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Abstract: Malaysia reported its first imported COVID-19 case on 23 January 2020, which 

marked the country’s first confirmed positive case. The first case in Malaysia was from eight 

close contacts in Johor. The global health landscape has been significantly impacted by the 

COVID-19 pandemic, with mortality or survival being critical outcomes of interest. This study 

aims to predict COVID-19 survival occurrences in Malaysia by utilizing machine learning 

approaches based on demographic factors. The dataset used in this study comprises 

demographic information of 2,151,315 COVID-19 patients, including nationality, regions, age 

groups, gender, medical history, vaccine brands, and the number of vaccine doses received 

between 2020 and 2022. Four machine learning algorithms, namely Logistic Regression, Naïve 

Bayes, Support Vector Machine, and Artificial Neural Network were employed to assess the 

relationship between demographic factors and COVID-19 survival. To evaluate the model 

performance, the datasets are categorized into imbalanced and balanced (down-sampling). The 

results indicate that the balanced dataset (down-sampling) outperforms the imbalanced dataset 

in terms of overall accuracy, sensitivity, specificity, precision, and Area Under the Curve 

(AUC). Based on the analysis, the Artificial Neural Network (ANN) classifier exhibited the 

highest performance with a specificity 95.2% on a balanced dataset. The model excels in 

accurately identifying survivors, thereby minimizing false mortality predictions and is selected 

as the best model for predicting COVID-19 survival. Its capacity to process larger sample sizes, 

combined with numerous interconnected nodes, enables it to identify complex patterns and 

extract meaningful insights from diverse datasets, such as demographic factors. Additionally, 

the optimization of parameters, including the number of layers, learning rate, and activation 

functions, significantly contributed to its superior accuracy. The study identifies that those of 

chronic diseases, male, and aged 45 and above as the notable factors associated with lower 

survival rates among COVID-19 patients. The findings underscore the importance of 

completing the vaccination series by obtaining at least the second dose, as the first dose alone 

may not offer sufficient protection. In conclusion, this study successfully achieves its 

objectives by identifying the optimal dataset configuration and predictive model for forecasting 

COVID-19 survival based on demographic factors. This network could serve as a benchmark 

model classifier, offering a valuable tool to predict and promote vaccinations, as well as 

optimize the general healthcare system during the pandemic outbreak. The study not only 

contributes to the theoretical understanding of effective COVID-19 prediction but also 

emphasizes the practical implications of integrating advanced machine learning techniques into 
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pandemic management strategies. Future research can build upon these findings by exploring 

additional machine learning techniques and considering geographical and environmental 

factors to further enhance the accuracy of long-term predictions. 

Keywords: COVID-19; public health; machine learning; vaccination; prediction model; 

demographic factors 

1. Introduction 

A serious threat of Coronavirus Disease to public health surfaced in 2019. The 

unique SARS-CoV-2 epidemic outbreak first occurred in Wuhan City, Hubei 

Province, China, in December 2019, and since then, it quickly spread to the rest of the 

world. The World Health Organization defined this illness as Coronavirus Disease 

(COVID-19). A total of 4.57 million cases of COVID-19 had been reported globally 

until 3 July 2022, (World Health Organization, 2022). The major way that COVID-19 

is spread is through inhalation of contaminated air that contains the virus in the form 

of droplets, aerosols, and tiny airborne particles (Jayaweera et al., 2020; Stadnytskyi 

et al., 2020). These particles are exhaled by infected individuals while they breathe, 

speak, cough, sneeze, or sing. The closer people are to one another, the higher the 

probability of transmission especially indoors, this illness also can spread across 

greater distances (Health Ontario, 2022). The World Health Organization defined a 

cluster of COVID-19 based on confirmed cases or called asymptomatic cases that are 

in close contact with positive cases or have visited a country that is having an 

epidemic. Mild symptoms including headaches, muscle soreness, a runny nose, a sore 

throat, or diarrhea may appear in some infected people. In addition, a person with 

positive reverse transcription–polymerase chain reaction (RT-PCR) results without 

any clinical symptoms is also considered an asymptomatic COVID-19 case (Lan et 

al., 2020). 

The COVID-19 pandemic has brought attention to the capability and resilience of 

healthcare systems (Sagan et al., 2020). The healthcare system has faced immense 

burdens, including high ICU occupancy rates, shortages of medical staff, and 

disruptions to routine medical care. Vulnerable populations, such as the elderly and 

individuals with chronic illnesses, remain at greater risk, emphasizing the need for 

research to improve survival predictions and optimize healthcare resource allocation. 

These challenges have resulted in increased demands on both inpatient and outpatient 

healthcare services (Lal et al., 2022), as well as a rise in healthcare costs (An et al., 

2022). However, there has been less emphasis on understanding how the strain on 

healthcare services during the pandemic has influenced overall performance (Bravata 

et al., 2021). Even if the healthcare systems are functioning within their capacity 

limits, the sheer volume of patients can strain their resources and lead to compromises 

in the quality of care. This is further exacerbated if there is insufficient funding to 

adequately support the healthcare services or if the healthcare system was not 

adequately prepared to handle the challenges posed by a pandemic like COVID-19 

(Ahmad et al., 2021). Consequently, healthcare systems’ capacities have been strained, 

impeding their ability to effectively provide routine services. It is worth noting that 

the burden of the COVID-19 pandemic extends beyond healthcare systems and affects 
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general practitioners and all healthcare professionals involved in essential services 

(Jefferson et al., 2023; Papoutsi et al., 2020; Soares et al., 2021; Schrimpf et al., 2023). 

In Malaysia, the threat of COVID-19 became increasingly apparent when 

neighboring Singapore reported its first imported COVID-19 case from Wuhan, China 

on 23 January 2020, which was also the first positive case in the republic. From this 

first case, eight close contacts were identified as being in Johor, Malaysia, (Shah et al., 

2020). A study conducted by Zamzuri et al. (2020) on 214 COVID-19 cases in the 

Seremban district found that the highest mortality occurred during early 2020 among 

Malaysian individuals between the ages of 41 and 64, who also had a significant 

number of chronic illnesses as co-morbidities. 

To control the spread of infectious diseases, widespread vaccination is a critical 

tool. Vaccination plays a crucial role in achieving herd immunity, which occurs when 

a significant portion of the population becomes immune to a particular infectious 

disease, either through vaccination or prior infection. This collective immunity 

significantly reduces the disease’s spread, offering protection to those who are not 

immune or unable to receive the vaccine. To prevent the reintroduction of the disease, 

maintaining high vaccination coverage is essential. While no vaccine is 100\% 

effective, with some recipients not developing full protection and others experiencing 

diminishing immunity over time, the overall benefits of vaccination are clear. For 

example, studies such as those by Huang et al. (2020) and He et al. (2023) have 

investigated the effects of vaccines on specific populations, like diabetes patients, 

revealing nuanced impacts. Furthermore, research by Almufty et al. (2021) has 

explored the relationship between vaccines and blood clotting, contributing to our 

understanding of vaccine safety and efficacy. It is important to recognize that certain 

individuals, such as those with immune suppression, may not be eligible for 

vaccination, underscoring the need for widespread immunity within the community. 

In this context, the findings of Arifin et al. (2020), which suggest that vaccination is 

crucial in reducing mortality risk, become particularly relevant. Despite a small 

minority not achieving full protection, the collective effect of vaccination significantly 

contributes to community immunity, protecting vulnerable individuals and advancing 

the broader public health goal of controlling infectious diseases. In Malaysia, the 

epidemic response exemplifies a dynamic and adaptive strategy, evolving from strict 

containment measures to vaccination-led mitigation and eventual endemic 

management. This transition was facilitated by strong government coordination, 

widespread public compliance, and the effective use of digital tools such as 

MySejahtera, which collectively addressed challenges and helped minimize the 

pandemic’s impact. 

In response to the detrimental consequences of COVID-19, particularly the 

mortality outcomes, this study aims to investigate the risk factors associated with 

COVID-19 mortality in Malaysia. Zamzuri et al. (2020) utilized the Chi-square test to 

compare the sociodemographic characteristics of COVID-19 patients. However, the 

study only considered 214 COVID-19 cases in the Seremban district during the early 

months of 2020. In this study, we employ machine learning models such as Logistic 

Regression, Naïve Bayes, Support Vector Machine, and Artificial Neural Network to 

determine the mortality occurrence among COVID-19 patients in Malaysia. We 

evaluate and compare the performance of these models using an original imbalanced 
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dataset and a balanced dataset achieved through downsampling. The aim is to identify 

key variables most strongly associated with COVID-19 survival in Malaysia. 

This study is significant as it identifies key demographic factors influencing 

COVID-19 survival, including nationality, regional distribution, age groups, gender, 

medical history, vaccine brands, and the number of vaccine doses. By employing a 

machine learning model with the highest predictive accuracy, it provides actionable 

insights to enhance public health strategies. These insights include tailoring vaccination 

campaigns to prioritize vulnerable populations such as older adults and those with 

chronic conditions, designing triage protocols to allocate critical resources like ICU 

beds and ventilators to patients with the highest risk of mortality, and developing 

targeted policies to ensure equitable distribution of healthcare resources across regions 

with varying infection rates and healthcare capacities. 

This paper is structured as follows: Section Ⅱ provides a review of related works 

on COVID-19 mortality and its prediction. Section Ⅲ discusses the statistical models 

in data mining and machine learning employed in this study, along with a description 

of the dataset used for the variables and the evaluation criteria for the models. Section 

Ⅳ presents the results and discussion derived from the exploratory data analysis and 

modelling. Finally, Section Ⅴ concludes the paper. 

2. Related works 

In 2020, the World Health Organization recognized COVID-19 as a pandemic 

because people could easily get infected through airborne transmission and high 

mortality rates. Studies indicate that over 85% of individuals with the disease are 

asymptomatic or have minor symptoms, while only 15% experience serious illness 

(10% with a case fatality rate of 15%) or critical conditions (5% with a case fatality 

rate of 50%). Globally, more than 3,750,000 confirmed cases and over 250,000 deaths 

reported across approximately 200 countries, territories, and areas (Eurosurveillance 

Editorial Team, 2020). The pandemic resulted in millions of deaths worldwide and has 

significantly increase the overall mortality rate. The mortality rate is influenced by 

various risk factors, and the impact varies across different regions. Zahid and Perna 

(2021) examine the highest number of cases, with Africa having the lowest number of 

COVID-19 cases. Mortality rates differ among the countries such as North America, 

Europe, South America, Africa, Oceania, and Asia, with the percentage of mortality 

rate generally below 4% based on daily cases ranging from 0 to 16,000 total cases. 

The mortality rate percentage has implications for both the health conditions of the 

citizen and the economy of the country. Furthermore, in Italy, a significant number of 

elderly COVID-19 patients die at home, which pose a challenge in accurately 

examining the actual risk factors of COVID-19 (Bhatraju et al., 2020). 

Furthermore, a study analyzing a sample of 25,935 individuals who died after 

being infected with COVID-19 revealed that most deaths (69.9%) occurred among 

individuals who had not received at least one dose of the vaccine. Partially vaccinated 

individuals accounted for 22.5% of the deaths, while a smaller proportion (7.5%) of 

fully vaccinated individuals experienced mortality (Arifin et al., 2021). These findings 

highlight the association between vaccination status and mortality rate, with 

unvaccinated individuals contributing the highest number of deaths. 
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Machine learning techniques have played a significant role in disease prediction 

and analysis, including in the context of COVID-19. Despite being a ‘the first of its 

kind’ disease, considerable research has been conducted on COVID-19 prediction 

using machine learning. Machine learning algorithms analyze large datasets and 

provide multiple potential solutions. However, their outputs must be carefully 

interpreted to avoid errors and misapplications in decision-making, particularly when 

predicting COVID-19 survival. Prior studies highlight the critical need to balance 

interpretability and accuracy in forecasting COVID-19 outcomes. For example, 

Pourhomayoun and Shakibi (2021) emphasized the importance of interpretability in 

supporting medical decision-making, while Yan et al. (2020) employed interpretable 

models to identify biomarkers predictive of mortality. These findings underscore the 

necessity for transparency and reliability in healthcare models. 

Ongoing contributions in this field have led to the development and utilization of 

various machine learning algorithms, such as Naive Bayes, Support Vector Machine 

(SVM), Logistic Regression, and Artificial Neural Network, for predicting and 

diagnosing diseases. These models have been employed to forecast the global impacts 

and trends of the COVID-19 outbreak.  

The Support Vector Machine (SVM) is a powerful machine learning method used 

for prediction, classification, and regression tasks, particularly for time-series data. 

SVM exhibits excellent generalization capabilities and is well-suited for handling 

limited data (Khan et al., 2019). It employs kernel functions to transform data from a 

low-dimensional space to a high-dimensional space, enabling the creation of 

hyperplanes that separate classes in higher dimensions (Ivanciuc, 2007). While online 

algorithms are commonly employed to track time-varying changes and time-lagging 

characteristics in system modelling (Rehman, 2021), the kernel function plays a 

crucial role in determining the training period for data computation. The four most 

used kernel types are linear, radial basis, polynomial, and sigmoid. A linear kernel is 

suitable for datasets that can be separated linearly, while radial basis kernels are 

effective for circularly separable distributions. 

When utilizing machine learning for outcome prediction, Naive Bayes is a 

straightforward and reliable technique. Many studies aim to select the best hypothesis 

(h) based on the available data (d). Naive Bayes is built upon Bayes’ Theorem, which 

provides a mechanism to determine the likelihood of a hypothesis given our prior 

information. The probability P(h|d) represents the likelihood of the hypothesis (h) 

being true, while P(d|h) represents the likelihood of the data (d) being true given the 

hypothesis. Additionally, P(h) represents the prior probability of hypothesis h, and 

P(d) represents the prior probability of data, d. By combining P(h) with P(d) and 

P(d|h), the posterior probability P(h|d) can be computed, which allows us to predict 

outcomes based on new data. Naive Bayes also provides a way to assess model 

uncertainty by considering the likelihoods of different outcomes, making it useful for 

both predictive and diagnostic tasks (Medhekar et al., 2013). 

On the other hand, when the dependent variable (target) is categorical, a statistical 

approach and machine learning algorithm called Logistic Regression is frequently 

employed to solve classification difficulties. Pierre Francois Verhulst defined three 

parameters and the curve that passed through them in a paper that was published in the 

Proceedings of the Belgian Royal Academy, describing the logistic function and its 
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characteristics (Delmas, 2004). Logistic Regression is simple and commonly used. 

The maximum likelihood estimation process is used to forecast binary classes using a 

statistical model. In Logistic Regression, the dependent variable has a Bernoulli 

distribution. The sigmoid or logistic function yields values between 0 and 1 and 

assumes a “S” form. The predicted value will be 1, however if the curve approaches 

negative infinity, the anticipated value will be 0.  

In a study by Yan et al. (2020), blood samples from 404 patients in Wuhan, China, 

were analyzed to discover disease-predictive biomarkers. The authors proposed a 

COVID-19 mortality prediction model based on artificial intelligence techniques. 

Artificial Neural Networks, Random Forest, Decision Tree, Logistic Regression, and 

K-Nearest Neighbor (KNN) algorithms were employed, and the model successfully 

classified deep features extracted from chest X-ray images of COVID-19 and 

Pneumonia patients using ResNet152. The model achieved an accuracy of 0.973 on 

Random Forest and 0.977 on XGBoost predictive classifiers (Kumar et al., 2020). 

Another machine learning-based model has been developed to predict mortality due 

to COVID-19 by identifying individuals with a higher sensitivity based on their unique 

genetic and physiological traits (Alimadadi et al., 2020). Assaf et al. (2020) developed 

a COVID-19 risk prediction model utilizing machine learning techniques such as 

Artificial Neural Networks, random forests, and regression trees, and they explored 

various interpretable model properties. 

In an attempt to forecast severe COVID-19 symptoms, Zhu et al. (2021) 

employed machine learning strategies, including a combined regression and 

classification algorithm. Their research achieved a prediction accuracy of 76.97% with 

a correlation coefficient of 0.524. Furthermore, Roland et al. (2020) utilized similar 

classification and regression techniques to analyze social media data and gather real-

time information on COVID-19 symptoms and demographic data in order to improve 

prediction accuracy. 

Prakash (2020) provided a brief overview of different machine learning 

techniques applied to COVID-19 datasets, focusing on determining the vulnerability 

of different age groups. The study compared the performance of eight alternative 

algorithms and found that Random Forest achieved the highest accuracy rate of 96% 

for COVID-19 prediction. De Souza et al. (2021) conducted a study using supervised 

machine learning methods such as Logistic Regression, linear discriminant analysis, 

Naive Bayes, k-nearest neighbors, decision trees, XGBOOST, and Support Vector 

Machine to identify patients at risk of experiencing severe COVID-19 symptoms 

early. The techniques were trained using a database from various social media 

platforms, including basic details of individuals such as gender, age range, symptoms, 

comorbidities, and recent travel history. The study reported an ROC area under curve 

(AUC) of 0.92, sensitivity of 0.88, and specificity of 0.82 for predicting disease 

outcomes. 

Pourhomayoun and Shakibi (2021) proposed an Artificial Intelligent (AI) model 

to assist hospitals and healthcare facilities in determining priority patients managing 

patient overload, and reducing wait times for necessary care. The study utilized 

machine learning techniques such as Support Vector Machine, Artificial Neural 

Network, Random Forest, Decision Tree, Logistic Regression, and K-Nearest 

Neighbor to predict the mortality rate of COVID-19 patients. They analyzed a dataset 
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of over 2,670,000 COVID-19 patients from 146 countries, including 307,382 labeled 

samples, and achieved an overall mortality rate prediction accuracy of 89.98%. 

Logistic Regression analysis revealed a significant association between mortality and 

a history of chronic diseases such as Hypertension (HTN) and Diabetes Mellitus (DM). 

Mollalo et al. (2020) highlighted the use of Artificial Neural Networks (ANNs) in 

simulating complex non-linear connections in structural epidemiology. The methods 

have been used in several disciplines, including epidemiology and public health 

(Kiang et al., 2006; Kawka et al., 2021; Mollalo et al., 2018), agriculture (Abdipour et 

al., 2019), finance (Bae, 2012), and environmental science (Marohasy and Abbot, 

2015). Recent studies focusing on machine learning algorithms for predicting survival 

in the context of the COVID-19 pandemic include Sharma et al. (2022), Andonov et 

al. (2023), and Sakagianni et al. (2023). A brief summary of the literature review from 

the main studies is presented in Figure 1. 
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Figure 1. Brief summary of main findings and limitations based on common themes in COVID-19 cases. 
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3. Methodology 

In this study, the secondary dataset is obtained from the Ministry of Health 

(MOH) through the GitHub website. The dataset is publicly shared and can be 

accessed at the following link: 

https://github.com/MoHMalaysia/covid19public/tree/main/epidemic/linelist. 

The dataset contains information on COVID-19 patients in Malaysia, including 

their demographics and medical histories. The data used in the analysis represents the 

daily confirmed cases of COVID-19 patients in Malaysia from 2020 to 2022. There 

are a total of 2,151,315 observations in the dataset, which represent all the recorded 

COVID-19 cases during that period. The dataset used in the study consists of 12 

variables that capture the demographic profile of COVID-19 patients. These variables 

include age, gender, region, comorbidities, nationality, and several other variables 

denoted as vaccine brands. Pfizer, AstraZeneca, Sinovac, no vaccine, and others are 

the four categories used to classify vaccine brands. All vaccine brands are analyzed 

for each of their respective doses, including dose 1, dose 2, and dose 3 (booster). The 

`Others’ category in this study includes unverified vaccine brands as well as vaccines 

from Cansino, Moderna, Sinopharm, and Janssen. Patients who have not received any 

vaccinations are categorized under the `no-vaccine’ category. The research flowchart 

is presented in Figure 2. In this study, all states in Malaysia have been classified into 

three regions: East Coast, West Coast, and East Malaysia. The West Coast region 

covers the states of Johor, Melaka, Negeri Sembilan, Selangor, Wilayah Persekutuan 

Kuala Lumpur, Wilayah Persekutuan Putrajaya, Perak, Perlis, Kedah, and Pulau 

Pinang. The East Coast region includes Kelantan, Terengganu, and Pahang. East 

Malaysia comprises Sabah, Sarawak, and Labuan. Patients with chronic diseases are 

categorized into Group 1 for the comorbidity’s variable, while those without any 

recorded chronic diseases are placed in Group 0. The target variable, survival, 

indicates whether the patient has survived due to COVID-19, where 1 represents 

survival and 0 represents death. Table 1 provides a summarized overview of the 

dataset, highlighting the variables, their descriptions, and the level of measurement for 

each attribute.  
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Figure 2. Research flowchart. 

In this study, the analysis was done using both balanced (down-sampling) and 

imbalanced (original) to select the best of dataset and make a decision of best model 

classifiers: Logistic Regression, Naïve Bayes, Support Vector Machine and, Artificial 

Neural Network. The dataset was split into two parts, with 70% allocated to the 
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training set and 30% to the validation set. Data analysis was conducted using 

RapidMiner Studio version 10.3.1, which is available at 

https://docs.rapidminer.com/latest/studio/. 

Table 1. Description of variables. 

Variable Description 
Scale of 

measurement 

Age  The age of COVID-19 patient is divided into 5 age groups Nominal 

Gender  Of COVID-19 patient, 1 denotes Male and 0 for female Nominal 

Nationality  
Nationality of COVID-19 patient, 1 denoted Malaysian, and 0 

denotes non-Malaysian  
Nominal 

Commodities  
COVID-19 patient with chronic disease is denotes as 1, and 0 for 

without chronic disease 
Nominal 

Brand vaccine 1 First dose of vaccine received by the COVID-19 patients  Nominal 

Brand vaccine 2 Second dose of vaccine received by the COVID-19 patients Nominal 

Brand vaccine 3 Booster dose of vaccine received by the COVID-19 patients Nominal 

Region  
Location of COVID-19 patients infected by the virus based on 

three regions  
Nominal 

Survival  
The survival of COVID-19 patients: 1 denotes survival, and 0 

denotes dead 
Binary 

3.1. Modelling 

3.1.1. Logistic Regression 

Logistic Regression (LR) is a type of classification algorithm that is used when 

the dependent variable is in binary format. Logistic Regression evaluates the 

relationship between the dependent variable (binary target) and the independent 

variables by estimating probabilities. Next, the attribute weights for each independent 

variable (attributes) are identified. The odds ratio produces the likelihood of the 

outcome when there is a constant effect on a predictor. A Logistic Regression can be 

written as: 

𝑃𝑖 =
1

1 + 𝑒−𝑧𝑖
 (1) 

where Pi represents the probability of survival, and z is the linear combinations of the 

predictor variables, are the model parameters. 

𝑧𝑖 = 𝛽0 + 𝛽1𝑋1𝑖
+𝛽2𝑋2𝑖

+ …  +𝛽𝑘𝑋𝑘𝑖
 

where: 

𝑋1 = { 
1, 𝐷𝑜𝑠𝑒1𝐴𝑧

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 𝑋2 = { 

1, 𝐷𝑜𝑠𝑒1𝑆𝑧
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑋3 = { 
1, 𝐷𝑜𝑠𝑒1𝑃𝑓

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑋4 = { 
1, 𝐷𝑜𝑠𝑒1𝑂𝑡

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 𝑋5 = { 

1, 𝐷𝑜𝑠𝑒2𝐴𝑧
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑋6 = { 
1, 𝐷𝑜𝑠𝑒2𝐴𝑧

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑋7 = { 
1, 𝐷𝑜𝑠𝑒2𝑃𝑓

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 𝑋8 = { 

1, 𝐷𝑜𝑠𝑒2𝑂𝑡
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑋9 = { 
1, 𝐵𝑜𝑜𝑠𝑡𝐴𝑧

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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𝑋10 = { 
1, 𝐵𝑜𝑜𝑠𝑡𝑆𝑧

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 𝑋11 = { 

1, 𝐵𝑜𝑜𝑠𝑡𝑃𝑓
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑋12 = { 
1, 𝐵𝑜𝑜𝑠𝑡𝑂𝑡

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑋13 = { 
1, 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 𝑋14 = { 

1, 𝑌𝑜𝑢𝑛𝑔𝐴
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑋15 = { 
1, 𝑀𝑖𝑑𝑑𝑙𝑒

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑋16 = { 
1, 𝑂𝑙𝑑𝐴

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 𝑋17 = { 

1, 𝑀𝑎𝑙𝑒
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑋18 = { 
1, 𝐶𝑜𝑚𝑜𝑟𝑏𝑖𝑑
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑋19 = { 
1, 𝑀𝑎𝑙𝑎𝑦𝑠𝑖𝑎𝑛
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑋20 = { 
1, 𝑊𝑒𝑠𝑡𝐶𝑜𝑎𝑠𝑡
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑋21 = { 
1, 𝐸𝑎𝑠𝑡𝐶𝑜𝑎𝑠𝑡
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

3.1.2. Support Vector Machine 

Next, this study used a Support Vector Machine (SVM) algorithm to identify a 

hyperplane that clearly divides the data points into different classes in an N-

dimensional space (N is the number of features). The hyperplane can be represented 

as: 

𝑤 × 𝑥 + 𝑏 = 0 (3) 

where w is the weight vector, x is the feature vector, and b is the bias. Multiple potential 

hyperplanes might be selected to divide the two classes of data points. The goal is to 

identify a plane with the largest margin, or the greatest separation between data points 

from both classes. To improve the classification accuracy of upcoming data points, the 

margin distance should be maximized. Support vectors are the data points nearest to 

the dividing line and they determine where and how this line is positioned. These 

points satisfy the conditions: 

w × 𝑥𝑝 + 𝑏 ≥ 1 

w × 𝑥𝑛 + 𝑏 ≤ −1 

where 𝑥𝑝 are support vectors from the positive class (Category A) and 𝑥𝑛 from the 

negative class (Category B). SVM was originally designed for numerical variables, 

but it can also automatically convert nominal data to numerical and normalize the input 

data before use. A and B here represent two categories in a target variable (dependent 

variable). SVM is utilized to segregate data points and determine the hyperplane for 

the target variable, coded as 0 for ‘survived’ and 1 for ‘not survived’, based on 

independent variables. The C parameter, denoting the margin, signals to the SVM 

optimizer the level of priority given to avoiding misclassification. A high C value 

results in choosing a hyperplane with a smaller margin, focusing on precise 

classification of training examples. Conversely, a lower C value prompts the selection 

of a hyperplane with a larger margin, accepting more misclassifications to ensure 

broader class separation. This balance, achieved by adjusting the C parameter, is 

instrumental in reducing misclassification while improving overall model efficacy. 

This method is effective for both linear and non-linear datasets, as it emphasizes clear 

differentiation between classes. The ideal hyperplane, marked by the maximum 

margin, is the one farthest from the nearest data points on either side. In RapidMiner, 

setting the C-value to zero in the SVM operator’s parameters is a tactic to minimize 

misclassification. 
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3.1.3. Naïve Bayes 

This study also employed The Naïve Bayes (NB) algorithm as it is the most 

popular and simple machine learning which is based on Bayes theorem: 

P(Z|Xi, … , X21)  =  
P(Xi, … , X21|Z)Pz

P(Xi, … , X21)
 (3) 

where 𝑃(𝑍|𝑋𝑖, … , 𝑋21)  represents the posterior probability of the target variable, 

where z represents the class of interest (survival), and are the predictor variables. 𝑃(𝑧) 

corresponds to the prior probability of survival which reflects the initial probability 

without considering any predictor information. 𝑃(𝑋𝑖 , … , 𝑋21|𝑍)  represents the 

likelihood, indicating the probability of observing the predictor variables given the 

survival outcome. 𝑃(𝑋𝑖 , … , 𝑋21)  represents the prior probability of the predictor 

variables, indicating the overall probability of observing the specific combination of 

predictor values. In this study, the theorem will be calculated automatically using the 

RapidMiner software. The Naïve Bayes operator in RapidMiner makes it easier to 

conduct calculations with a large number of observations in the dataset. 

3.1.4. Artificial Neural Network 

Artificial Neural Network (ANN) model is also considered in this study. ANN is 

a field of research that seeks to mimic and learn from the functioning of the human 

brain. The network consists of interconnected nodes, similar to neurons. However, the 

effectiveness of an ANN depends on the type and number of neurons it contains. A 

smaller number of neurons typically leads to higher performance of the system. In 

essence, a Neural Network algorithm aims to create a function that maps input data to 

the desired output. The concept of Artificial Neural Networks is inspired by how 

biological neural systems process information and learn to generate knowledge. The 

key aspect of this concept is the development of new structures for information 

processing. Figure 3 illustrates the architecture of the Artificial Neural Network. 

The neurons in a ANN are connected closely and organized into layers, including 

the input layer, hidden layer(s), and output layer. The input layer receives the data, and 

the output layer generates the results. Each connection between neurons has a 

connection weight, and each neuron has a threshold value and an activation function. 

The connection weights determine the significance or influence of each input on the 

neuron’s output. The weights can be positive or negative, affecting the strength of the 

signal transmitted through the connection. The output of a neuron is determined by the 

activation function applied to the weighted sum of its inputs, also known as the 

summing unit. The equation for a neuron’s output can be represented as: 

𝑂𝑗 = 𝑓 (∑(𝑊𝑖𝑗 × 𝑋𝑖)

𝑖

+ 𝑏𝑗) (4) 

where (𝑂𝑗) is the output of the j-th neuron, (𝑊𝑖𝑗) are the weights, (𝑋𝑖) are the input 

values, and (𝑏𝑗) is the bias. The activation function, 𝑓(), used is the Sigmoid function, 

as in (Equation (1)). For prediction and classification tasks, feed-forward neural 

networks trained using the Back Propagation algorithm, known as multilayer 

perceptron, are used. In this algorithm, each input feature, (𝑋𝑖), is multiplied by its 
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associated weight, (𝑊𝑖𝑗), and the weighted features are summed up along with a bias 

term, (𝑏𝑗). During the training process, the output of the weighted sum is passed 

through the activation function, to obtain the final output of the neural network. The 

difference between the predicted output and the desired output is then used to calculate 

the error. The error is then propagated back through the network, and the weights and 

biases are adjusted using gradient descent to minimize the error. By iteratively 

adjusting the weights and biases using the backpropagation of errors, the neural 

network can learn to better recognize patterns and make accurate predictions. 

 

Figure 3. Artificial Neural Network architecture. 

3.2. Model evaluation  

This stage of model evaluation aims to assess the best model for predicting patient 

survival based on overall performance metrics. 

Table 2 represents the confusion matrix, which is used to evaluate the 

performance of a machine learning model based on categorization. The confusion 

matrix provides a summarized table of accurate and inaccurate predictions made by 

the classifier. The accuracy value represents the percentage of correctly classified 

instances. In the confusion matrix, TP refers to True Positive, representing the correct 

classification of survival (Survival = 1, Dead = 0); TN stands for True Negative, 

representing the correct classification of non-survival; FP represents False Positive, 

indicating incorrect classifications; and FN denotes False Negative, indicating 

incorrect classifications. In addition to accuracy, this study will assess other 

performance metrics such as specificity, sensitivity, and precision. The formulas for 

these performance metrics are provided in Table 3. The performance of all predictive 

models, including LR, NB, SVM and ANN, will be discussed in the next section. 

Table 2. Confusion matrix. 

 
Actual 

Survival = 1 Dead = 0 

Predicted Survival = 1 True Positive (TP) False Positive (FP) 
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Dead = 0 False Negative (FN) True Negative (TN) 

 Recall Sensitivity  Specificity  

Table 3. Performance measurement. 

Performance Formulae 

Overall accuracy 
∑ 𝑇𝑃𝑖

𝑛
𝑖=1 + 𝑇𝑁𝑖

∑ 𝑇𝑃𝑖
𝑛
𝑖=1 + 𝑇𝑁𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖

 

Precision 
𝑇𝑃

∑ 𝑇𝑃𝑖 + 𝐹𝑃𝑖
 

Sensitivity 
𝑇𝑃𝑖

∑ 𝑇𝑃𝑖 + 𝐹𝑁𝑖
 

Specificity 
𝑇𝑁

∑ 𝑇𝑁𝑖 + 𝐹𝑃𝑖
 

4. Results and discussion 

4.1. Exploratory data analysis 

Through exploratory data analysis, this study discovered that out of 2,151,315 

COVID-19 patients, 2,114,483 have successfully recovered, whereas 36,831 

individuals have passed away. This significant disparity between the number of 

deceased and surviving patients highlights the existing class imbalance. To address 

this issue, two different types of experiments were conducted in this study. The first 

experiment examined the impact of imbalanced data, while the second experiment 

involved applying a down-sampling method to achieve a balanced dataset. The results 

obtained from both experiments were utilized to select a model with high-quality 

performance metrics, including accuracy, sensitivity, specificity, and other relevant 

measures. Table 4 provides a summary of patients based on the doses of the vaccine 

they have received, including the first dose, second dose, and third dose (booster). The 

data indicates that the majority of patients received Pfizer as their first dose of the 

vaccine, accounting for 43% of the total. Similarly, for the second dose, Pfizer was 

also the most common brand, with 41.3% of patients receiving it. Sinovac was the 

second-highest administered brand for both the first and second doses, with 30.6% and 

30.3% of patients receiving it, respectively. AstraZeneca and other vaccines were 

administered to a lower percentage of patients. As for the booster dose, approximately 

41% of patients received Pfizer, while the majority, 47.8%, did not receive a booster 

dose.  

Table 4. Descriptive statistics of vaccination brands based on frequency. 

Type of vaccine First dose Second dose Booster dose 

Pfizer  924281 (43%) 886380 (41.2%) 882580 (41%) 

AstraZeneca 232822 (10.8%) 231583 (10.8%) 155684 (7.2%) 

Sinovac  658062 (30.6%) 652881 (30.3%) 80963 (3%) 

Others  60330 (0.3%) 3769 (0.2%) 2537 (1%) 

4.2. Modelling results 
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In this section, the performance of different supervised machine learning models 

implemented in the study, namely LR, NB, SVM and ANN, will be discussed. These 

classifier algorithms were utilized to examine the relationship between demographic 

factors and the incidence of mortality related to COVID-19. By utilizing these 

classifier algorithms, the study aimed to gain insights into the demographic factors 

that contribute to COVID-19 mortality and provide a better understanding of the 

disease’s impact on different population groups. The evaluation of model performance 

will provide valuable information on the predictive capabilities of these algorithms in 

identifying individuals at higher risk of mortality, aiding in the development of 

targeted interventions and strategies for disease management. 

4.2.1. Logistic Regression 

In addition to addressing the objective, further discussions will focus on 

exploring the association between demographic factors and the survival due to 

COVID-19 in Malaysia. Table 5 shows the estimated model of Logistic Regression. 

• The odds of survival due to COVID-19 are 0.64 times lower in the West Coast 

compared to East Malaysia, while the East Coast shows no significant difference 

in the odds of survival compared to East Malaysia. 

• For patients that have comorbidities, the odds of survival due to COVID-19 is 

0.03 times lower than the odds of patients with no comorbidities. 

• The odds of survival due to COVID-19 for male patients are 0.66 times lower 

than for female patients with COVID-19. 

• For Malaysians, the odds of survival are 2.39 times higher than for non-

Malaysians 

• MiddleA refers to COVID-19 patients between the ages of 31 and 45, while OldA 

includes patients older than 45 years old. Both MiddleA and OldA exhibit odds 

of survival that are 0.001 and 0.01 lower, respectively, compared to infants with 

COVID-19. 

• Young adults have odds of survival 0.06 lower than infants with COVID-19, 

whereas children have odds of survival 2.01 higher than infants with COVID-19.  

• Among the different doses of vaccines received, only Dose1others, which 

represents patients who receive other brand doses of vaccine, shows a significant 

increase in the odds of survival. For Dose1Az (first dose of AstraZeneca), the 

odds of survival due to COVID-19 are 0.27 times lower than the odds of no 

vaccine. For Dose1Pf (first dose of Pfizer), the odds of survival are 0.94 times 

lower than the odds of no vaccine. Similarly, for Dose1Sv (first dose of Sinovac), 

the odds of survival are 0.5 times lower than the odds of no vaccine 

• However, the results differ for the second dose of the vaccine. For patients who 

have received the AstraZeneca brand vaccine, the odds of survival are 172 times 

higher than the odds of no vaccine. Sinovac shows the second highest odds of 

survival, with a 124 times higher rate, followed by Pfizer with 59 times higher, 

and other brands with a 32 times higher rate compared to no vaccine. 

• For patients who received a third dose (booster), the odds of survival also 

increase. Pfizer, Sinovac, and AstraZeneca show similar increases, with odds of 

survival approximately 13–14 times higher. Other brands demonstrate a 4 times 

higher rate of survival compared to no vaccine.  
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Table 5. Estimated model of Logistic Regression. 

Variable  Coef.  P-value Conclusion  Odd ratio 

Dose1Pf −0.06 0.695 Not significant 0.94 

Dose1Sv −1.90 0.000 Significant 0.50 

Dose1others 2.58 0.000 Significant 13.2 

Dose1Az −1.32 0.003 Significant 0.27 

Dose2Pf 4.07 0.000 Not significant 58.56 

Dose2Sv 4.82 0.000 Significant 123.97 

Dose2Az 5.15 0.000 Significant 172.43 

Dose2others 3.48 0.000 Significant 32.46 

Dose3Pf 2.64 0.000 Significant 14.01 

Dose3Sv 2.56 0.000 Significant 12.94 

Dose3 2.53 0.000 Significant 12.55 

Dose3others 1.47 0.063 Not significant 4.35 

Comorb −3.68 0.000 Significant 0.03 

OldA −6.63 0.000 Significant 0.001 

MiddleA −4.61 0.000 Significant 0.01 

YoungA −2.86 0.000 Significant 0.06 

Child 0.70 0.001 Significant 2.01 

Gender −0.42 0.000 Significant 0.66 

Nationality 0.87 0.000 Significant 2.39 

WestCoast −0.44 0.000 Significant 0.64 

EastCoast 0.02 0.801 Not significant 1.02 

Intercept  3.80 0.000 Significant  44.70 

4.2.2. Performances of Logistic Regression, Naïve Bayes, Support Vector 

Machine and Artificial Neural Network 

Table 6 displays the performance of each model for both balanced and 

imbalanced (in brackets) datasets. Using the imbalanced dataset, the Artificial Neural 

Network (ANN) achieved the highest accuracy of 98.95%, followed by Logistic 

Regression (LR) and Support Vector Machine (SVM) with equal accuracies of 96.9%, 

and Naïve Bayes (NB) with an accuracy of 86.62%. While accuracy is a widely used 

measure, it may not be the most suitable metric for imbalanced datasets. Therefore, 

this study addressed the imbalanced problem by employing down-sampling 

techniques. For the balanced dataset, the performance based on accuracy shows that 

ANN attained the highest accuracy of 94.9%, followed by LR with 94.57%, SVM with 

92.25%, and NB with 88.77%. In addition to accuracy, sensitivity is a crucial measure 

for predicting COVID-19-related survival (the positive class). In the case of the 

imbalanced dataset, ANN demonstrated the highest ability to predict survival with 

99.7%, followed by LR and SVM with equal sensitivities of 96.56%, and NB with a 

sensitivity of 86.53%. For the balanced dataset, SVM exhibited the highest sensitivity 

of 96.56%, followed by LR with 94.91%, ANN with 94.56%, and NB with 83.17%. 

On the other hand, specificity measures the ability of a model to accurately predict the 

negative class, which is COVID-19 survival. In the imbalanced dataset, most models 
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achieved a specificity of around 99%, with NB having the highest specificity of 

99.84%, followed by LR and SVM with 99.52%, and ANN with 99.24%. In the case 

of the balanced dataset, ANN demonstrated the highest specificity of 95.21%, 

followed by LR with 94.26%, NB with 93.66%, and SVM with 89.33%. 

Figures 4–11 show the AUC curve for all models. It measures the overall 

performance of a model across all possible classification thresholds. The red line in 

the ROC curve represents the false positive rate (1-specificity) on the X-axis and the 

true positive rate (sensitivity) on the Y-axis. It demonstrates the trade-off between 

these two rates as the classification threshold varies. On the other hand, the blue line 

represents the false positive rate (1-specificity) on the X-axis and the threshold values 

on the Y-axis. It illustrates the relationship between the false positive rate and the 

threshold values. The transparent regions around the mean values, plotted with a solid 

line, represent the standard deviation regions. These regions help visualize the 

variability or uncertainty associated with the performance metrics at different 

threshold values. The closer is the red line to the top-left corner of the plot indicates a 

model with higher sensitivity and lower false positive rate, indicating better 

performance. The AUC results indicate that the balanced dataset outperformed the 

imbalanced dataset in terms of distinguishing between mortality and survival instances 

for LR and SVM, while showing equal performance for ANN and NB. Both ANN and 

LR achieved the best performance with an AUC of 98.6%.  

After executing all predictive models and evaluating their performance on the 

imbalanced dataset and the balanced dataset (down-sampling), the results have helped 

the researchers in determining the best configuration for each algorithm. This optimal 

configuration aims to yield the highest possible results in addressing the objectives of 

this study, which involve identifying the best dataset and selecting the best predictive 

model for predicting the survival due to COVID-19. 

Table 6. Performance measures of LR, NB, SVM, and ANN on imbalanced (in 

brackets) and balanced datasets. 

Model/performance LR (%) NB (%) SVM (%) ANN (%) 

Accuracy 94.57 [96.94] 88.77 [86.62] 92.25 [96.94] 94.90 [98.95] 

Rank 
2 4 3 1 

[2] [3] [2] [1] 

Sensitivity  94.91 [97.36] 83.17 [86.53] 96.56 [97.36] 94.56 [99.70] 

Rank  
2 4 1 3 

[2] [3] [2] [1] 

Specificity  94.22 [72.92] 94.37 [92.27] 88.47 [72.92] 95.24 [56.00] 

Rank  
3 2 4 1 

[2] [1] [2] [3] 

Precision  94.26 [99.52] 93.66 [99.84] 89.33 [99.52] 95.21 [99.24] 

Rank  
2 3 4 1 

[2] [1] [2] [3] 

AUC 98.6 [97.30] 95.80 [95.80] 98.40 [97.30] 98.60 [98.60] 

Rank 1 3 2 1 
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[2] [3] [2] [1] 

 
Figure 4. AUC 97.3% Logistic Regression (imbalanced). 

 
Figure 5. AUC 98.6% Logistic Regression (balanced). 



Journal of Infrastructure, Policy and Development 2025, 9(1), 9877.  

20 

 

Figure 6. AUC 95.8% Naïve Bayes (imbalanced). 

 

Figure 7. AUC 95.8% Naïve Bayes (balanced). 

 
Figure 8. AUC 97.3% Support Vector Machine (imbalanced). 
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Figure 9. AUC 98.4% Support Vector Machine (balanced). 

 
Figure 10. AUC 98.6% Artificial Neural Network (imbalanced). 

 

Figure 11. AUC 98.6% Artificial Neural Network (balanced). 
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5. Conclusion 

The COVID-19 pandemic has reached an endemic stage as of 24 January 2023. 

This means that the virus is still spreading and infecting people, but the severity of the 

illness is significantly reduced. This shift is attributed to the high vaccination 

coverage, with approximately 84.2% of the global population having received at least 

two doses of the COVID-19 vaccine as of 6 October 2022. In Malaysia, the daily 

confirmed cases have plateaued since 1 January 2023, with an average of 460 cases 

over a seven-day period as of 11 January 2023. Hospital admissions for ventilated 

COVID-19 patients and COVID-19 patients in intensive care have also decreased 

since the beginning of the previous month. In conclusion, this study has successfully 

addressed all of its objectives. The first objective determined that the balanced dataset 

(down-sampling) yielded the best performance for the machine learning models 

compared to the imbalanced dataset (original dataset). The second objective identified 

several factors associated with the likelihood of survival due to COVID-19. We found 

that the odds of survival from COVID-19 are significantly lower in the West Coast of 

Malaysia, particularly in Selangor and Kuala Lumpur, compared to East Malaysia. On 

the other hand, the East Coast shows no significant difference in survival odds 

compared to East Malaysia. This discrepancy is believed to be attributed to the high 

population density in the West Coast, leading to a faster spread of COVID-19 and a 

higher number of reported cases. Malaysians exhibit significantly higher odds of 

survival compared to non-Malaysians, with the most affected non-Malaysians being 

those who migrated to work in various sectors within the community. In line with 

Arifin et al. (2021), our findings support the notion that the different doses of vaccines 

have varying impacts on the odds of survival. Some doses demonstrate higher odds of 

survival compared to no vaccine, while others show lower odds.  

Our results suggest that receiving the second dose of the vaccine is associated 

with improved survival rates. The analysis underscores the importance of completing 

the vaccination series by obtaining at least the second dose, as the first dose alone may 

not provide sufficient protection. This underscores the critical role of appropriate 

vaccine doses in enhancing the chances of survival during the COVID-19 pandemic 

and is instrumental in achieving herd immunity. This immunity reduces the disease’s 

spread, safeguarding individuals who cannot be vaccinated or are not yet immune, 

which leads to more people survive from COVID-19. 

In this study, we employed four different models; Artificial Neural Network 

(ANN), Logistic Regression (LR), Naïve Bayes (NB), and Support Vector Machine 

(SVM) for predicting COVID-19 survival, each with its own advantages and 

limitations. Logistic Regression was chosen for its simplicity and interpretability, 

especially in providing probabilities and odds ratios for survival outcomes. It 

effectively assessed relationships between binary survival outcomes and key 

demographic predictors such as age, gender, vaccination doses, and comorbidities. 

However, its linear assumptions can limit its ability to model non-linear relationships, 

making it less suitable for capturing the complexities in the data when compared to 

more advanced models like ANN. Naïve Bayes was utilized for its efficiency in 

handling categorical data, such as vaccine types and dose counts. This model was 

adept at calculating survival probabilities based on independent demographic 
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variables. However, it faces challenges with imbalanced datasets, and its assumption 

of feature independence may not always hold in real-world data, potentially affecting 

its performance. SVMs were included for their strong capability in modeling complex 

relationships between predictors, such as interactions between comorbidities and 

vaccination history. They have shown effective performance in many classification 

tasks. However, the computational intensity of SVMs, particularly when applied to 

large datasets, is a notable limitation, which can make them less efficient compared to 

ANN. The third objective achieved the selection of ANN as the best model classifier 

for predicting COVID-19 survival, with high-quality performance metrics such as 

accuracy (94.90%), sensitivity (94.56%) specificity (95.24%), precision (95.21%), 

and AUC (98.65%). The ability of ANN to capture complex, non-linear relationships 

was crucial, particularly in understanding the influence of factors like comorbidities 

and age on survival outcomes. Based on the ANN model, the most influential variables 

on survival patients of COVID-19 measured by using features weight revealed that 

comorbid and age are the most influential factors for COVID-19 survival. Our findings 

show that patients with comorbidities have significantly lower odds of survival 

compared to patients with no comorbidities. In contrast to newborns, people with 

COVID-19 who are 31 years of age or older have lower odds of survival. In 

comparison to female patients with COVID-19, male patients have significantly lower 

odds of survival. These findings align with those of Ahmad et al. (2021), Dessie and 

Zewotir (2021) and Zamzuri et al. (2020). 

The findings from this study offer valuable insights for health, economic, and 

social policy development, with actionable implications for healthcare systems. 

Policymakers can leverage these insights to design targeted vaccination campaigns, 

protect vulnerable populations, and strengthen healthcare infrastructure. Integrating 

these findings with machine learning models further enhances decision-making, 

particularly in resource-limited settings. Models such as LR, ANN and SVM highlight 

key demographic factors, enabling healthcare providers to prioritize high-risk patients 

like the elderly or those with comorbidities. By predicting mortality risks, these tools 

guide early interventions, optimize ICU bed allocation, and inform vaccination 

strategies in underserved areas. These combined efforts not only improve patient 

outcomes but also align with Malaysia’s broader development goals of building a 

resilient society and economy prepared for future public health challenges. 

This study has made significant contributions to understanding the global 

regional distribution and spread of COVID-19, underscoring the need for focused 

attention and care in managing the pandemic in densely populated areas. Our findings 

suggest that future research should explore the impact of geographic factors like 

humidity and temperature on COVID-19 transmission, both within urban settings and 

across different countries. Additionally, this research highlights the necessity for more 

detailed studies on various machine learning models tailored to specific national 

contexts, aiming to improve the accuracy of long-term predictive models.  

However, it is important to recognize the challenges encountered during this 

research, particularly in data processing due to the sheer volume of the dataset, which 

exceeds one million entries. This complexity was further compounded by the initial 

incompleteness of patient records, although the minimal proportion of missing values 

compared to the overall sample size allowed us to proceed with discarding incomplete 
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datasets without significantly impacting the study’s robustness. Despite these hurdles, 

the study’s findings pave the way for enhanced preparedness against potential future 

pandemics, taking into account the unpredictable nature of such events. 
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