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Abstract: Photovoltaic systems have shown significant attention in energy systems due to the 

recent machine learning approach to addressing photovoltaic technical failures and energy 

crises. A precise power production analysis is utilized for failure identification and detection. 

Therefore, detecting faults in photovoltaic systems produces a considerable challenge, as it 

needs to determine the fault type and location rapidly and economically while ensuring 

continuous system operation. Thus, applying an effective fault detection system becomes 

necessary to moderate damages caused by faulty photovoltaic devices and protect the system 

against possible losses. The contribution of this study is in two folds: firstly, the paper presents 

several categories of photovoltaic systems faults in literature, including line-to-line, 

degradation, partial shading effect, open/close circuits and bypass diode faults and explores 

fault discovery approaches with specific importance on detecting intricate faults earlier 

unexplored to address this issue; secondly, VOSviewer software is presented to assess and 

review the utilization of machine learning within the solar photovoltaic system sector. To 

achieve the aims, 2258 articles retrieved from Scopus, Google Scholar, and ScienceDirect were 

examined across different machine learning and energy-related keywords from 1990 to the 

most recent research papers on 14 January 2025. The results emphasise the efficiency of the 

established methods in attaining fault detection with a high accuracy of over 98%. It is also 

observed that considering their effortlessness and performance accuracy, artificial neural 

networks are the most promising technique in finding a central photovoltaic system fault 

detection. In this regard, an extensive application of machine learning to solar photovoltaic 

systems could thus clinch a quicker route through sustainable energy production. 

Keywords: VOSviewer analysis; machine learning; solar photovoltaic system; prediction; 

bibliometric outlooks 

1. Introduction 

The energy crisis is becoming more challenging in the global community due to 

many countries’ reliance on fossil fuels for power generation. Unfortunately, the 

energy from fossil fuels is limited and toxic. It is associated with several negative 

influences, including environmental hazards and damage to the health of humans and 

the ecosystem (Naderi et al., 2020). Up till now, at least 80% of power generation is 

still handled by “unclean” coal globally, unleashing a high percentage of carbon (iv) 

oxide (CO2), Sulphur (iv) (SO2), and Nitrogen oxide (NOX) into the atmosphere. The 

amount of electricity produced from coal in 2014 was about 232 Twh, accounting for 

2.3% of global coal power production (Jain and Jain, 2017). Coal mining and its 

application adversely affect all three environmental features, specifically water, air, 

and land. The yearly emission of CO2 is about 437.37 Mt or 8.10 t CO2 per capita, 

making it the highest greenhouse gas emission globally (Venkatakrishnan et al., 2023). 
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Due to fossil utilization, these challenges have prompted scientists and researchers to 

hunt for modern technology that could safely exploit energy sources. Hence, 

renewable energy resources are growing in popularity as a prospective alternative for 

future energy supply across the universe (Apeh and Nwulu, 2025).  

Renewable energy providers, such as solar energy, have been suggested as 

options for cleaner power generation (Apeh, et al., 2022; Olorunfemi et al., 2023). The 

benefits of solar PV systems are enormous (Sohani et al., 2020a). Thus, utilizing this 

energy for several appliances has rapidly increased in developed and developing 

countries within the last decade. It is presumed to have more advancement in the near 

future (Shahverdian et al., 2021). Among the several renewable technologies to be 

utilized for energy generation, solar PV systems significantly contribute to the global 

market value (Apeh, et al., 2022). In solar PV systems, the output relies on 

geographical sites, cell technology, and environmental factors, including temperature 

and global irradiance (Apeh et al., 2021; Maluta and Mulaudzi, 2018). Several 

research works have been piloted to assess PV performance factors, where temperature 

and solar radiation are the most selected variables (Cuce, et al., 2013). 

Generally, meteorological stations require high construction and maintenance 

costs and are not commonly available (Jia et al., 2022). For instance, 1798 

meteorological stations in Turkey are available as of 2020, and just 129 are recording 

solar radiation data as of 2012 (Ağbulut et al., 2021). Also, only 756 stations are 

installed in China, with just 122 capable of measuring solar radiation data (Sireci, 

2006; Zang et al., 2012). Weather parameters were installed to develop a prediction 

model to forecast an installed PV system’s yearly power generation yield and 

performance ratio (PR) using three environmental input parameters: ambient air 

temperature, wind speed, and solar irradiance (Gopi et al., 2022). Similarly, several 

thermal, optical, and electrical models have been established in the literature to 

simulate a definite feature of a PV system. The models have been utilized to check the 

result of a module, assess the electrical yield PV production, suggest new algorithms 

for MPPT, and examine faults in such systems (Gholami et al., 2023). 

Fault detection in solar modules is necessary for ensuring system longevity, 

reliability and efficiency. Recent developments highlight the progress in intelligent 

and automated approaches for identifying faults in PV systems. IoT-based solutions, 

using smart monitoring methods, allow real-time fault detection, considerably 

improving system output (Merza et al., 2024). Advanced approaches, including 

statistical methods, hybrid approaches, and predictive maintenance strategies, have 

been suggested to enhance the accuracy of fault detection and diagnostics (Joshua et 

al., 2024). These methods efficiently identify several faults, such as DC-side short 

circuits, which are mainly difficult to detect under low-irradiance conditions. Utilizing 

effective fault detection and diagnostic techniques needs a deep knowledge of the 

environmental, electrical, and physical, factors that affect PV systems (Aghaei et al., 

2023). Dependable fault detection techniques are essential for optimizing energy 

performance, inhibiting PV panel injury, and decreasing fire damage. IoT-based and 

blockchain structures using wireless sensor nodes and machine learning algorithms 

allow accurate, real-time fault detection and diagnosis, decreasing downtime and 

reducing maintenance costs (Apeh and Nwulu, 2025). 



Journal of Infrastructure, Policy and Development 2025, 9(2), 9940. 
 

3 

Nevertheless, any variations in the environmental conditions surrounding the 

modules may affect the modelling parameters. For example, the current work 

demonstrated how a withdrawn single-diode model of equivalent electrical circuit 

parameters should be adjusted as the accrued dust level on a module varies (Gholami 

et al., 2022; Pierfederici et al., 2022). The study presented over 13,000 various 

instances that were analyzed, and it was established that if the dust effect is recognized 

in the parameter extraction of a single-diode model of the ideality factor such as shunt 

and series resistance, for the diode as well as the ideality factor, photocurrents, and 

reverse saturation will be measured respectively with 40, 25, 9, 40 and 35% with high 

accuracy, which then causes 25 to 35% more precision in the last electrical 

characteristics prediction for the algorithm. Thus, to cut out the cost of installations, 

forecasting solar radiation centred on frequently available weather data, for example, 

relative humidity, temperature, and wind speed, becomes imperative and an alternative 

technique (Hussain and AlAlili, 2017). To this end, different algorithms have been 

projected to forecast solar radiation and temperature in the past decades, including 

ML, empirical models, and remote sensing approaches (Fan et al., 2019; Zhang et al., 

2018). With the technological improvements, many studies have adopted ML to 

forecast energy systems, especially in solar radiation in several nations globally 

(Alzahrani et al., 2014; Ibrahim and Khatib, 2017; Martín et al., 2010; Sharma and 

Kakkar, 2018). The algorithms are considered artificial intelligence (AI) techniques 

and can easily solve complex and problematic issues that can be characterized by 

ordinary models (Li et al., 2019; Liu et al., 2015, 2016). 

In the same vein, the installation of an adaptive neuro-fuzzy inference (ANFIS) 

algorithm to design solar thermal with output forecast of the indicators where 

membership functions (MFs) used Gaussian as input and Linear function is regarded 

as output (Li, 2019; Liu et al., 2015, 2016). Similarly, the study to examine solar 

radiation using the neuro-fuzzy model utilized four indicators: relative humidity, mean 

sea level, dry-bulb, and wet-bulb temperature (Jović et al., 2016). The results show 

that dry-bulb temperature and relative humidity were the basic parameters for 

forecasting solar irradiation. Likewise, for daily global solar radiation predictions, 

neuro-fuzzy and support vector machine-firefly algorithms were utilized (Mohammadi 

et al., 2015). The weather data they used are maximum and minimum temperatures as 

well as sunshine hours as parameters of the network to predict solar radiation. An 

algorithm was studied to compare artificial neural networks (ANN) and genetic 

programming (GP), where the developed algorithm showed a better result. Moreover, 

an ANFIS model was established in Nigeria for solar radiation prediction, where 

correlation coefficients accounting for 0.8544 and 0.6567 for the train and test data 

were obtained respectively (Olatomiwa et al., 2015). 

In another development, solar radiation prediction was studied in China to 

compare amended empirical models and ANFIS (Zou et al., 2017). They equally 

compared the results of daily solar irradiance forecasting obtained by ANFIS with that 

of the Improved Yang Hybrid Model (IYHM) and the Expanded-Improved Bristow-

Campbell Model (E-IBCM). Several soft-computing methods were performed in a 

warm and sub-humid atmosphere to forecast daily solar radiation (Quej et al., 2017). 

The algorithms utilized for solar radiation predictions were ANN and support vector 

machines (SVM) and ANFIS, where SVM showed better results than other methods 
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with minimum and maximum air temperature, extraterrestrial solar radiation, and 

rainfall. In South Africa, studies on global horizontal irradiance using information 

from radiometric stations were recently performed (Ranganai and Sigauke, 2020). 

They applied three techniques, seasonal autoregressive fractionally integrated moving 

average (SARFIMA), a Regression model with SARFIMA error, and harmonically 

Coupled SARIMA (HCSAFRIMA), to dialogue the long-term reliance on integral 

solar irradiance in the country. Another study describes a PV system for solar 

irradiance with a hybrid model for short forecasting (Cristaldi et al., 2017). They 

applied a physical model called clear-sky to forecast solar irradiance in South Africa. 

Moreover, an auto-associative kernel regression (AAKR) method for short-term PV 

prediction was then executed for fault detection. 

Most recently, the development of several ML algorithms has been studied for 

solar radiation forecasting, including extreme learning machines (Salcedo-Sanz et al., 

2018), extreme gradient boosting (Fan et al., 2018), random forest RF (Prasad et al., 

2019), neural network-based approach (Badrudeen et al., 2023), determination of 

electrical and thermodynamic performance parameters through modelling (Cuce et al., 

2017) and deep learning (Kaba et al., 2018). However, the ANN models are regularly 

utilized among the AI algorithms (Voyant et al., 2017). Nevertheless, the SVM 

algorithm has been newly projected as an inspiring substitute for solar radiation 

evaluation due to higher forecasting accuracy and calculation efficiency than the ANN 

algorithm (Ramli et al., 2015).  

Machine learning applications to evolving energy technologies 

It takes approximately 50 years for a technology to reach its peak time 

(Venkatasubramanian, 2019); hence, the expectations remain that by 2035–2040, ML, 

including AI, will attain a reliable commercial diffusion with an extensive effect on 

human activities. The expansion of this technology in the previous years in some 

fields, such as interpretation of text, language processing, games, and image 

recognition, has described AI as a growing power in daily activities 

(Venkatasubramanian, 2019). Operators’ confidence, acceptance, and prospects of this 

technology have improved steadily; hence, higher reserves in the areas are necessary 

to extend into further sectors, such as industrial processes and renewable energies. In 

different industries, almost modern areas were formed (text mining, image 

recognition, and games), in different conditions (Venkatasubramanian, 2019). The AI 

distribution in engineering has varied and is mostly regarded as a subsidiary 

characteristic of current technologies. 

The industrial utilisations of algorithms are numerous as they comprise lots of 

parameters; the automatic and empirical approaches utilized to resolve those 

difficulties (that is, through modelling and simulation methods) suggest more 

computational labours that may not essentially bring out anticipated outcomes, such 

as correct model predictions. It is imperative to state that ML has likewise been utilized 

by other energy-connected manufacturers that substantially affect energy generation. 

The application of ML algorithms to productions such as oil, nuclear power, mining 

coal, and gas has been operative and supportive for decreasing dangers and increasing 

results and productivity. For example, big data sets in industries including oil and gas 
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are plentiful, allowing ML algorithms to expand through investigation, reservoir 

management, drilling, and manufacturing (Hajizadeh, 2019). Data produced by 

devices from oil and gas pipelines could be applied to train ANNs and forecast several 

system flaws (Mohamed et al., 2015). Similarly, nuclear manufacturing power is 

mostly centred on growing data-driven algorithms for safety and fault discovery 

algorithms that are applied in power plants to forecast possible faults coupled with 

their likely sources. 

Consequently, many research articles are available, but it is very scarce to 

discover a publication devoted to the bibliometric outlooks on ML prediction to detect 

faults in solar PV systems. Therefore, this study provides a bibliometric outlook on 

ML prediction for fault detection in PV systems with the following contributions:  

(1) The study identifies inconsistencies in solar systems and thus applies ML to 

detect faults or deviations from normal operating conditions of solar PV systems 

with possible solutions. 

(2) The importance of the published research article is laid, which includes both 

performance prediction and fault detection, instead of entirely concentrating on 

either of these objectives. This broad method intends to contribute to a more 

complete knowledge for stakeholders, researchers, and policymakers, thus 

facilitating the integration of ML methods into PV systems and bringing a 

discerning explanation of dominating trends, significant challenges, and 

prospects and possibilities. 

(3) Besides, regarding the type of ML technique, SVM and ANN stand out as the 

most commonly utilized and showed variable accuracy, which relies on several 

factors, including the type of fault and the data quality. 

(4) Most ML methods present an accuracy exceeding 90%, emphasizing their 

efficiency in fault diagnosis. Also, among PV array faults, SC, OC, and PS are 

the most widely researched within PV systems. 

The organization of the paper is as follows: In section 2, solar PV systems are 

presented, which includes the conventional approach and PV performance, as well as 

the ML approach. Section 3 describes the methodology, followed by section 4, which 

presents results and discussions. Finally, conclusions and future works are stated in 

section 5. 

2. Solar photovoltaic system 

The electricity generation from solar PV utilizes semiconductor materials directly 

from solar radiation through the photoelectric effect. The theoretical power generation 

from PV determines the operating temperature and global solar radiation received on 

the inclined PV surface. The mathematical algorithm of PV power output is presented 

in Equations (1) and (2) (Pandiyan et al., 2022). 

𝑃𝑃𝑉(𝑡) = 𝑃𝑛 ×
𝐼(𝑡)

𝐼𝑆𝑇𝐶
× [1 − 𝛽𝑥(𝑇𝑃𝑉(𝑡) − 𝑇𝑆𝑇𝐶)] (1) 

𝑇𝑃𝑉(𝑡) = 𝑇𝑎𝑚𝑏(𝑡) + (𝑇𝑁𝑂𝑀 − 𝑇𝑅𝐸𝐹) ×
𝐼(𝑡)

𝐼𝑅𝐸𝐹
 (2) 
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where 𝑃𝑃𝑉(𝑡) represents output power from solar PV at time, t. Also, 𝑃𝑛 represents 

the nominal power of the solar PV while the tilted solar irradiance at the time, t, is 

𝐼(𝑡). Similarly, 𝑇𝑎𝑚𝑏(𝑡) and 𝑃𝑉(𝑡) represent ambient temperature and operating 

temperature of PV respectively at t time, 𝑇𝑆𝑇𝐶  and 𝐼𝑆𝑇𝐶  signifies the temperature 

and irradiance at STC, 𝑇𝑅𝐸𝐹 and 𝐼𝑅𝐸𝐹 are the reference temperature and irradiance, 

respectively, 𝛽  represent the temperature coefficient and 𝑇𝑁𝑂𝑀  is the nominal 

operating cell temperature. 

The temperature of a PV cell and the power output are inversely related. This 

indicates that as the temperature rises, the voltage decreases, bringing about power 

loss when other factors remain constant. On the other hand, when the temperature 

decreases, the voltage increases, producing a gain in power output compared to the 

initial conditions. 

One possible sustainable study field for solar energy systems in AI is based on 

the advancement of design and materials. However, ML models are utilized to 

improve the existing operational designs and materials of PV cells and solar thermal 

systems. Hence, in this learning model utilisation, the systematized and accessible data 

is crucial, especially the observable scarcity in the study field. In view of this, Yıldırım 

and Odabası applied data to generate long-term consistency information of over four 

hundred carbon-lead-built halide perovskite cells (Odabaşı and Yıldırım, 2020). Their 

goal was to detect and define features that generate a decay of efficiency. The data 

was equally applied to suggest building high, steady perovskite cells. A decision tree 

(DT) algorithm was implemented to design assumptions and strategies from the 

obtained information that describe the decay in efficiency as a function of time. 

On the other hand, Li et al. studied a fairly short dataset comprising 915 samples 

with data around the geometric features of solar water heaters to screen conceivable 

buildings through ANN (Li et al., 2017). The algorithm produced two solar heaters 

whose features surpassed those from the data set. Similarly, a successful solar water 

heater was created by employing a computer-assisted method developed with an 

advanced system based on ANN (Li et al., 2017).  

However, the application of ML algorithms into solar energy systems remains at 

an emerging stage. Renewable energy is inclined to utilize smart grid systems, 

especially solar, which are vulnerable to rapid environmental variations. So, prediction 

is one of the subjects of attention in this area. The connections between the variables 

to be demonstrated are occasionally fairly complicated in the sense that other 

possibilities, such as hybrid algorithms or deep neural networks (DNNs), are more 

accepting (such as climate and solar irradiance, the rate of heat collection and extrinsic 

characteristics in solar collectors (Sharma et al., 2011). Hybrid algorithms involving 

first-principles and data-focused algorithms are of rising attention. Still, they face 

difficulties connected to consistency in the performance metrics, set-up parameters, 

and data sets (Voyant et al., 2017). However, the applications of PV technologies have 

been widely accepted in fields such as farming systems and stand-alone PV farms. The 

approaches utilized to evaluate the output of PV systems are grouped in two ways. The 

initial technique is conventional, which relates to the utilization of governing 

equations or simple correlations to evaluate the system output, whereas the other 

approach is machine learning. 
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2.1. Conventional approach of photovoltaic performance 

Solar PV modules can either be installed as a rooftop or have the prospect of 

being incorporated with the walls of buildings. Figure 1 shows the outline of the 

conventional approach to solar PV systems. 

 
Figure 1. Conventional methods showing input and output parameters for PV systems performance prediction. 

2.1.1. Thermal modeling of PV systems 

Thermal modelling aims to ascertain the operational solar module temperature 

and other associated metric performances. 

Nominal operating cell temperature (NOCT) 

The NOCT stands as the most straightforward technique for projecting the 

operational temperature of a solar PV module. It requires ambient temperature (𝑇𝑎𝑚𝑏) 

and incident solar radiation (𝐺). In this approach, the module temperature (𝑇𝑚𝑜𝑑) is 

forecasted using Equation (3) (Sohani et al., 2022). 

𝑇𝑚𝑜𝑑,𝑁𝑂𝐶𝑇 = 𝑇𝑎𝑚𝑏 +
𝐺

𝐺𝑟𝑒𝑓
(𝑇𝑁𝑂𝐶𝑇 − 𝑇𝑟𝑒𝑓) (3) 

The NOCT temperature (𝑇𝑁𝑂𝐶𝑇) is an input variable associated with each module, 

with reference condition ‘ref’ written in the subscript. Under reference conditions, the 

temperature and irradiance are set at 20 ℃ and 800 W/m2, respectively. It is important 

to note that the reference condition is distinct from the STC, where the irradiance and 

temperature are 1000 W/m2 and 25 ℃, respectively. 

Correlation techniques 

Although Equation (1) is readily employed in individual solar modules, it has 

certain limitations: 

• PV modules with similar output member families typically share the same 

TNOCT values. Consequently, the NOCT method forecasts a uniform value of 

every solar module output. However, due to disparities in dimensions and heat 

exchange rate, 𝑇𝑚𝑜𝑑  differ among several sizes of modules within an output 

member family, even when 𝑇𝑎𝑚𝑏 and G are constant. 

• Apart from 𝑇𝑎𝑚𝑏  and 𝐺  factors such as wind velocity (𝑉𝑤 ) and relative 

humidity (𝜑) can influence 𝑇𝑚𝑜𝑑 . Nevertheless, the NOCT method does not 

account for these variables.  
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Lately, alternative research works on correlations have been based on 

experimental findings, with a notable range of functions being developed. Among 

them, the nominal module operating temperature (NMOT) has gained extensive 

adoption and has been designated with IEC number 61853–2 for PV rating. This work 

revealed that only a few of the numerous proposed correlations consider the impact of 

relative humidity. However, in certain recent works, such as the research by Sohani et 

al. (2020b), relative humidity was considered in the PV system. 

2.1.2. Electrical system modeling 

Electrical system modelling aims to determine key output parameters, primarily 

focusing on power. Additionally, the current and voltage values, as significant 

parameters, can also be ascertained through this modelling process. 

Correlation-based approach 

In the present research endeavours, when the objective is to retrieve power, the 

initial step involves employing Equation 4 to compute efficiency. Subsequently, the 

power output (P) is calculated by multiplying the efficiency (𝜂) with the incident solar 

radiation (G) and the module’s surface area (𝐴𝑚𝑜𝑑), both of which are established 

parameters (Rashidi et al., 2021): 

𝑃 = 𝜂𝐺𝐴𝑚𝑜𝑑 (4) 

However, the efficiency (η) is further defined in Equation (5). 

 mod 101 ( ) log ( )ref ref refT T G   = − − +  (5) 

Here 𝑇𝑚𝑜𝑑  is a known parameter deducible from thermal modelling. 

Furthermore, 𝜂𝑟𝑒𝑓 signifies the module’s efficiency under reference conditions while 

𝛾  representing the coefficient applicable to conditions yielding maximum power. 

Manufacturers typically provide values for both 𝜂𝑟𝑒𝑓 and 𝛾. 

Equivalent circuit method 

The equivalent circuit method is valuable when focusing on electrical parameters 

beyond power. This methodology uses an equivalent circuit to represent the module’s 

electrical behaviour, which is comprised of multiple resistors and diodes. Three pivotal 

components within each equivalent circuit are as follows: 

• Photocurrent (Iph): This component measures the current produced due to 

incident solar radiation. 

• Series Resistance (Rs): A fraction of the energy produced by the solar module 

dissipates by means of the metallic connections and semiconductor due to the 

current flow. 

Parallel resistance (RP), also called shunt resistance, attracts various phenomena, 

including the conduction of current from non-idealities, the crystal geometry holes, 

and the module’s edges. 

1) Single diode 

The single diode model is referred to as a one-diode method where an equivalent 

circuit resembling Figure 2 is employed. This circuit consists of a current source that 

measures the photocurrent produced, a series resistance as well as shunt resistance. 
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Additionally, a diode is present within the circuit. A portion of the sunlight-generated 

current flows through the diode, reducing the voltage received at the terminals. 

 
Figure 2. A practical single-diode equivalent circuit with parasitic series and shunt 

resistances (Gholami et al., 2021). 

Abiding by the principles of electrical governance, the connections between 

voltage and current for the single-diode model are expressed as follows in Equation 

(6) (Nižetić et al., 2021b):  

𝐼 = 𝐼𝑝ℎ − 𝐼0[𝑒𝑥𝑝(
1

𝑉𝑡
(
𝑉

𝑁𝑠
+ 𝐼𝑅𝑠)) − 1] −

1

𝑅𝑝
(
𝑉

𝑁𝑠
+ 𝑅𝑠𝐼) (6) 

In addition to the variables Rp, Iph, and Rs, there are three additional crucial 

parameters within these equations (Nižetić et al., 2021a): 

Thermal voltage of diode (Vt): This parameter characterizes the thermal driving 

force experienced by electrons in a semiconductor (Gholami et al., 2022). Notably, 

this motion is contrary to that of the photocurrent. 

Diode saturation current (I0): This describes the motion executed by the minority 

charge carriers within a semiconductor from a neutral region to a depletion layer. 

Number of cells connected in series in a module (NS): Modules are constructed 

by linking cells in series electrically. Besides the current and voltage, the other 

variables in Equation (6) are obtained from Equations (7)–(11): 

,
STC

p p STC

G
R R

G
=  (7) 

𝑅𝑠 = 𝑅𝑠,𝑆𝑇𝐶 (8) 

3mod
0 0,

mod. mod, mod

1 1
( ) exp[ ( )]

g

STC

STC STC

qET
I I

T K T T
= −  (9) 

mod
,

mod,

Vt t STC

STC

T
V

T
=  (10) 

, mod mod,{ ( )}ph ph STC STC

STC

G
I I T T

G
= + −  (11) 
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Values at STC are needed to find out the values in the condition examined. At 

STC, the values of I0, Vt, and Iph are computed from Equations (12)–(14): 

𝐼0,𝑆𝑇𝐶 =𝐼𝑠𝑐,𝑆𝑇𝐶 𝑒𝑥𝑝(
−𝑉𝑜𝑐,𝑆𝑇𝐶
𝑁𝑠𝑉𝑡,𝑆𝑇𝐶

) (12) 

𝑉𝑡,𝑆𝑇𝐶 =
𝛽𝑇𝑚𝑜𝑑, 𝑆𝑇𝐶 − 𝑉𝑜𝑐,𝑆𝑇𝐶

𝑁𝑠𝑇𝑚𝑜𝑑, 𝑆𝑇𝐶𝛼
𝐼𝑝ℎ,𝑆𝑇𝐶

− 3𝑁𝑠 −
𝐸𝑔,𝑁𝑠

𝐾𝑇𝑚𝑜𝑑,𝑆𝑇𝐶

 
(13) 

𝐼𝑝ℎ,𝑆𝑇𝐶 = 𝐼𝑠𝑐,𝑆𝑇𝐶 (14) 

When considering the right-hand side of Equations (12)–(14), the values for all 

the parameters found are established and well-known. These values encompass the 

module characteristics readily accessible through the module directory (for example, 

Isc,STC, Voc,STC, β, and α) or unchanging constants (like Eg and K).  

2) Double diode model 

The ideality factor is an essential parameter for a PV module, which shares 

similarities with a diode. In the lower voltage range, the ideality factor tends to be 

approximately 2, primarily due to junction recombination playing a dominant role. 

Conversely, the ideality factor converges towards unity in the higher voltage range as 

the primary recombination processes shift to the bulk zone and surface recombination 

within the PV module. While the single-diode model assumes a constant ideality 

factor, introducing a second diode in parallel enhances accuracy. The mathematical 

expressions for the two-diode model closely resemble those of the single-diode model, 

with adjustments stemming from including the second diode in Figure 3. Furthermore, 

at STC, determining the series resistance value involves computing Equation (15), 

where this parameter stands as the only unknown entity. 

 
Figure 3. The p-n junction of two diodes equivalent circuit model. 

𝐼𝑚𝑝,𝑆𝑇𝐶 = 𝐼𝑝ℎ,𝑆𝑇𝐶 − 𝐼0,𝑆𝑇𝐶 [𝑒𝑥𝑝 (
𝑉𝑚𝑝,𝑆𝑇𝐶 + 𝐼𝑚𝑝,𝑆𝑇𝐶𝑅𝑠,𝑆𝑇𝐶

𝑁𝑠𝑉𝑡
) − 1] 

(𝑉𝑚𝑝,𝑆𝑇𝐶 + 𝐼𝑚𝑝,𝑆𝑇𝐶𝑅𝑠,𝑆𝑇𝐶)[−𝑁𝑠𝑉𝑡,𝑆𝑇𝐶𝐼𝑚𝑝.𝑆𝑇𝐶 + (𝑉𝑚𝑝,𝑆𝑇𝐶 − 𝐼𝑚𝑝,𝑆𝑇𝐶𝑅𝑠,𝑆𝑇𝐶)(𝐼𝑠𝑐,𝑆𝑇𝐶 − 𝐼𝑚𝑝,𝑆𝑇𝐶)]

(−𝐼𝑚𝑝,𝑆𝑇𝐶𝑅𝑠,𝑆𝑇𝐶 + 𝑉𝑚𝑝,𝑆𝑇𝐶)(𝑉𝑚𝑝,𝑆𝑇𝐶 −𝑁𝑠𝑉𝑡,𝑆𝑇𝐶)
 

(15) 

Similarly, at STC, the shunt resistance can equally be computed from Equation 

(16). 
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𝑅𝑝,𝑆𝑇𝐶 =
(−𝐼𝑚𝑝,𝑆𝑇𝐶𝑅𝑠,𝑆𝑇𝐶 + 𝑉𝑚𝑝,𝑆𝑇𝐶)(𝑉𝑚𝑝,𝑆𝑇𝐶 −𝑁𝑠𝑉𝑡,𝑆𝑇𝐶)

−𝑁𝑠𝑉𝑡,𝑆𝑇𝐶𝐼𝑚𝑝,𝑆𝑇𝐶 + (𝑉𝑚𝑝,𝑆𝑇𝐶 − 𝐼𝑚𝑝,𝑆𝑇𝐶𝑅𝑠,𝑆𝑇𝐶)(−𝐼𝑚𝑝,𝑆𝑇𝐶 + 𝐼𝑠𝑐,𝑆𝑇𝐶)
 (16) 

These modifications can be found in various sources, such as Babu and Gurjar, 

(2014), Shannan et al. (2013), Chennoufi et al. (2021), Sangeetha et al. (2021). The 

two unknown diode quality factors do not only increase the number of equations but 

also the unknown parameters, thereby producing much more complex calculations. 

2.2. Machine learning algorithms 

The extensive applications of a machine learning algorithm in solar energy have 

been achieved because of the huge number of variants and models that could reach the 

demands of data clustering, classification, and regression. Yet, the algorithm matches 

the needs of solar predicting and builds forecast models according to past data. The 

machine-learning algorithm uses an input vector x as a function f(x) and produces an 

output vector y. Machine learning classification involves two approaches, supervised 

and unsupervised learning, as presented in Figure 4.  

 
Figure 4. Categories of machine learning. 

Unlike supervised learning models, these types of models operate without 

requiring expert intervention. These models can distinctly uncover concealed patterns 

within inputs, regardless of output knowledge. Unsupervised learning mirrors the 

statistical challenge of density estimation, but it extends beyond this by encompassing 

various techniques aiming to condense and elucidate the essential characteristics of 

the data. Numerous techniques utilized in unsupervised learning are rooted in data 

mining approaches commonly applied for data preprocessing purposes. Nevertheless, 

performance forecasting is one of the most significant uses of ML methods for PV 

connections. This can be undertaken with the intention of defining several variables. 

The different ML approaches that have been applied in research works are shown in 

Figure 5. 



Journal of Infrastructure, Policy and Development 2025, 9(2), 9940. 
 

12 

 
Figure 5. Machine learning approaches for performance prediction and fault detection in PV systems. 

2.2.1. Time series algorithms 

Time-series forecasting (N2) refers to an algorithm that forecasts the future results 

of any system with historical information. Meanwhile, this prediction method requires 

the description of the data either by non-linear or linear autoregressive method. 

Therefore, the time series algorithm Equation is presented in Equation (17). 

𝑥(𝑘 + ℎ) = 𝑓[𝑥(𝑘), 𝑥(𝑘 − 1), 𝑥(𝑘 − 2), . . . , 𝑥(𝑘 −𝑛−1)] (17) 

where function f represents the current value and the historical value of x. However, 

different methods of the possible forecast involve forecasting the h next values of the 

time series as defined in two techniques. The first method is the independent value 

forecast (preparing the direct model to predict x(k + h)), while the other step involves 

an iterative technique and reiterating one-method-upfront forecasting until the 

preferred possibility. 

2.2.2. Supportive vector machine (SVM) 

This type of ML is a classification technique rooted in statistical information 

theory and fundamental risk minimization constructs multiple hyperplanes to 

categorize data samples. Among these, the most optimal hyperplane is selected, 

granting SVM an advantage in mitigating overfitting. 

SVM stands out as a preferred machine learning approach within the energy 

domain, particularly for predicting renewable power sources like PV systems and wind 

turbines. Its ability to handle fluctuations and time-varying parameters is noteworthy. 

For instance, SVM is used by Wolff et al. (2016) to harness historical data 

encompassing numerical weather prediction (NWP), PV power, and solar irradiation 

inputs to establish short-term PV power forecasts using SVM. The efficacy of their 

strategy is assessed using BIAS and root mean square error (RMSE) statistical error 

metrics. Similarly, SVM is utilized by Leone et al. (2015) for forecasting energy yield 

from an Italian solar PV plant, utilizing ambient temperature, solar irradiance, and past 

PV power data in 15-minute intervals. The study achieves >90% performance using 

the R score, with weather forecasts playing a crucial role. Kim et al. (2017) studied the 

relationship between SVM and ANN algorithms for predicting daily PV output from 
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a PV system in Korea. The results show that SVM, leveraging cloud cover and 

temperature features, outperformed ANN in terms of average Percentage Prediction 

Error (PPE). 

In a tropical region, an investigation is applied in both SVM and multilayer 

perceptron (MLP) methods for hourly solar irradiation prediction. Using data retrieved 

from a solar farm in Malaysia, SVM exhibited better prediction results than the MLP 

model, as evidenced by metrics such as the Kolmogorov-Smirnov integral test, MAE, 

MBE, and RMSE. However, Dong et al. (2013) devised an innovative hybrid method 

involving particle swarm optimization, SVR, and Self-Organizing Maps (SOM) for 

solar irradiation prediction. SVR showcased superior accuracy compared to traditional 

methods like linear, simple exponential smoothing (SES), Autoregressive integrated 

moving average (ARIMA), exponential smoothing (LES), and random walk (RW). 

Many other research works, such as Mellit et al. (2013), introduced a least-squares 

SVM algorithm for 24-hour solar irradiation forecasts, incorporating inputs like wind 

speed, solar irradiation, wind direction, air temperature, atmospheric pressure, and 

relative humidity. The model outperformed recurrent NN (RNN), MLP, and radial 

basis function NN with respect to performance metrics, including R2 and mean 

absolute percentage error (MAPE). The least squares SVM centering on the PV power 

prediction system was developed by Wang et al. (2015). The study considers sky 

cover, relative humidity, and wind speed as input parameters, highlighting SVM’s 

superiority over other experimental methods (for example, ANN) in handling time-

varying and non-linear parameters. 

The Naive Bayes (NB) model method is a widely utilized supervised learning 

approach centered on Bayes’ theorem. This algorithm calculates conditional 

probabilities on training data for classification. The key principle of NB is that every 

feature exerts a self-regulating and equivalent effect on the outcome, contributing to 

its ease of implementation and strong classification performance. Consequently, 

Kwon et al. (2019) conducted a two-day ahead solar irradiation forecast utilizing the 

NB classifier, achieving a 2.73% root Mean Bias Error (RMBE) with a 333.04 Wh/m2 

of Global Horizontal Irradiance (GHI). In a similar study, Persson et al. (2017) applied 

the NB classifier for day-ahead solar power predictions in one-hour intervals, 

demonstrating its superior accuracy and reliability compared to other experimented 

methods through normalized Mean Absolute Error (MAE) evaluation. 

2.2.3. Multivariable regression method (MLR) 

The MLR is an ML technique established with a focus on the general formula 

depicted in Equation (18). 

𝑅𝑠 = 𝑚1 +𝑚2𝑋1 +𝑚3𝑋2 +𝑚4𝑋3. . +𝑚𝑛+1𝑋𝑛 (18) 

while Xi stands for meteorological parameters, m1, m2, m3, m4…, mn+1 represent 

regression coefficients. MLR is mostly an algorithm used to study the relationship 

between multiple independent and dependent parameters. Additionally, it is broadly 

used in assessing solar radiation research (He et al., 2020). 

2.2.4. Artificial neural network 

The artificial neural network is a supervised learning approach stimulated by the 

intricate structure of the human brain’s neurons. It comprises interrelated layers of 
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nodes, each layer equipped with weights and activation functions. The input layer 

obtains input samples, which are then processed through hidden layers to produce an 

output that represents the final prediction. The capability of ANN to take care of noisy 

and incomplete data makes it a preferred choice in knowledge discovery endeavours. 

Presently, there exist six distinct types of ANNs employed in ML research, including 

self-organizing map (SOM) NN, multilayer perceptron (MLP), back-propagation NN, 

feed-forward NN, extreme learning (EL) and radial basis function NN. The utilization 

of ANNs within the realm of solar energy, particularly in power prediction, has seen 

extensive exploration and presentation. As an illustration, Mandal et al. (2012) 

introduced a hybrid approach that combines radial basis function NN and wavelet 

transform (WT) methods to predict one-hour-ahead PV power using weather 

temperature and solar irradiation inputs. Empirical findings demonstrate that this 

hybrid technique captures non-linear PV fluctuations more effectively than other 

methods tested (WT + BPNN, radial basis function NN, BPNN, and WT), albeit with 

some limitations during rainy conditions. A hybrid system was devised by Cervone et 

al. (2017) to merge analogue ensemble (AnEn) ANN models for PV power generation 

forecast in an Italian plant. The hybrid model, evaluated against other methods ANN 

and AnEn), yields notably more accurate results. In another instance, Muhammad et 

al. (2017) utilized an ANN regressor for day-ahead power prediction of a 20 kWp grid-

connected PV plant in Tiruchirappalli, India. The assessment of this model using 

statistical error analysis, specifically MAPE, demonstrates a remarkable accuracy of 

0.855%. Ramsami and Oree (2015) amalgamated ANN and regression techniques for 

stochastic energy output prediction of PV systems, leveraging stepwise regression to 

improve forecasting accuracy. The hybrid ANN + LR model outperforms single-stage 

models across various evaluation metrics. 

Asrari et al. (2016) proposed a hybrid prediction model for hour-ahead solar 

power prediction, combining meta-heuristic and gradient-descent optimization 

techniques. This algorithm demonstrates improved prediction accuracy while 

managing computational complexity. In a different context in a grid-connected PV 

system, an enhanced multilayer feed-forward NN with a fuzzy rule-based classifier 

was developed for maximum power point tracking (MPPT) (Chaouachi et al., 2010). 

Izgi et al. (2012) employed ANN for short and medium-term power forecasts, 

determining optimal time horizons for different seasons. In the same vein, Khandakar 

et al., (2019) compared M5P regression tree learners, linear regression, ANN, and 

Gaussian process regression models for PV power forecast, with the ANN model 

outperforming other regression approaches. 

Several research works in the systematic literature review (SLR) focus on solar 

irradiation forecasting, given its critical role in PV power generation. ANNs are a 

prominent choice for estimating solar irradiation and PV power production. For 

instance, Jang et al. (2016) introduced an innovative solar irradiation prediction 

approach using ANN and fuzzy logic algorithm. In another study, radial basis NN is 

employed for day-ahead solar irradiation forecasting, achieving a statistical error of 

12% (Jang et al., 2016). Jang et al. (2016) presented a back-propagation NN-based 

short-term prediction algorithm that enhances generating capacity prediction 

precision. Moreover, Amrouche and Le Pivert (2014) demonstrated that ANNs could 
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adapt to noisy and missing data and successfully predict solar irradiation for locations 

lacking direct measurements by utilizing nearby meteorological data. 

2.2.5. Random forest 

This algorithm constitutes an ensemble-driven classification technique wherein 

it generates multiple Decision Trees (DTs) and subsequently merges their outcomes 

to enhance the precision of class labelling (Basaran et al., 2019). This methodology 

hinges on a consensus-based aggregation of predictions from all the trees within the 

ensemble, collectively known as a forest, to foresee the classification of new sample 

instances. 

In the research paper by Ahmad et al. (2015), a pioneering ensemble-focused 

system was introduced for forecasting stochastic PV production output hourly. This 

system harnesses a combination of tree-based ensemble and SVM methods, 

specifically Extra Trees (ET) and Random Forest (RF), to predict the hourly power 

yield from a PV system situated in Cardiff, UK. The findings underscore that ET and 

RF furnish more precise prediction outcomes while demanding reduced training time 

in comparison to SVM. Another study proposes an innovative framework that 

synergizes wavelet decomposition and bias-corrected RF models for PV output 

prediction. This approach employs present PV output values and meteorological 

sensor data (Antonanzas et al., 2017) to predict PV power production. The expected 

technique is benchmarked against Back-propagation Neural Network (BPNN), RF, 

and Wavelet-SVM models, gauged by Mean Absolute Percentage Error (MAPE), 

Root Mean Square Error (RMSE), and Mean Absolute Error (MAE) metrics. As per 

the results, the proposed approach exhibits diminished error rates in contrast to the 

other employed algorithms. 

Almeida et al. (2015) introduce Quantile Regression Forests, an extension of RFs 

tailored for quantile regression, to devise a solar power prediction system. This model 

assimilates multiple forecasts of meteorological variables and genuine AC power 

measurements from PV plants as input. The model’s efficacy is evaluated using data 

from five PV plants in northern Spain, sampled at a 5-second resolution. The findings 

from the assessment demonstrate that the model accurately predicts hourly and daily 

power generation, achieving an absolute Mean Bias Error (MBE) of less than 1.3% 

and MAE of less than 1.3% for both timeframes, respectively. In a distinct study by 

Zamo et al. (2014), a predictive model is constructed to estimate the hourly PV 

electricity production for the following day at various power plants in mainland 

France. This model employs binary regression trees, bagging, RF, gradient boosting 

(GB), and SVM learning models. The evaluation results unveil that RF outperforms 

the other experimented models in terms of accuracy for hourly PV production 

forecasts. 

3. Research methodology 

A bibliographic analysis is a study area that describes the lines of action among 

keywords, authors, and topics to graph a correlation between them and detect trends 

as well as areas of concentration in publication activities. These forms of analyses 

direct scholars on how earlier studies proceeded over time and where they can focus 

in the future. A bibliographic review is significant since it irradiates their networks 
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and demonstrates which fields are highly intertwined while others lack correlations 

(David et al., 2022). This exposes parts that have attracted less interest and have the 

prospect of being discovered. 

Several software are mapped out for bibliometric review (Daneshgar et al., 2022). 

However, the application of VOSviewer software stands out as one of the greatest and 

most appropriate tools utilized to generate link data and maps. This package was 

designed by van Eck and Waltman (2009). The maps generated by VOSviewer 

comprise different words, including publications, researchers, and keywords, which 

attract great attention from users (Apeh and Nwulu, 2024). Each map concentrates on 

a single form of the word, and the relationship between these words is virtually 

represented by bows. These connections form links, with words and their connotation 

mutually shaping the networks. These words are assembled into groups that typically 

have correlated topics. 

In search of the study objective, VOSviewer software (Savaresi, 2013) is utilised 

to execute the bibliographic analyses and examine the correlations between diverse 

study fields. It is an open software designed by Ech and Waltman with the assistance 

of the University of Leiden. This software concepts web and bibliometric maps in 

accordance with data built on authors, journals and keywords.  

3.1. Data sources and search procedures 

This study limits the search terms to English language. To examine the 

performance analysis of the appropriate articles for this review, an extensive search 

was undertaken across famous global databases, including Scopus, ScienceDirect and 

Google Scholar. However, Scopus has been identified as the highest academic abstract 

and citation database globally; it comprises a constant broad variety of subjects and 

contents encircling virtually 50 million literature parts published from 1823 (Agbodjan 

et al., 2022). This stated evidence correlated to its significance in the published 

research content validates why Scopus has been utilised as the database to execute the 

bibliometric analysis of machine learning for solar energy. During the search process, 

various keywords were employed in diverse combinations, encompassing terms such 

as “failure,” “modeling,” “machine learning,” “fault”, “artificial intelligence,” 

“performance prediction,” “neural network” as well as several methodologies within 

ML example ANN or SVM, and various fault categories examples, “line to line”, 

“short circuit,” “degradation,” and their standard abbreviations. The flowchart in 

Figure 6 illustrates the overview of the research methodology used in this study. 

However, the scope of articles considered was up to the most recent submission 

dated 11 January 2025, with corresponding revisions accepted until 17 February 2025. 

The culmination of this search yielded a selection of over 2258 articles that have been 

incorporated into the present review. These keywords are examined distinctly, and the 

outcomes of all the keywords are imported into the VOSviewer concurrently. 
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Figure 6. Research methodology and the summary of the process for each step.  

3.2. Selection process 

3.2.1. Inclusion criteria 

• Complete-article accessibility. 

• Publication in the final stage. 

• Academic journals and conference papers. 

• Published between 1990 and January 2025. 

• Focus areas connected to operations research, engineering, energy, and decision 

sciences. 

3.2.2. Exclusion criteria 

• Book chapters, abstracts, technical reports, and dissertations were excluded.  

• Papers covering alternative renewable or non-renewable energy sources, other 

than PV technologies were exempted. 

• Articles that cannot be accessed. 

• Restricted to English language only. 

3.3. Fault detections in PV system 

Effective and efficient detection and diagnosis of faults in a PV system requires 

a systematic knowledge of the characteristics of every fault and its respective 

challenges. A typical Stand-Alone Photovoltaic System (SAPVS) includes different 

components such as PV arrays, inverters, batteries, charge controllers, Maximum 

Power Point Tracking (MPPT) systems, connection wires, and additional protective 

devices. 
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3.3.1. Faults in PV array 

An open circuit (OC) occurs due to accidental disconnection within a closed loop, 

resulting from objects hitting the panels, cable scratches, loose connections, or 

unintentional disconnections at current-carrying conductors. Also, cracked cells, cable 

joint failures, loose connections, and old power cables close to terminals can cause OC 

faults (Ali et al., 2020). Notwithstanding the existence of bypass diodes sustaining 

some current flow during an OC fault, substantial power loss occurs because of a 

voltage drop in a string (Ali et al., 2020). 

3.3.2. Faults in solar battery 

Batteries constitute approximately 43% of SAPVS lifecycle prices, requiring 

attention to guarantee optimal operation. The possible faults comprise external short 

circuits, degradation, internal faults such as Short Circuits (SC) and Ground Faults 

(GF), open circuits, undercharging and overcharging (Zenebe et al., 2021). These 

faults can decrease battery performance, shorten its lifespan, increase maintenance 

charges, and expose it to the dangers of fire or explosion (Zenebe et al., 2021). 

Challenges in sensing internal faults consist of the lack of guidelines for choosing 

fuses and circuit breakers, worsened by the slow fluctuations in battery current and 

voltage over time. 

3.3.3. Faults in inverter 

Inverter faults involve different issues, such as switch OC, switch SC, filter 

failure, and gating failure (Mellit et al., 2018). Gating failure, mostly incipient faults 

in the Insulated Gate Bipolar Transistor (IGBT), is dangerous as it frequently causes 

inverter failures. Recognizing such faults can improve system reliability, although 

generating these faults for training and validating ML needs exact procedures. The 

illustration is presented in Figure 7. 

 
Figure 7. Fault detection and diagnosis strategies. 

3.3.4. Faults in MPPT 

The MPPT system, essential for optimizing PV array performance, depends on 

sensors for irradiance, temperature, current, and voltage measurements, along with 
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optimization algorithms. Faults within the MPPT system, such as sensor failures or 

inefficient algorithms, cause incorrect operating points and significant cuts in system 

output power (Jäger-Waldau, 2022). 

4. Results and discussion 

4.1. Faults evaluations in PV systems 

Table 1 shows how several research has been analysing faults in PV arrays, with 

more than 80% of papers focusing on this field. Nevertheless, research into faults 

within batteries and inverters has also been undertaken. Particularly, faults in Grid-

Connected Photovoltaic Systems (GCPVS) have attracted more emphasis than 

SAPVS. The most analysed types of faults within PV arrays include SC, OC, and 

Partial Shading (PS), despite Ground Faults (GF), Arc Faults (AF), and Line Losses 

(LL) being the most critical. SVM and MLP have been extensively used among several 

ML methods for fault detection and classification in PV systems.  

Table 1. Summary of reviewed literature for fault detection using machine learning method. 

Fault identified  Methods       

Fault  component 
Input 

data 
Algorithm Type Simulated  Experimental 

Type of 

PV 

system 

Accuracy  Year  References 

OC, SC, 

Degradation 
PV array - 

KNN, DT, 

SVM, ANN 
ML yes No GCPVS - 2020 

Lazzaretti et 

al., 2020 

Hotspot PV array Image SVM ML No Yes SAPVS > 92% 2020 Ali et al., 2020 

LL PV array I-V char 
SVM, NB, 

KN 
EL Yes  Yes - > 99% 2020 

Eskandari et 

al., 2020 

OC, Norma, SC PV array 

I, V, P, 

T, G, 

string 

DT, RF, DA EL No  Yes GCPVS > 97% 2021 
Kapucu and 

Cubukcu, 2021 

Module SC, 

String, OC 
PV array 

I, V, T, 

G 
ANN, PNN ML Yes  Yes GCPVS - 2017 

Garoudja et al., 

2017 

OC, degradation, 

SC 
PV array G, T, P GPR, SVM ML Yes  Yes GCPVS - 2021 

Harrou et al., 

2021 

String-string, 

string-ground, 

and OC 

PV array - 
RF, CNN, 

LSTM 
DL Yes  No GCPVS > 99% 2023 

Mustafa et al., 

2023 

LL, degradation, 

PS, bypass dode  
PV array I, V ML, DL ML - - - - 2022 

Mellit and 

Kalogirou, 

2022 

Norma, SC Inverter  I, V 
ResNet-50 

CNN 
TL Yes  No GCPVS > 97% 2021 

Malik et al., 

2021 

SC, OC 
PV aray, 

battery 
I, V ANN ML Yes Yes GCPVS > 96% 2018 

Sabri et al., 

2018 

The assessment of these models mostly depends on accuracy and confusion 

metrics, even though some researchers present their metrics and consider 

implementation time. Given the stochastic nature of ML, it is important to define 

performance after a reasonable number of model implementations despite the time 

investment it entails. In terms of geographical location and data source, research on 
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experimental PV systems is largely conducted in Algeria, followed by China and 

Korea. Assessing ML methods under various climatic and geographical conditions is 

crucial because of the different challenges possessed by the PV array and the battery 

in various locations. For example, while snow poses a great challenge in polar regions, 

equatorial regions face issues such as dust accumulation, soiling, and high operating 

temperatures. 

Several studies rely on simulated PV system data for input features, with only a 

minority integrating experimental data due to the challenges of setting up operational 

PV systems for data collection. Input features usually comprise irradiance, 

temperature, and main points from I-V characteristics for PV array faults, while 

current and voltage data are employed for faults in batteries, inverters, MPPT, and 

others. Even though electrical and meteorological data are mostly utilized in ML, 

image data is common for deep learning algorithms, including Convolutional Neural 

Networks (CNN). Recently, there has been a drift towards using electrical and 

meteorological data in deep learning algorithms as well, following transformations to 

change 1-D data into 2-D. For faults such as arc faults that do not show in I-V 

characteristics, devices analysing signal waveforms (for example, wavelet 

transformation) capable of capturing signal distortion effects may be suitable. 

Preprocessing methods like normalization frequently improve accuracy, but when not 

possible, deep learning models excel because of their ability to automatically extract 

features. Despite substantial developments in using ML methods for fault detection in 

PV systems, the commercial application remains limited, with only one paper 

employing ML in a prototype based on results from the literature review. Therefore, 

authors have acknowledged different challenges that hinder the progress of PV 

systems as analysed in the following: 

• PV size and type are very scarce to discover, training, validate, and test data set 

that fit at least the main fault in a PV system. 

• Even if most researchers have established their own data set, many are simulation 

data. In addition, in DL-based approaches, collecting the image data using a drone 

and camera is costly. 

• Most measuring instruments and sensors are required because there is no suitable 

technique for efficient input feature selection. 

• There is inadequate skill to detect severe but scarce faults. 

• Choices of model configurations are done with trial and error. 

• The model developed so far does not have the modularity and generalization 

capacity; consequently, the type of fault, size, and input data type rely on different 

ML model selections. 

• Research that control, including the approaches with the present protective plans, 

are scarce. Besides, most of the articles do not offer detailed solutions on how to 

address the faults. Once the fault is categorized, a technique and plan are required 

to organize it with protective devices to clear the fault automatically and send the 

signal to the operators for solutions. 

• The accuracy of the model is flexible as it relies on data quality, data size, and 

input and output features. 
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• There are no common platforms or testing standards based on execution time, 

accuracy, cost, or memory usage for comparing ML devices. 

4.2. Advantages and disadvantages of using machine learning in 

diagnosing faults in PV systems 

4.2.1. Time series algorithms 

Advantages of time series algorithms 

Temporal patterns: Time series algorithms are designed to capture and analyze 

temporal patterns and trends, making them highly suitable for data that exhibit 

seasonality, trends, and other time-dependent patterns. These algorithms excel at 

forecasting future values based on historical data. They can predict stock prices, 

weather conditions, sales, demand, and other time-dependent variables. Time series 

algorithms can provide real-time insights and predictions, enabling organizations to 

make timely and informed decisions. Time series algorithms can compress and 

summarize large volumes of time-based data, making it easier to store, visualize, and 

analyze the information. Time series algorithms can extract relevant features from 

time-dependent data, aiding in identifying important patterns and relationships. They 

are broadly employed in several domains, including finance, economics, healthcare, 

manufacturing, and more, for anomaly detection, quality control, and resource 

allocation. 

Disadvantages of time series algorithms 

Data preprocessing: Time series data often require extensive preprocessing to 

handle missing values, outliers, and noise, which can impact the quality of predictions. 

Advanced time series algorithms can be complex and require a deep understanding of 

mathematical and statistical concepts, making them challenging to implement and 

interpret. Dealing with multivariate time series (multiple time-dependent variables) 

can increase the complexity of analysis and modelling. Depending on the complexity 

of the algorithm and the amount of available data, there’s a risk of overfitting, where 

the model fits noise in the data rather than capturing meaningful patterns. Time series 

data can exhibit non-stationarity, where statistical properties change over time. 

Handling non-stationary data can be tricky and may require additional techniques. 

Accurate predictions often rely on a sufficient amount of historical data. If data is 

limited, the performance of time series algorithms can be compromised. Choosing the 

right algorithm and model parameters for a specific time series problem can be 

challenging and might require experimentation. Some advanced time series algorithms 

can be computationally intensive, especially when dealing with large datasets or 

complex models. 

4.2.2. Supportive vector machine 

Advantages of supportive vector machine 

SVM offers a range of merits. Firstly, they exhibit versatility by handling both 

classification and regression tasks, making them well-suited for diverse data types, 

including structured and semi-structured datasets. A pivotal component of SVM is the 

kernel function, a collection of mathematical functions defined by various SVM 

algorithms. These kernels encompass various types, such as linear, non-linear, and 
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sigmoid, enabling them to handle intricate data patterns when appropriately tailored 

effectively. SVM shines within high-dimensional spaces when the number of samples 

is smaller than the dimensions, showcasing enhanced efficacy and reduced 

susceptibility to overfitting. This inherent universality steers clear of local optima 

entanglements. When optimality is approximated, SVM can generate a unique 

solution. This distinguishes SVM from Neural Networks, which often yield several 

solutions prompted by local minima, making their results less reliable and consistent 

across various datasets (Karamizadeh et al., 2014). 

Disadvantages of supportive vector machine 

When dealing with extensive data collection, SVM’s performance can decrease 

over time, constituting a drawback. Moreover, its consistency is compromised in the 

presence of noisy data. Another disadvantage arises from the intricate process of 

selecting an apt kernel function, which demands substantial effort and time. Unlike 

DT, SVM algorithms are notably complex, posing challenges in comprehending 

outcomes, especially for datasets rich in features. Lastly, SVM’s performance 

deteriorates as the number of features surpasses the count of training instances. 

4.2.3. Multivariable linear regression (MLR) 

Advantages of multivariable linear regression 

The MLR allows one to account for the impact of multiple independent variables 

on a single dependent variable. This is particularly useful when the outcome is 

influenced by several factors simultaneously. Moreover, it provides coefficients for 

each independent variable, indicating the direction and magnitude of their impact on 

the dependent variable. This makes it easier to interpret the relationships between 

variables. When the underlying assumptions of MLR are met, it can provide accurate 

predictions for the dependent variable with a focus on the values of the independent 

variables. MLR can help identify which independent variables have a statistically 

essential impact on the dependent variable, allowing for variable selection and 

focusing on the most important predictors. MLR can help uncover complex 

relationships between variables. It can reveal whether the relationships are linear, 

positive, negative, or more nuanced. Even though the MLR is a fast technique, 

however, the geometric mean of NN is better than the MLR. Hence, one may argue 

that the MLR is biased towards several data and, its precision for the minority is fairly 

bad. 

Disadvantages of multivariable linear regression  

This regression relies on several assumptions, including linearity, independence 

of errors, homoscedasticity (constant variance of errors), and normal distribution of 

errors. Violation of these assumptions can lead to biased or inaccurate results. Suppose 

too many independent variables are included in the model. In that case, there is a risk 

of overfitting, where the algorithm executes well on the training data but fails to 

generalize to original, hidden data. In the same way, high correlation or 

multicollinearity among independent variables can lead to difficulties in interpretation 

and unstable coefficient estimates. It can also make it challenging to identify the 

individual contributions of each predictor. MLR assumes a linear connection between 

the dependent and independent variables. If the true relationship is non-linear, MLR 
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may not capture it accurately. Outliers and influential data points can heavily influence 

the results of MLR, leading to inaccurate parameter estimates and predictions. 

4.2.4. Artificial neural networks 

Advantages of artificial neural networks 

The ANN excels in swiftly addressing challenges characterized by uncertain 

behaviours or intricate structures, owing to their utilization of non-linear activation 

functions. Their adaptability stands out prominently; they can dynamically alter their 

architecture to suit specific usage scenarios, harnessing the inherent cognitive 

capabilities embedded in their algorithms. The configuration adjustments are steered 

by the input data traversing the NN, facilitating pattern modifications. The NN’s non-

linear activation function empowers it to seamlessly handle data across varying 

dimensions, as long as the input conforms to a continuously differentiable function. 

ANN is recognized for its high precision and processing capability. 

Disadvantages of artificial neural network 

The main limitation of ANN is its substantial demand for computational 

resources, driven by the extensive prerequisites of input data volume. Achieving 

optimal predictive performance necessitates a considerable volume of training data. A 

noteworthy concern lies in its susceptibility to the initial randomization of network 

parameters. Furthermore, the processing time escalates exponentially with an increase 

in the number of hidden layers, posing a potential efficiency challenge. Moreover, 

ANN is designed to process numerical data, involving problems to be transformed into 

numerical values before being input into the network (Khalilov et al., 2021). The 

selected representation approach plays a vital function in determining the network’s 

performance, which mostly relies on the user’s knowledge in choosing a proper 

encoding approach.  

4.3. Bibliometric analysis of performance indicators 

Even though machine learning and solar PV systems are conventional areas that 

have existed since the mid-fifties, the initial article on the energy-connected area was 

published in 1969; nevertheless, because of several causes, such as inadequate 

computational power, such systems were very unattractive. However, in 2000, ML 

began to gain greater attention with computer technology developments, and articles 

in this field improved by unbelievable development. ML-connected articles presented 

a sluggish rise from 2000 to 2011, but after 2011, there was a clear explosion in 

research; the number of articles suddenly improved to the fact that it developed fifteen 

times the number in 2011 in 12 years. Figure 8 illustrates the number of articles 

associated with solar energy and machine learning. 

As presented in Figure 8, the growth of publications on ML and solar energy can 

be described in three different stages. The first stage describes the growth period 

spanning from 1990 to 2009, during which a total of 6 articles were published. Then, 

in 2010, the second stage of publications began and continued until 2015, producing a 

significant surge in publications with a total of 62 articles being published. This period 

is categorized as a progressive stage when European countries and the United States 

presented reports and strategies aimed at accomplishing buildings with zero energy. 

Notably, in 2008, the US Department of Energy issued a statement on plans and 
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initiatives related to building technologies to commence between 2008 and 2012 for 

the actualization of zero-energy buildings (Pyloudi et al., 2015). Moreover, the 

International Energy Agency (IEA) hosted a global-level scientific platform in 2008 

termed “Towards Net Zero Energy Solar Buildings” (Voss and Riley, 2009). Also, in 

2007, the agency of the American Society of Heating Refrigerating and Air-

Conditioning Engineers established a vision for 2020 to offer technologies that will 

allow the building community to generate market-feasibility of energy independence 

by 2030 (ASHRAE, 2020). The last stage can be characterized as a fast expansion 

period, and an amazing 2184 articles are available. This stage experienced an 

outstanding publication growth rate of 96.9% from 2016 to 14 January 2025. The full 

year in 2025 was not explored, hence the decline in the number of publications. To 

further verify the study methodologies, Figure 9 is used to illustrate the number of 

publications by type.  

 
Figure 8. The number of articles associated with machine learning and solar energy 

from 2010 to 2025. 

 
Figure 9. Comparing different publication types of machine learning and solar PV from 2010 to 2025. 

Besides, with the rising alarm regarding challenges in air pollution and global 

warming associated with fossil fuels, several researchers are considering reaching out 

to the wider world through publications. Hence, articles contribute to 54.4% of 

literature works, followed by conferences 32.2%. However, Data Papers, Books, 

Notes, Erratum, and Letters are rarely considered when reaching out to the wider 
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community regarding machine learning for solar energy. Furthermore, Figure 10 

shows documents by subject areas where solar energy links with machine learning. 

 
Figure 10. Comparing the document by subject area of machine learning and solar PV from 2010 to 2025. 

As can be observed in Figure 10, subject areas such as Engineering, accounting 

for 24.2%, Energy, recording 19.7%, and Computer science, accounting for 17%, have 

published most of these research papers in the field of ML and solar PV systems. 

4.4. Co-occurrence mapping 

This research identifies the highly and regularly utilized paper keywords, titles, 

and author-provided keywords, including machine learning, solar power generation 

and forecasting. These recognized keywords are then used to produce an inclusive 

keyword link, enabling correlations among the keywords applied in the research 

papers. A notable strong point in this connection depends on its competence in 

assessing papers with these three keywords. Nevertheless, the network map that was 

created controls the reoccurrence of a keyword in the article and the similarity of other 

related keywords in the paper. Figure 11 demonstrates the author-provided keyword 

links based on machine learning and solar energy within the broader area of energy 

study.  

Five main clusters, each denoting an exact study area, designed the total map in 

this link. These clusters are Energy efficiency and forecasting (Blue), Network 

analysis (Green), Unexplored fields of study representing fault detection using 

machine learning (Purple), Machine learning and application in energy systems (Red) 

as well as the hot research zones representing (yellow circle) the intersection of other 

four clusters. However, each node in the network indicates a keyword, and the 

connections between nodes stand for the relationships between these keywords. 

Hence, in Figure 11, in this visualization, the node represents the most frequent 

keywords in machine learning and energy systems, as indicated by its larger size and 

central position. On the other hand, every link shows a co-occurrence of keywords in 

a similar paper. The thickness of the line characterizes the frequency of co-

occurrences, this means that as the lines get thicker, the more often the keywords get 

closer. As can be observed in Figure 10, mapping a network of ML and solar energy 

provides a prospect to discover new and unexplored fields with the possibility for 
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future research explorations. Table 2 presents the highly current application of ML in 

solar energy, finding out hot research areas, using methods and objectives. 

 
Figure 11. Overlay visualization of author keywords occurrence network. 

Table 2. The basic applications of machine learning in solar PV systems. 

Targets Algorithm/methods References 

Forecasting Time series Voyant et al., 2017 

PV performance assessment Supportive vector Bakay and Ağbulut, 2021 

Decision making Numerical model Ziemba and Szaja, 2023 

PV system management Fuzzy analysis Mocanu et al., 2018 

Sustainable development Uncertainty analysis Ismaen et al., 2023 

Energy storage Decision tree Luo et al., 2021 

Building and fault detection Artificial neural network Jyothy and Sindhu, 2018 

4.5. Study of co-authorship mapping 

The ‘bibliographic coupling’ was used to determine countries with the greatest 

contributions to the growth of machine learning for solar energy. The co-authorship 

mapping refers to examining the relationships between different items with the same 

item citations. Figure 12 illustrates the results of this study, which was conducted, and 

the document is set to a minimum publication of 6 per country with a total link strength 

of 1010. The size of every node represents the number of documents published by 

countries. The results analysis shows that China (281), the USA (241), India (227), 

Germany (79), Australia (78), Saudi Arabia (78), and the UK (76) represent the most 
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relevant countries with the greatest number of publications published in the area of 

solar energy for machine learning.  

 
Figure 12. Bibliographic analysis of countries’ co-authorship with overlay visualization. 

Even though the highest number of publications were produced in developed 

countries, a huge contribution of research works has likewise been published in 

developing countries, including India. Nevertheless, the inability of several countries 

to publish research works can be noticed, for example, in West African countries. In 

view of the fact expected urbanization and development in developing countries, more 

studies that centres on energy are essential to contribute to the development of these 

countries to shift towards energy independence (Apeh and Nwulu, 2024). To further 

highlight the countries with relevant publications in the field, Figure 13 compares the 

number of articles of the top ten countries in the field. 

By looking at the number of published works, China has published a vast quantity 

of ML and solar PV articles. The statistics of countries’ quantity of researched works 

is observed in Figure 13, where China recorded 422, accounting for 25.23% of the 

total, and this is followed by the United States, which published 330 researched papers 

representing a share of 19.76 % and India recording 277 articles accounting for 

16.59% of the total articles. The increasing trend of article publications in the top ten 

countries can be attributed to the constant government support to alleviate energy 

poverty and meet the sustainable development goals projected that global sector 

energy applications will rise to about 30% by 2050 (Zakari et al., 2022).  
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Figure 13. Comparing the top ten countries by the number of articles between 1990 

to 2025. 

To describe more on the research in energy outlooks, it is also necessary to 

analyze the top journal publications in this area of study. Table 3 presents the number 

of articles published in machine learning for solar energy. Moreover, the research 

trend focused on studies submitted to several journals. It is observed that work 

regarding any subject is initially available in journals that character originality. The 

most current papers in the area of PV systems relating to machine learning between 

2010 and 2025 include Energies, with a total article of 150, followed by IEEE Access, 

recording a total of 64 published papers, Applied Energy has a total of 58 while 

conference records for IEEE PV specialist conference accounts for a total of 54 

articles.  

Table 3. The number of articles related to machine learning in the selected energy field from 2010–2025. 

Year Energies 
IEEE 

Access 

Solar 

Energy 

Conference records of 

IEEE PV specialist 

conference 

Applied 

Energy 

Sustainability 

Switzerland 

Energy 

Report 
Energy 

Lecture note 

in Electrical 

Engineering  

Renewable 

Energy 

2010   1        

2011    2       

2012    1       

2013    1       

2014           

2015   2      1  

2016 1  2 3    1  2 

2017 3  4  3    2 2 

2018 33  4  4   1  4 

2019 10 4 7 8 1 1  1  1 

2020 18 13 7 12 3 1 2 4 7 3 

2021 32 21 4 15 9 8 6 8 5 10 

2022 39 11 5 12 20 11 14 7 20 5 

2023 14 15 22  6 15 11 10 11 8 
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With respect to this analysis, it can be concluded that ML systems have advanced 

in several areas in recent years. 

4.6. Using machine learning method for faults diagnosis in PV systems 

The research work undertaken by Wu et al. (2009) is an illustration of the initial 

works in the area of fault diagnosis using machine learning. They utilized the forward 

error back propagation model (BP) to identify faults in a grid-connected PV system. 

Their innovative application of the predicted model, which was focused on signal 

processing, proved a higher possibility. Also, Rezgui et al., (2014) suggested a 

technique for diagnosing PV system faults. Their anticipated method employed SVM, 

which was enhanced via the KNN process. Similarly, Wu et al. (2009) identified five 

fault categories: gadget overheating and irregular grid voltage readings. In contrast, 

Rezgui et al. (2014) delved into short circuits, along with blocking diodes and 

bypassing. Moreover, Mostefa Khelil et al. (2020) proposed fault analysis in a grid-

connected PV system using a logic block neural network-supported model (Khelil et 

al., 2020). The model was assigned to two forms of fault, including short circuit 

failures and string disconnections. Their model had four input parameters. These were 

the solar radiation, operating temperature, highest current, and voltage characteristics 

curve. To decrease the error and increase the simplification competence, Kapucu and 

Cubukcu (2021) presented a model in collaboration with ML applications (Kapucu 

and Cubukcu, 2021). The research was a collective model to detect both partial 

shading and short circuit faults. A neuro-fuzzy algorithm to diagnose defects in a PV 

component was established by Cabeza and Potts (2021), where both current and 

voltage faults were examined (Cabeza and Potts, 2021). Basnet et al. (2020) 

discovered the utilization of a smart neural network of probabilistic form in the study 

to analyze different defects in PV power production with the application of PNN 

during the winter period. They classified four different faults, including arc, line-to-

line, open and short circuit conditions. Hajji et al. (2021), Meyer et al. (2020) 

examined a fault identification technique for PV units (Hajji et al., 2021; Meyer et al., 

2020). Their research utilized supervised ML with a detailed analysis of grid-

connected systems. Two faults from the network side and three from the PV sector 

were considered, comprising inverter and connection defects. On the other hand, 

connections, partial shading and sensors were considered faults in the PV area. Failure 

detections in a string of PV modules, including voltage and current variation charges, 

were accomplished using the MATLAB algorithm interface (Abd el-Ghany et al., 

2021; Apeh et al., 2021). This specified technique skillfully categorizes the faults 

arising from broad and incomplete shading as well as cell and array connections. Lin 

et al. (2022) presented a model for an enhanced failure diagnosis that stressed a PV 

array’s multiple failures. That was a SE-ResNet network method. The research 

measured different faults, such as dust, open circuits, line-to-line, shadow on the 

modules and abnormal degradation. The importance of selecting the ANN category 

was examined (Khelil et al. 2021). Their research considered PNN, RBF, and 

generalized and back-propagation sets (GNN and BPNN). The optimum response was 

observed for RBF, whereas BPNN and GRNN were detected to produce more precise 

outcomes by assessment with others (Khelil et al. 2021). The study revolved around a 
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grid-connected PV array, with the measured failures encompassing short circuit 

currents and connection faults.  

5. Conclusion, recommendations, and suggestions for future studies  

This study presents a thorough framework of photovoltaic fault diagnosis, 

covering detection and identification, which is vital for protecting photovoltaic 

systems against different losses in power, efficiency, and reliability. An in-depth 

analysis of modern literature reveals that support vector machines and artificial neural 

network stand out as the most commonly utilized machine learning techniques. The 

majority of machine learning methods present an accuracy exceeding 90%, 

emphasizing their efficiency in fault diagnosis. Among photovoltaic array faults, SC, 

OC, and PS are the most widely researched within photovoltaic systems. Nevertheless, 

challenges persist, such as issues with dataset quality, model configuration, and 

continuous integration of machine learning methodologies with existing photovoltaic 

infrastructures. Remarkably, a complete method to addressing serious faults in 

photovoltaic components, mainly in stand-alone photovoltaic system, appears lacking. 

Hence, there is an urgent demand for more research to discover the application of these 

approaches and search into lesser-known algorithms. The findings from the study 

equally reveal a significant trend of machine learning around 2009 to 2015, when 62 

articles were published, especially taking off after 2015 when the number of machine 

learning and solar photovoltaic publications encountered exponential growth. Over an 

interval of just nine years, from 2015 to 14 January 2025, the total number of published 

articles grew to 2184, accounting for 96.9%. Furthermore, the research reveals 

different promising yet neglected areas where machine learning can be efficiently 

utilized. These areas comprise maximum power point tracking, energy storage, DC-

DC converter, voltage regulator, boost converter, energy supply chain optimization, 

and demand response. Regarding unexplored fields in machine learning, there are 

additional prospects in heat storage, environmental management, thermal energy 

management, uncertainty analysis, and carbon capture techniques. The analysis 

emphasizes the huge potential for machine learning and solar photovoltaic to 

contribute to different facets of the energy field, cutting across in improving efficiency 

to addressing critical environmental challenges and optimizing energy systems. 

It is recommended that the governments should encourage and fund research on 

machine learning to capture the components of photovoltaic involved in failure and 

for higher assessments of regular patterns. Moreover, effective fault detection and 

diagnosis methods should be considered by their efficiency, ease of application, fast 

detection and diagnostic algorithms, generalization capability for large-scale 

photovoltaic plants (LS-PVP), adaptability to several PV technologies, robust fault 

classification, the ability to identify numerous faults simultaneously, and the capacity 

to detect emerging or new faults. Hence, this study suggests that in future work, 

anomaly detection and fault diagnosis in solar photovoltaic systems will be properly 

addressed by improving energy prediction models. 
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Nomenclature 

AAKR Auto-associative kernel regression 

AC Alternating current 

AI Artificial intelligent 

ANFIS Adaptive neuro-fuzzy inference 

ANN Artificial neural network 

ARIMA Autoregressive integrated moving average 

BIAS Bias absolute error 

BP Back propagation 

BPNN Back-propagation Neural Network 

CO2 Carbon (iv) oxide 

DC (A) Direct current 

DNN Deep neural networks 

DT Decision Trees 

EIBCM Expanded-Improved Bristow-Campbell Model 

EL Extreme learning 

ET Extra Trees 

GB Gradient boosting 

GHI Global horizontal irradiance 

GP Genetic programming 

HCSAFRIMA Harmonically coupled seasonal autoregressive fractionally integrated moving average 

IEA International Energy Agency 

Io Diode saturation current 

Iph Photocurrent 

I-V Current-voltage 

IYHM Improved Yang Hybrid Model 

LES Linear exponential smoothing 

LL Line-to-line 

LR Linear regression 

MAE Mean absolute error 

MAPE Mean absolute percentage error 

MBE Mean bias error 

MF Membership functions 

ML Machine learning 

MLP Multilayer perceptron 

MPPT Maximum power point tracking 

NB Naive Bayes 

NMOT Nominal module operating temperature 
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NN Neural network 

NOCT Nominal operating cell temperature 

NOx Nitrogen oxide 

NS Number of cells in series 

NWP Numerical weather prediction 

PPE Percentage Prediction error 

PR Performance ratio 

PV Photovoltaic 

RF Random Forest 

RMBE Root Mean Bias Error 

RMSE Root mean square error 

RP Parallel resistance 

Rs Series resistance 

RW Random walk 

SARFIMA Seasonal autoregressive fractionally integrated moving average 

SES Simple exponential smoothing 

SLR Systematic literature review 

SO2 Sulphur (iv) oxide 

SOM Self-Organizing maps 

STC Standard test condition 

SVM Support vector machines 

UK United Kingdom 

USA United States of America 

Voc Open circuit voltage 

WT Wavelet transform 
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