
𝑗∈𝒩𝑖

) + (𝑅𝑖𝑥𝑖)𝑇 ∑ (𝑅𝑖𝑗𝜃𝑖 − 𝑅𝑗𝑖𝜃𝑖)

𝑗∈𝒩𝑖

 

      + ∑ (𝑅𝑖𝑥𝑗)
𝑇

(𝑅𝑖𝑗𝜃𝑗 − 𝑅𝑗𝑖𝜃𝑗)

𝑗∈𝒩𝑖

].

(12)

Pure and New Mathematics in AI 2024, 1(1), 8499.

8

Since (𝑅𝑖𝑥𝑖 , [𝑅𝑖𝑥𝑗]
𝑗∈𝒩𝑖

) ∈ 𝒳𝑖 × ∏ 𝒳𝑗𝑗∈𝒩𝑖

and each 𝒳𝑖 is compact and

nonempty, the minimum of in (12) can be uniquely determined, and 𝜓𝑑𝑖 is always

finite. Then, the dual problem of (11) can be transformed into an unconstrained

optimization problem as follows:

maximize ∑ 𝜓𝑑𝑖 ([𝑅𝑖𝑗𝜃𝑖, 𝑅𝑗𝑖𝜃𝑖, 𝑅𝑖𝑗𝜃𝑗, 𝑅𝑗𝑖𝜃𝑗]
𝑗∈𝒩𝑖

)

𝑁

𝑖=1

. (13)

Coming back to distributed optimization problem (7), we know that primal

variables always follow

(𝑅𝑖𝑥𝑖 , [𝑅𝑖𝑥𝑗]
𝑗∈𝒩𝑖

) ∈ − 𝑎𝑟𝑔𝑚𝑖𝑛
(𝑥𝑖,[𝑥𝑗]

𝑗∈𝒩𝑖
)

(𝑔𝑖 (𝑥𝑖, [𝑥𝑗]
𝑗∈𝒩𝑖

) + (𝑥𝑖)𝑇 ∑ (𝑅𝑖𝑗𝜃𝑖(𝑡)

𝑗∈𝒩𝑖

−𝑅𝑗𝑖𝜃𝑖(𝑡)) + ∑ (𝑥𝑗)
𝑇

(𝑅𝑖𝑗𝜃𝑖(𝑡) − 𝑅𝑗𝑖𝜃𝑖(𝑡))

𝑗∈𝒩𝑖

)

(14)

in which (𝑥𝑖, [𝑥𝑗]
𝑗∈𝒩𝑖

) ∈ 𝒳𝑖 × ∏ 𝒳𝑗𝑗∈𝒩𝑖
. Let �̃�𝑖

∗

be a conjugate of �̃�𝑖, then

𝜓𝑑𝑖 ([𝑅𝑖𝑗𝜃𝑖, 𝑅𝑗𝑖𝜃𝑖, 𝑅𝑖𝑗𝜃𝑗, 𝑅𝑗𝑖𝜃𝑗]
𝑗∈𝒩𝑖

)

= −�̃�𝑖
∗ (∑ (𝑅𝑖𝑗𝜃𝑖 − 𝑅𝑗𝑖𝜃𝑖)

𝑗∈𝒩𝑖

, [𝑅𝑖𝑗𝜃𝑗 − 𝑅𝑗𝑖𝜃𝑗]
𝑗∈𝒩𝑖

).
(15)

It can be seen that the split Lagrangian dual function 𝜓𝑑𝑖 does not depend on

the whole set of dual variables 𝛩, but exhibits some sparsity and is only related to the

dual variables of neighbor vertices.

3. Recurrent neural network approach

3.1. Basic framework

In the light of the analysis in Section 2, a science basic framework of RNN with

block splitting and dual subgradient is proposed to solve distributed partitioned

optimization problem (4). In the communication graph 𝒢, each vertex performs the

update and storage of the primal and dual variables driven by the recurrent neural

network. Taking the 𝑖 -th vertex as a reference, along with the activation and

memory of the 𝑖 -th neuron in neural network, it will wake up and update its own

decision 𝑥𝑖
and the decisions [𝑥𝑗]

𝑗∈𝒩𝑖
 of its neighboring vertices, as well as the

corresponding dual variables 𝑅𝑖𝑗𝜃𝑖, [𝑅𝑖𝑗𝜃𝑗]
𝑗∈𝒩𝑖

. For any pair of vertices (𝑖, 𝑗) ∈ ℰ,

we design the following distributed algorithm based on the neuronal memory

evolution function of RNN:

(𝑅𝑖𝑥𝑖(𝑡 + 1), [𝑅𝑖𝑥𝑗(𝑡 + 1)]
𝑗∈𝒩𝑖

) ∈ (𝑅𝑖𝑥𝑖(𝑡), [𝑅𝑖𝑥𝑗(𝑡)]
𝑗∈𝒩𝑖

) (16)

Pure and New Mathematics in AI 2024, 1(1), 8499.

9

        −𝜕
(𝑥𝑖,[𝑥𝑗]

𝑗∈𝒩𝑖
)

(𝑓𝑖 (𝑥𝑖 , [𝑥𝑗]
𝑗∈𝒩𝑖

) + (𝑥𝑖)𝑇 ∑ (𝑅𝑖𝑗𝜃𝑖(𝑡) − 𝑅𝑗𝑖𝜃𝑖(𝑡))

𝑗∈𝒩𝑖

        + ∑ (𝑥𝑗)
𝑇

(𝑅𝑖𝑗𝜃𝑖(𝑡) − 𝑅𝑗𝑖𝜃𝑖(𝑡))

𝑗∈𝒩𝑖

)

𝑅𝑖𝑗𝜃𝑖(𝑡 + 1) = 𝑅𝑖𝑗𝜃𝑖(𝑡) + 𝛾𝑖 (𝑅𝑖𝑥𝑖(𝑡 + 1) −   𝑅𝑗𝑥𝑖(𝑡 + 1))

(17)

𝑅𝑖𝑗𝜃𝑗(𝑡 + 1) = 𝑅𝑖𝑗𝜃𝑗(𝑡) + 𝛾𝑖 (𝑅𝑖𝑥𝑗(𝑡 + 1) −   𝑅𝑗𝑥𝑗(𝑡 + 1))

(18)

where 𝛾𝑖
is the time step in RNN, which can be viewed as the interval between

adjacent moments of the 𝑖 -th neuron. The computational framework of RNN (16)–

(18) is applicable to primal variables

(𝑅𝑖𝑥𝑖, [𝑅𝑖𝑥𝑗]

𝑗∈𝒩𝑖
) ∈ ℝ𝑛𝑖 × ℝ

∑ 𝑛𝑗𝑗∈𝒩𝑖 and dual

variables (𝑅𝑖𝑗𝜃𝑖, [𝑅𝑖𝑗𝜃𝑗]
𝑗∈𝒩𝑖

) ∈ ℝ𝑛𝑖 × ℝ
∑ 𝑛𝑗𝑗∈𝒩𝑖 with any initial states, whose

evolution follows neuronal activity. Figure 2 illustrates the architecture of the RNN

(16)–(18), where the top half shows the evolution of the primal variable space under

neuron induction, and the bottom half shows the evolutionary behavior of the dual

variable space induced by neurons. It can be seen that the output state of the neuron

at the current time is determined by the output state at the previous time and the

input state at the current time. In this optimization model, each neuron corresponds

to each vertex and has the ability to store objective and decision information.

Figure 2. Architecture of RNN (16)–(18).

Remark 3. The design philosophy of RNN (16)–(18) does not impose strict

requirements on the symmetry of the dual variables 𝑅𝑖𝑗𝜃𝑖(𝑡) = −𝑅𝑗𝑖𝜃𝑖(𝑡). When the

time step size 𝛾𝑖 is chosen reasonably, the RNN algorithm can be simplified to only

require one round of communication to perform local minimization and the update of

the subgradient, which means that RNN (16)–(18) has better generality in solving

distributed partitioned optimization problems (4).

Primal variable space

Dual variable space

Pure and New Mathematics in AI 2024, 1(1), 8499.

10

Theorem 1. Assumptions 1–2 hold. If time step𝛾𝑖 in (17)–(18) is a constant

satisfying 𝛾𝑖 ∈ 0,1/𝑁𝜉𝑖,
with 𝜉𝑖 = √2 ∑ (

1

𝛿𝑖
+

1

𝛿𝑗
)

2

𝑗∈𝒩𝑖
, the objective function 𝑔𝑖 in

problem (5) can converge to the optimal value 𝑔𝑖opt by following the dual variable

sequence {𝛩1(𝑡), ⋯ , 𝛩𝑁(𝑡)} induced by RNN (16)–(18), and the recurrent primal

variable sequence {𝑅𝑘𝑥𝑖(𝑡): 𝑘 ∈ {𝑖} ∪ 𝒩𝑖} motivated by Equation (16) satisfies

𝑙𝑖𝑚
𝑡→∞

‖𝑅𝑘𝑥𝑖(𝑡) − 𝑥𝑖
∗‖ = 0

for any 𝑖 ∈ {1, ⋯ , 𝑁}, in which 𝑥𝑖

∗is the 𝑖 -th block of the

unique optimal solution 𝑥∗ = [𝑥1
∗𝑇 , ⋯ , 𝑥𝑁

∗𝑇]𝑇.

Proof of Theorem 1. Based on Assumption 1, there exists the Lipschitz

continuous subgradient
𝜕𝜓𝑑(𝛩)

𝜕𝑅𝑖𝑗𝜃𝑖
,

𝜕𝜓𝑑(𝛩)

𝜕𝑅𝑖𝑗𝜃𝑗
 of the Lagrangian dual function 𝜓𝑑 with

splitting slackness. With the help of the conjugate function, for any 𝑗 ∈ 𝒩𝑖 , there

exist 𝜈𝑖
∗ ∈ 𝜕�̃�𝑖

∗, 𝜈𝑗
∗ ∈ 𝜕�̃�𝑗

∗ such that

𝜕𝜓𝑑(𝛩)

𝜕𝑅𝑖𝑗𝜃𝑖
= [𝜈𝑖

∗]𝑖 − [𝜈𝑗
∗]

𝑖

(19)

𝜕𝜓𝑑(𝛩)

𝜕𝑅𝑖𝑗𝜃𝑗
= [𝜈𝑖

∗]𝑗 − [𝜈𝑗
∗]

𝑗

(20)

where [𝜈𝑖
∗]𝑖 the 𝑖 -th component of the subgradient 𝜈𝑖

∗. It follows from the strong

convexity of 𝑔𝑖 that the subgradient of its conjugate function 𝜕𝑔𝑖
∗

is Lipschitz

continuous with
1

𝛿𝑖
 [34] (Theorem 4.2.2). Combining Equations (19) and (20), we can

obtain 𝜉𝑖 = √2 ∑ (
1

𝛿𝑖
+

1

𝛿𝑗
)

2

𝑗∈𝒩𝑖
. Next, define the diagonal positive definite matrix

ϒ ≜ diag{𝛾1, ⋯ , 𝛾𝑁} with respect to the time step, where 𝛾𝑖 ≤
1

𝑁𝜉𝑖
 for any 𝑖 ∈

{1, ⋯ , 𝑁} , then the neuronal groups evolving behavior with respect to the

combination of dual variables can be described as

𝛩(𝑡 + 1) = 𝛩(𝑡) + ϒ𝜂(𝛩(𝑡)) (21)

where 𝜂(𝛩(𝑡)) ∈ 𝜕𝜓𝑑(𝛩(𝑡)). Since all diagonal elements satisfy 𝛾𝑖 ∈ 0,
1

𝑁𝜉𝑖
, then

for any disturbance 𝜁, we have

𝜓𝑑(𝛩(𝑡) + 𝜁) ≥ 𝜓𝑑(𝛩(𝑡)) + 𝜂(𝛩(𝑡))𝜁 −
1

2
𝑁𝜁𝑇diag{𝜉1, ⋯ , 𝜉𝑁}𝜁.

(22)

On the basis of the proof of the optimality of the nonsmooth optimization

problem and its dual form [35], (Theorem 2), it is known that a finite sequence

{𝛩(𝑡)} will be generated to converge to the optimal solution 𝛩∗ of problem (11).

 Meanwhile, Equation (21) can be split in the following components:

𝛩𝑖(𝑡 + 1) ∈ Θ𝑖(𝑡) + 𝛾𝑖𝜕𝛩𝑖
𝜓𝑑(𝛩(𝑡)),  for 𝑖 ∈ {1, ⋯ , 𝑁}. (23)

Pure and New Mathematics in AI 2024, 1(1), 8499.

11

According to the method of conjugate functions, the solution of the primal

minimization problem (2) can be obtained by computing 𝜕�̃�𝑖
∗ at the point

(∑ (𝑅𝑖𝑗𝜃𝑖 − 𝑅𝑗𝑖𝜃𝑖)𝑗∈𝒩𝑖
, [𝑅𝑖𝑗𝜃𝑗 − 𝑅𝑗𝑖𝜃𝑗]

𝑗∈𝒩𝑖
), and for any 𝑗 ∈ 𝒩𝑖, one obtains

𝜕𝜓𝑑(𝛩(𝑡))

𝜕𝑅𝑖𝑗𝜃𝑖(𝑡)
= 𝑅𝑖𝑥𝑖(𝑡 + 1) − 𝑅𝑗𝑥𝑖(𝑡 + 1) (24)

𝜕𝜓𝑑(𝛩(𝑡))

𝜕𝑅𝑖𝑗𝜃𝑗(𝑡)
= 𝑅𝑖𝑥𝑗(𝑡 + 1) − 𝑅𝑗𝑥𝑗(𝑡 + 1).

(25)

Thus, the evolutionary behavior of the dual neuronal groups can be viewed as

the scaled gradient ascent (23). We know from Assumption 2 that the strong duality

between the optimization problems (7) and (13) holds, and there is an equivalence

relation between optimization problems (7) and (5), then the optimal value 𝜓𝑑𝑖opt
=

𝑔𝑖opt holds. Hence, the objective function 𝑔𝑖 in problem (5) can converge to the

optimal value 𝑔𝑖opt by following the dual variable sequence {𝛩1(𝑡), ⋯ , 𝛩𝑁(𝑡)}

driven by RNN (16)–(18).

By Assumption 1, we know that distributed optimization problem (5) has a

unique optimal solution 𝑥∗ = [𝑥1
∗𝑇 , ⋯ , 𝑥𝑁

∗𝑇]𝑇 , and it follows from the equivalence

that 𝑥* is also the unique optimal solution to problem (7). Moreover, the first-order

optimality condition for the dual problem is given by 0 ∈ 𝜕𝜓𝑑(𝛩∗), in which 𝛩∗ = [

Θ1
∗𝑇 , ⋯ , 𝛩𝑁

∗𝑇]
𝑇
 denotes a limit point of the sequence {𝛩(𝑡)}, and 𝛩𝑖

∗ can be regarded

as an equilibrium state of system (23). It obtains from (24) and (25) that there exists

a limit point (𝑅𝑖𝑥𝑖
∗, [𝑅𝑖𝑥𝑗

∗]
𝑗∈𝒩𝑖

) of the neural memory sequence of the primal

variable, and according to the evolution behavior of this sequence, the neuron state

𝑥𝑖
can search for the unique optimal solution 𝑥𝑖

* in problem (5). This completes the

proof.

3.2. Asynchronous RNN (AsyRNN)

In terms of the execution power of the RNN algorithm (16)–(18), we

incorporate the asynchronous evolution mechanism. The activated neurons perform

information updating and transmission during each evolution of the RNN, whereas

the dormant neurons wait to be triggered by a local timer or neighborly information,

and finally, the decision information of each vertex on the time series of the RNN

can reach the optimal state. Specifically, each neuron in the RNN is assigned a local

timer, and the timer of each neuron is random and independent. When the 𝑖 -th

neuron is dormant, it continues to receive information from its neighbors until it is

activated by its local timer or by information from neighboring neurons. After being

activated, the 𝑖 -th neuron updates its local variables and transmits the updated

information to other neighbors. The timer is established on a local timer 𝜐𝑖 ∈ ℝ+ and

a randomly generated waiting time 𝑇𝑖. The 𝑖 -th timer activates the 𝑖 -th neuron when

𝜐𝑖 = 𝑇𝑖, so that the 𝑖 -th neuron enters the activated mode. After performing the local

evolution, the local time resets 𝜐𝑖 = 0 and the next waiting time 𝑇𝑖
is randomly

Pure and New Mathematics in AI 2024, 1(1), 8499.

12

generated. The waiting times between consecutive triggers are independent and

identically distributed random variables that follow the same exponential distribution.

Specifically, when the 𝑖 -th neuron is dormant, it continuously receives

information from its activated neighbors. If the local timer 𝜐𝑖
is triggered or receives

new dual information 𝑅𝑗𝑖𝜃𝑖
and 𝑅𝑗𝑖𝜃𝑗, then the -th neuron is activated to perform

the update and transmission of the primal variable 𝑅𝑖�̄� = (𝑅𝑖𝑥𝑖, [𝑅𝑖𝑥𝑗]
𝑗∈𝒩𝑖

). If the

activation state is caused by the local timer triggering of the 𝑖 -th neuron itself, the

update and transmission work is performed on the local dual information 𝑅𝑖𝑗𝜃𝑖
and

𝑅𝑖𝑗𝜃𝑗. Considering that there is no global timer, denote by 𝑅𝑖𝑥𝑖
▲, 𝑅𝑖𝑗𝜃𝑖

▲ the variables

for which the -th neuron performs an update in the activated state, while by default

denote by 𝑅𝑖𝑥𝑖, 𝑅𝑖𝑗𝜃𝑖 the variables whose updates are not performed. We assign a

state (𝑅𝑖𝑥𝑖 , [𝑅𝑖𝑥𝑗]
𝑗∈𝒩𝑖

) and a dual state ([𝑅𝑖𝑗𝜃𝑖]
𝑗∈𝒩𝑖

, [𝑅𝑖𝑗𝜃𝑗]
𝑗∈𝒩𝑖

) to each neuron,

and design the asynchronous RNN (AsyRNN) algorithm as follows:

Algorithm 1 Asynchronous RNN (AsyRNN)

1: Preset. Set 𝜐𝑖 = 0 and randomly generate a waiting time .

2: Evolution. Dormancy Phase: While 𝜐𝑖 < 𝑇𝑖
do

3: Receive 𝑅𝑖𝑥𝑖 , 𝑅𝑖𝑥𝑗
and

𝑅𝑖𝑗𝜃𝑖, 𝑅𝑖𝑗𝜃𝑗 from the 𝑗(𝑗 ∈ 𝒩𝑖)-th neuron.

4: If 𝑅𝑖𝑗𝜃𝑖, 𝑅𝑖𝑗𝜃𝑗 are received switch to Activation Phase.

5:

Activation Phase: Calculation and transinformation

(𝑅𝑖𝑥𝑖
▲, [𝑅𝑖𝑥𝑗

▲]
𝑗∈𝒩𝑖

) ∈ (𝑅𝑖𝑥𝑖
▲, [𝑅𝑖𝑥𝑗

▲]
𝑗∈𝒩𝑖

)

− 𝜕
(𝑥𝑖,[𝑥𝑗]

𝑗∈𝒩𝑖
)

(𝑓𝑖 (𝑥𝑖, [𝑥𝑗]
𝑗∈𝒩𝑖

) + (𝑥𝑖)𝑇 ∑ (𝑅𝑖𝑗𝜃𝑖
▲(𝑡) − 𝑅𝑗𝑖𝜃𝑖(𝑡))

𝑗∈𝒩𝑖

+ ∑ (𝑥𝑗)
𝑇

(𝑅𝑖𝑗𝜃𝑖
▲(𝑡) − 𝑅𝑗𝑖𝜃𝑖(𝑡))

𝑗∈𝒩𝑖

)

(26)

6: If 𝜐𝑖 = 𝑇𝑖

7: Then calculation and transinformation

𝑅𝑖𝑗𝜃𝑖
▲ = 𝑅𝑖𝑗𝜃𝑖 + 𝛾𝑖(𝑅𝑖𝑥𝑖

▲ −   𝑅𝑗𝑥𝑖) (27)

𝑅𝑖𝑗𝜃𝑗
▲ = 𝑅𝑖𝑗𝜃𝑗 + 𝛾𝑖(𝑅𝑖𝑥𝑗

▲ −   𝑅𝑗𝑥𝑗) (28)

8: Set 𝜐𝑖 = 0 and randomly generate a new waiting time 𝑇𝑖.

9: Switch to Dormancy Phase.

Figure 3 shows the evolution mechanism of AsyRNN (26)–(28) in the primal

and dual variable spaces under the dormant and activation phases. The dormancy and

activation states of the 𝑖 -th neuron are switched by local timers and local

information without any central timer. The time taken for the computation of the

dormancy phase is negligible compared to that of the activation phase. Besides, a

constant local step 𝛾𝑖 is employed in the ascent step, which can be initialized by local

information exchange between neighboring neurons. Each neuron is performing each

computation by the latest value available locally.

Pure and New Mathematics in AI 2024, 1(1), 8499.

13

Figure 3. Architecture of AsyRNN (26)–(28).

Remark 4. Relying on the designed asynchronous update strategy triggered by

local timers, AsyRNN (26)–(28) can better achieve steady state of gradient flow

during training and prevent the vanishing and exploding gradient problems, which is

due to the uncoordinated and more gradual propagation of neuron evolution

throughout the network. Neurons adapt more flexibly to large or highly dynamic

network environments based on their sensitivity to current inputs and local

information.

Remark 5. For randomly generated updates, the time-sensitive performance

feedback of AsyRNN (26)–(28) can adjust the local firing frequency and memory of

the neurons to better adapt to the task requirements. Moreover, the inherent

predictive and approximation capabilities of RNN enable it to hold a coexistence

attitude towards time-sensitive decisions and effectively handle synchronization

among neurons.

Theorem 2. Assumptions 1–2 hold. The local timer 𝜐𝑖 is constructed following

the principle of AsyRNN (26)–(28), and the time step𝛾𝑖 in (27)–(28) is a constant

satisfying 𝛾𝑖 ∈ 0,1/𝜉𝑖 , in which 𝜉𝑖 is given in Theorem 1. Then, the objective

function 𝑔𝑖 in problem (5) can converge to the optimal value 𝑔𝑖opt by following the

dual sequence {𝛩(𝑡)} generated by AsyRNN (26)–(28). Moreover, for target

confidence 𝜌 ∈ (0,1) and 𝜖 ∈ (0, 𝜓𝑑0) with𝜓𝑑0 ≜ 𝜓𝑑(𝛩(0)), there exists a relevant

time parameter 𝜏(𝜖, 𝜌) such that for any 𝑡 ≥ 𝜏(𝜖, 𝜌), the Lagrangian dual function

𝜓𝑑(𝛩(𝑡)) satisfies Pr(|𝜓𝑑(𝛩(𝑡)) − ∑ 𝑔𝑖opt
𝑁
𝑖=1 | ≤ 𝜖) ≥ 1 − 𝜌.

Proof of Theorem 2. The dual variable 𝛩 is split and assigned to 𝑁 neurons to

perform the update, and the variable component driven by the -th neuron at time 𝑙

is denoted as 𝛩𝑖𝑙
. The evolution of AsyRNN (26)–(28) at each moment involves only

one variable component, that is, 𝛩𝑖𝑙
 is updated at time 𝑙, while all other components

𝛩𝑗(𝑗 ≠ 𝑖𝑙) maintain their state at the previous time. Here the evolution of the dual

information is as follows:

𝛩𝑖𝑙
(𝑡 + 1) ∈ Θ𝑖𝑙

(𝑡) + 𝜕𝛩𝑖𝑙
𝜓𝑑(𝛩(𝑡)) (29)

𝛩𝑗(𝑡 + 1) = 𝛩𝑗(𝑡),  𝑗 ≠ 𝑖𝑙 .

(30)

Primal variable space

Dual variable space

Activation

Activation

Dormancy

Dormancy

Pure and New Mathematics in AI 2024, 1(1), 8499.

14

Given that the timers 𝜐𝑖 are triggered independently following the same

exponential distribution, from a global view, each evolution of the AsyRNN (26)–

(28) involves only one neuron being randomly, uniformly, and independently awoke

from its previous state. Therefore, each triggering induces an evolution of the

AsyRNN (26)–(28), labeled by 𝑙, while prompting the communication vertices in the

corresponding distributed optimization problem perform the update and transmission

tasks.

After the 𝑖-th neuron is activated, it will perform the update process with its

own primal variable information 𝑅𝑖𝑥𝑖
and 𝑅𝑖𝑥𝑗(𝑗 ∈ 𝒩𝑖), which are explicitly updated

because the index is the variable that updated them. Meanwhile, the 𝑖 -th neuron

will also store and use the variable information 𝑅𝑗𝑥𝑖
and 𝑅𝑗𝑥𝑗(𝑗 ∈ 𝒩𝑖) received from

its neighbors 𝑗 ∈ 𝒩𝑖. These variables perform the update process with the index 𝑗 if

the 𝑗 -th neuron itself or one of its neighbors is activated, and then the 𝑗 -th neuron

sends the updated variable to its neighbors, which include the 𝑖 -th neuron. The

update process for the dual variables follows a similar pattern.

Since 𝑅𝑖𝑙𝑗𝜃𝑖𝑙
 and 𝑅𝑖𝑙𝑗𝜃𝑗(𝑗 ∈ 𝒩𝑖𝑙

) are the components of𝛩𝑖𝑙
, and the index 𝑖𝑙

follows a random uniform distribution, it follows from the modification of the index

𝑖𝑙 the evolution Equations (29) and (30) correspond to the updating Equations (27)

and (28). On the basis of Theorem 1, for the unconstrained optimization problem

(13), it follows from block splitting method that there exists the Lipschitz continuous

subgradient of the objective function 𝜓𝑑
with respect to block 𝛩𝑖𝑙

. By invoking [36]

(Theorem 5), it can be known that the evolutionary behavior of neurons following

(26)–(28) can search for the optimal value 𝜓𝑑𝑖opt of the local objective function in

problem (13) with a high probability. Next, 𝜓𝑑𝑖opt = 𝑔𝑑𝑖opt
is known by virtue of the

strong duality of problems (5) and (13). This completes the proof.

4. Numerical instances

4.1. Distributed network resource allocation

Example 1. Firstly, we consider an instance of resource allocation enjoying the

partitioned property over a transmission network 𝒢 = (𝒱,ℰ)

with |𝒱| = 100

[37],

where the local objective function 𝑔𝑖 (𝑥𝑖, [𝑥𝑗]
𝑗∈𝒩𝑖

) is a quadratic function, and the

set of local constraints {(𝑥𝑖 , [𝑥𝑗]
𝑗∈𝒩𝑖

) : (𝑥𝑖 , [𝑥𝑗]
𝑗∈𝒩𝑖

) ∈ 𝒳𝑖 × ∏ 𝒳𝑗𝑗∈𝒩𝑖
} is expressed

by linearity. The distributed partitioned optimization is formally described as follows:

minmize ∑ (𝑥𝑖, [𝑥𝑗]
𝑗∈𝒩𝑖

)
𝑇

𝑃𝑖 (𝑥𝑖, [𝑥𝑗]
𝑗∈𝒩𝑖

) + 𝛼𝑖‖ (𝑥𝑖, [𝑥𝑗]
𝑗∈𝒩𝑖

) − 𝜛𝑖‖

𝑁

𝑖=1

subjectto 𝐴𝑖 (𝑥𝑖, [𝑥𝑗]
𝑗∈𝒩𝑖

) ≼ 𝑏𝑖, 𝑖 ∈ {1, ⋯ , 𝑁}

(31)

where the decision variable 𝑥𝑖 ∈ ℝ𝑛𝑖 and 𝑛𝑖 is uniformly selected from {1,2,3,4}, 𝑃𝑖

is a positive definite matrix with eigenvalues uniformly generated by [1,5], 𝛼𝑖 is

uniformly generated in [0,1], and each entry of the vector 𝜛𝑖 is chosen randomly

from [0,10]. Each pair (𝐴𝑖 , 𝑏𝑖)

characterizes a linear constraint with the number of

Pure and New Mathematics in AI 2024, 1(1), 8499.

15

rows selected uniformly from {1,2} . The entries of each 𝐴𝑖 follow a standard

Gaussian distribution 𝒩(0,1), while are generated in accordance with feasible

linear constraints. In the algorithm execution, each time step 𝛾𝑖 =
1

𝜉𝑖
. The initial

states of all dual variables are set to zero vectors. Given the asynchronous nature of

the algorithm, we normalize the time 𝑡 with respect to the number of vertices 𝑁

and

obtain the time scale
𝑡

𝑁
. Figure 4a,b show the error evolution curves of primal and

dual variables for each vertex driven by AsyRNN (26)–(28), respectively. In Figure

5a, the convergence of the AsyRNN algorithm can be obtained from the difference

between the dual functions 𝜓𝑖𝑑 at time scale
𝑡

𝑁
 and the optimal value 𝜓𝑑𝑖opt = 𝑔𝑑𝑖opt

of problem (5). To show the value of the proposed AsyRNN (26)–(28) in solving

distributed partitioned optimization, we introduce two other RNN models [21,23]

with dynamic evolution capability as a comparison and perform technical block

splitting on the neuronal states inside them in order to adapt to problem (5). Figure

5b shows that our proposed AsyRNN algorithm possesses better optimization

convergence performance on the same time scale.

(a) (b)

Figure 4. Error evolution of variables in Example 1. (a) Error evolution curves of primal variables guided by

AsyRNN (26)–(28) in Example 1; (b) error evolution curves of dual variables guided by AsyRNN (26)–(28) in

Example 1.

(a) (b)

Figure 5. Error evolution and comparison of average convergence rates on dual functions in Example 1. (a) Error

evolution curves of dual functions guided by AsyRNN (26)–(28) in Example 1; (b) Average convergence rates of dual

functions driven by AsyRNN (26)–(28), RNN [21] and RNN [23] in Example 1.

Pure and New Mathematics in AI 2024, 1(1), 8499.

16

4.2. Distributed elastic-net problem with square-root loss

Example 2. This example presents a distributed elastic-net problem with square-

root loss and partition [38], reified as follows:

minmize ∑ (‖𝐵𝑖 (𝑥𝑖 , [𝑥𝑗]
𝑗∈𝒩𝑖

) − 𝑐𝑖‖ +
𝜎1

2
‖ (𝑥𝑖 , [𝑥𝑗]

𝑗∈𝒩𝑖
) ‖2

𝑁

𝑖=1

+ 𝜎2‖ (𝑥𝑖, [𝑥𝑗]
𝑗∈𝒩𝑖

) ‖1)

(32)

where ‖𝐵𝑖 (𝑥𝑖, [𝑥𝑗]
𝑗∈𝒩𝑖

) − 𝑐𝑖‖ is a nonsmooth term, the previous algorithms such as

FISTA [39] are not applicable, and
𝜎1

2
‖(𝑥𝑖, [𝑥𝑗]

𝑗∈𝒩𝑖
)‖

2
+ 𝜎2 ‖(𝑥𝑖, [𝑥𝑗]

𝑗∈𝒩𝑖
)‖

1
 is a

strongly convex term. In this example, the number of vertices in distributed elastic-

net is 𝑁=300. The entries of each 𝐵𝑖 ∈ ℝ
𝑝𝑖×(𝑛𝑖+∑ 𝑛𝑗𝑗∈𝒩𝑖

)
 follow a standard Gaussian

distribution 𝒩(0,1), and then it is normalized by
1

√𝑝𝑖
, where 𝑝𝑖

and 𝑛𝑖 are uniformly

selected from {1,2,3,4} . Given a sparse vector (𝑥𝑖 , [𝑥𝑗]
𝑗∈𝒩𝑖

)
#

 involving nonzero

entries sampling from the standard Gaussian distribution 𝒩(0,1) as the true

parameter vector, then the observation measurement can be expressed as 𝑐𝑖 =

𝐵𝑖 (𝑥𝑖, [𝑥𝑗]
𝑗∈𝒩𝑖

)
#

+ 𝜍𝒩(0,1) , in which 𝜍 = 10−3 denotes the parameter in the

noisy environment. 𝜎1 > 0

and 𝜎2 > 0

are two regularization parameters, which are

set to 𝑟1=0.1,𝑟2=0.01 in this example. In the AsyRNN (26)–(28), the time step of

the 𝑖 -th neuron is fixed as 𝛾𝑖 =
1

𝜉𝑖
, and the initial states of all dual variables are set to

zero vectors. Figure 6a,b show the error evolution curves of primal and dual

variables over time scale
𝑡

𝑁
 guided by AsyRNN (26)–(28), respectively. We can

intuitively see that the convergence accuracy of the primal and dual variables of each

vertex under the guidance of the neuron is not the same, and the convergence rate

shows the fusion of linear and sublinear. Figure 7a displays the error evolution on

the dual function over time scale. It can be seen that the error on the dual function

corresponding to some vertices can reach below 10−10 at a certain time scale, which

is due to the asynchronous transmission mechanism that makes the activation time

and frequency of some vertices different. Besides, in order to reflect the

advancement of the designed AsyRNN model, we use the previous two RNN models

[21,23] for comparison experiments, where the evolution of neuronal groups should

be divided into blocks to match the partition structure of the distributed optimization

problem. The results in Figure 7b show that the proposed AsyRNN algorithm has a

better average convergence performance for solving problem (32).

Pure and New Mathematics in AI 2024, 1(1), 8499.

17

(a) (b)

Figure 6. Error evolution of variables in Example 2. (a) Error evolution curves of primal variables guided by

AsyRNN (26)–(28) in Example 2; (b) error evolution curves of dual variables guided by AsyRNN (26)–(28) in

Example 2.

(a) (b)

Figure 7. Error evolution and comparison of average convergence rates on dual functions in Example 2. (a) Error

evolution curves of dual functions guided by AsyRNN (26)–(28) in Example 2; (b) average convergence rates of dual

functions driven by AsyRNN (26)–(28), RNN [21] and RNN [23] in Example 2.

Remark 6. The simulation results of the above two examples show that the

proposed AsyRNN (26)–(28) algorithm is feasible and effective for solving some

specific distributed partitioned optimization problems. Neurons are allocated to all

vertices one by one for optimization guidance, and the calculation and memory

storage of a single neuron do not depend on the scale of the entire vertex network.

The probability conclusion of the Lagrangian function is transplanted by the results

in [36], and the verification on specific performance needs to be further analyzed,

which will be the future research work.

5. Conclusion

In this paper, a recurrent neural network algorithm based on dual subgradient

and block splitting has been presented for a class of distributed partitioned

optimization problems. We have constructed a Lagrangian dual function enjoying

Pure and New Mathematics in AI 2024, 1(1), 8499.

18

block structure and make all primal and dual variables follow the guidance of the

neuron. In the switching mechanism of activation and dormancy state of neurons, we

have introduced local timers for asynchronous responses, which are of great benefit

to save computing resources. Finally, the convergence of the proposed AsyRNN has

been proved theoretically and verified by numerical simulations. The future work is

to continue to explore the probability of convergence accuracy while considering the

application of the proposed AsyRNN model in big data optimization.

Author contributions: Conceptualization, JL and JP; methodology, JL; software, JL;

validation, CZ, YH and HW; formal analysis, CZ; investigation, YH; resources, JL;

data curation, HW; writing—original draft preparation, JL; writing—review and

editing, AM; visualization, CZ; supervision, JP; project administration, JL; funding

acquisition, JL. All authors have read and agreed to the published version of the

manuscript.

Funding: This work was supported in part by the Natural Science Foundation of

China under Grants 62406044 and 61932006; in part by the Guangxi Science and

Technology Program under Grant AD23023001; in part by the Natural Science

Foundation of Chongqing under Grant CSTB2024NSCQ-MSX1087; in part by the

Postdoctoral Fellowship Program of CPSF under Grant GZB20230092; in part by

the China Postdoctoral Science Foundation under Grant 2023M740383; and in part

by the Research Foundation of Chongqing University of Science and Technology

under Grants ckrc20231224 and 20231217. This research was partially supported by

the Natural Science Foundation of China under Grants 62302068 and 62202071.

Acknowledgments: The authors would like to thank Jin-Song Dong of the School of

Computing of NUS for helpful discussions on topics related to this work.

Conflict of interest: The authors declare no conflict of interest.

References

1. Best G, Cliff OM, Patten T, et al. Dec-MCTS: Decentralized planning for multi-robot active perception. The International

Journal of Robotics Research. 2019; 38(2-3): 316-337.

2. Li B, Cen S, Chen Y, et al. Communication-efficient distributed optimization in networks with gradient tracking and

variance reduction. Journal of Machine Learning Research. 2020; 21(180): 1-51.

3. Leng K, Li S. Distribution path optimization for intelligent logistics vehicles of urban rail transportation using VRP

optimization model. IEEE Transactions on Intelligent Transportation Systems. 2021; 23(2): 1661-1669.

4. Wang X, Yang S, Guo Z, et al. A distributed dynamical system for optimal resource allocation over state-dependent

networks. IEEE Transactions on Network Science and Engineering. 2022; 9(4): 2940-2951.

5. Cao Y, Sun B, Tsang DHK. Online network utility maximization: Algorithm, competitive analysis, and applications. IEEE

Transactions on Control of Network Systems. 2022; 10(1): 274-284.

6. Romijn TCJ, Donkers MCF, Kessels JTBA, et al. A distributed optimization approach for complete vehicle energy

management. IEEE Transactions on Control Systems Technology. 2018; 27(3): 964-980.

7. Li Q, Liao Y, Wu K, et al. Parallel and distributed optimization method with constraint decomposition for energy

management of microgrids. IEEE Transactions on Smart Grid. 2021; 12(6): 4627-4640.

8. Cheng J, Liu Y, Ye Q, et al. DISCS: A distributed coordinate system based on robust nonnegative matrix completion.

IEEE/ACM Transactions on Networking. 2016; 25(2): 934-947.

9. Choi KW, Aziz AA, Setiawan D, et al. Distributed wireless power transfer system for Internet of Things devices. IEEE

Internet of Things Journal. 2018; 5(4): 2657-2671.

Pure and New Mathematics in AI 2024, 1(1), 8499.

19

10. Zhang M, Zhang H, Yuan D, et al. Learning-based sparse data reconstruction for compressed data aggregation in IoT

networks. IEEE Internet of Things Journal. 2021; 8(14): 11732-11742.

11. Scaman K, Bach F, Bubeck S, et al. Optimal algorithms for smooth and strongly convex distributed optimization in networks.

In: Proceedings of the 34th International Conference on Machine Learning (ICML’17); 6–11 August 2017; Sydney,

Australia.

12. Kovalev D, Salim A, Richtárik P. Optimal and practical algorithms for smooth and strongly convex decentralized

optimization. In: Proceedings of: Advances in Neural Information Processing Systems 33 (NeurIPS’20); 6-12 December

2020.

13. Necoara I, Clipici D. Parallel random coordinate descent method for composite minimization: Convergence analysis and

error bounds. SIAM Journal on Optimization. 2016; 26(1): 197-226.

14. Notarnicola I, Carli R, Notarstefano G. Distributed partitioned big-data optimization via asynchronous dual decomposition.

IEEE Transactions on Control of Network Systems. 2018; 5(4): 1910-1919.

15. Bastianello N, Carli R, Schenato L, et al. A partition-based implementation of the relaxed ADMM for distributed convex

optimization over lossy networks. In: Proceedings of: 2018 IEEE Conference on Decision and Control (CDC); 17-19

December 2018; Miami, USA.

16. Liang XB, Wang J. A recurrent neural network for nonlinear optimization with a continuously differentiable objective

function and bound constraints. IEEE Transactions on Neural Networks. 2000; 11(6): 1251-1262.

17. Xia Y, Feng G, Wang J. A novel recurrent neural network for solving nonlinear optimization problems with inequality

constraints. IEEE Transactions on Neural Networks. 2008; 19(8): 1340-1353.

18. Liu Q, Wang J. A one-layer recurrent neural network for constrained nonsmooth optimization. IEEE Transactions on

Systems, Man, and Cybernetics, Part B (Cybernetics). 2011; 41(5): 1323-1333.

19. Cheng L, Hou ZG, Lin Y, et al. Recurrent neural network for non-smooth convex optimization problems with application to

the identification of genetic regulatory networks. IEEE Transactions on Neural Networks. 2011; 22(5): 714-726.

20. Qin S, Xue X. A two-layer recurrent neural network for nonsmooth convex optimization problems. IEEE Transactions on

Neural Networks and Learning Systems. 2014; 26(6): 1149-1160.

21. Li G, Yan Z, Wang J. A one-layer recurrent neural network for constrained nonconvex optimization. Neural Networks. 2015;

61: 10-21.

22. Xia Z, Liu Y, Kou KI, et al. Clifford-valued distributed optimization based on recurrent neural networks. IEEE Transactions

on Neural Networks and Learning Systems. 2023; 34(10): 7248-7259.

23. Jia W, Qin S, Xue X. A generalized neural network for distributed nonsmooth optimization with inequality constraint.

Neural Networks. 2019; 119: 46-56.

24. Rajesh P, Muthubalaji S, Srinivasan S, et al. Leveraging a dynamic differential annealed optimization and recalling enhanced

recurrent neural network for maximum power point tracking in wind energy conversion system. Technology and Economics

of Smart Grids and Sustainable Energy. 2022; 7(1): 19.

25. Liu J, Liao X, Dong JS. A recurrent neural network approach for constrained distributed fuzzy convex optimization. IEEE

Transactions on Neural Networks and Learning Systems. 2024; 35(7): 9743-9757.

26. Sherstinsky A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D:

Nonlinear Phenomena. 2020; 404: 132306.

27. Lin Y, Hu G, Wang L, et al. A multi-AGV routing planning method based on deep reinforcement learning and recurrent

neural network. IEEE/CAA Journal of Automatica Sinica. 2024; 11(7): 1720-1722.

28. Parikh N, Boyd S. Block splitting for large-scale distributed learning. In: Proceedings of: Advances in Neural Information

Processing Systems 24 (NeurIPS’11); 12-14 December 2011; Granada, Spain.

29. O’Connor M, Zhang G, Kleijn WB, et al. Function splitting and quadratic approximation of the primal-dual method of

multipliers for distributed optimization over graphs. IEEE Transactions on Signal and Information Processing over Networks.

2018; 4(4): 656-666.

30. Latafat P, Freris NM, Patrinos P. A new randomized block-coordinate primal-dual proximal algorithm for distributed

optimization. IEEE Transactions on Automatic Control. 2019; 64(10): 4050-4065.

31. Li H, Wu X, Wang Z, et al. Distributed primal-dual splitting algorithm for multiblock separable optimization problems.

IEEE Transactions on Automatic Control. 2021; 67(8): 4264-4271.

https://researchr.org/publication/icml-2017
https://researchr.org/publication/icml-2017
https://researchr.org/publication/icml-2017
https://researchr.org/publication/icml-2017
https://researchr.org/publication/icml-2017

Pure and New Mathematics in AI 2024, 1(1), 8499.

20

32. Moradi S, Indiveri G. An event-based neural network architecture with an asynchronous programmable synaptic memory.

IEEE Transactions on Biomedical Circuits and Systems. 2013; 8(1): 98-107.

33. Gaunt AL, Johnson MA, Riechert M, et al. AMPNet: Asynchronous model-parallel training for dynamic neural networks.

arXiv preprint arXiv:1705.09786. 2017.

34. Urruty JBH, Lemaréchal C. Conjugacy in Convex Analysis. In: Convex analysis and minimization algorithms II: Advanced

theory and bundle methods. Springer Science & Business Media; 1993. pp. 35-82.

35. Sen S, Sherali HD. A class of convergent primal-dual subgradient algorithms for decomposable convex programs.

Mathematical Programming. 1986; 35: 279-297.

36. Richtárik P, Takáč M. Iteration complexity of randomized block-coordinate descent methods for minimizing a composite

function. Mathematical Programming. 2014; 144(1): 1-38.

37. Li JY, Du KJ, Zhan ZH, et al. Distributed differential evolution with adaptive resource allocation. IEEE Transactions on

Cybernetics. 2022; 53(5): 2791-2804.

38. Tang P, Wang C, Sun D, et al. A sparse semismooth Newton based proximal majorization-minimization algorithm for

nonconvex square-root-loss regression problems. Journal of Machine Learning Research. 2020; 21(226): 1-38.

39. Jiang H, Luo S, Dong Y. Simultaneous feature selection and clustering based on square root optimization. European Journal

of Operational Research. 2021; 289(1): 214-231.

