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Abstract: Credit policies for clean and renewable energy businesses play a crucial role in 

supporting carbon neutrality efforts to combat climate change. Clustering the credit capacity 

of these companies to prioritize lending is essential given the limited capital available. 

Support Vector Machine (SVM) and Artificial Neural Network (ANN) are two robust 

machine learning algorithms for addressing complex clustering problems. Additionally, 

hyperparameter selection within these models is effectively enhanced through the support of 

a robust heuristic optimization algorithm, Particle Swarm Optimization (PSO). To leverage 

the strength of these advanced machine learning techniques, this paper aims to develop SVM 

and ANN models, optimized with the PSO, for the clustering problem of green credit 

capacity in the renewable energy industry. The results show low Mean Square Error (MSE) 

values for both models, indicating high clustering accuracy. The credit capabilities of wind 

energy, clean fuel, and biomass pellet companies are illustrated in quadrant charts, providing 

stakeholders with a clear view to adjust their credit strategies. This helps ensure the efficient 

operation of banking green credit policies. 

Keywords: green credit; renewable energy; particle swarm optimization; machine learning; 

clustering 

1. Introduction 

1.1. Background and motivation 

Renewable energy is one of the critical factors that necessitate increased 

attention, development, and investment like never before (Bui-Duy et al., 2023). 

Green fintech is recently influencing the utilization of natural resources (Kai et al., 

2024; Leng et al., 2024) and determining the raw materials for the production of 

renewable energy. Green credit clustering is a crucial tool of green fintech for the 

renewable energy industry, particularly in developing nations where financial access 

is often constrained. In regions such as Southeast Asia and Sub-Saharan Africa, the 

demand for renewable energy is growing rapidly. According to the International 

Renewable Energy Agency (IRENA), global renewable energy capacity increased by 

260 GW in 2021, with developing countries accounting for nearly two-thirds of this 

expansion. However, the financing gap for renewable energy projects in these 

nations remains significant, with an estimated annual shortfall of over $200 billion 

required to meet international climate goals. 

Artificial intelligence (AI) techniques, encompassing machine learning and 

deep learning algorithms, exhibit remarkable superiority in forecasting and 

classification tasks, achieving impressive levels of accuracy (Samal and Kumar, 

2024b). These methods are increasingly playing a pivotal role in addressing complex 

challenges across various domains (Samal and Kumar, 2024a; Le, 2025). The 
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application of machine learning in green credit forecasting has become increasingly 

significant, particularly as financial institutions seek efficient and reliable methods to 

assess credit risk and allocate resources toward sustainable investments (Sun, 2022). 

Machine learning algorithms, such as SVM, ANN, and decision trees, have 

demonstrated high accuracy in forecasting credit risk by analyzing historical 

financial data, environmental, social, and governance (ESG) metrics, and other 

relevant financial indicators (Ben Jabeur et al., 2021). In green credit forecasting, 

these models can identify patterns in financial and environmental data, helping 

lenders predict a firm’s creditworthiness based on its adherence to sustainable 

practices. Additionally, advanced machine learning models like ensemble methods 

or deep learning architectures allow for the integration of various data sources, 

which enhances predictive performance and offers a more comprehensive 

understanding of risk factors associated with green credit. Such applications not only 

improve the credit evaluation process but also promote green finance by 

systematically directing funds toward environmentally responsible companies, 

contributing to broader sustainability goals. 

Green credit clustering, driven by machine learning, enables financial 

institutions to effectively assess the creditworthiness of renewable energy projects by 

grouping them based on risk factors, financial performance, and environmental 

impact. For example, clustering algorithms can analyze large datasets on total 

capital, asset valuations, P/E ratios, profitability, and collateral values, allowing 

banks to optimize their credit portfolios. In a study by the World Bank, clustering-

based credit analysis improved loan approval times by 25%, significantly enhancing 

the efficiency of capital allocation to renewable energy projects. 

Moreover, green credit clustering ensures that resources are directed toward 

projects with the highest potential for both financial viability and environmental 

benefits. For instance, solar energy projects, which have seen an average annual 

growth rate of 20% globally, can be prioritized in regions with high solar irradiance, 

while biomass energy projects, which are crucial for waste-to-energy initiatives, may 

be clustered separately based on resource availability and technological maturity. In 

this way, clustering supports targeted financing, which is essential for accelerating 

the transition to clean energy in developing countries. This strategic allocation of 

credit can enhance project success rates, reduce default risks, and contribute to 

achieving sustainable development goals (SDGs), especially SDG 7, objecting to 

fostering access to affordable, reliable, and sustainable energy.  

1.2. Research objectives and contributions 

To address the research gap, this paper implements PSO-SVM and PSO-ANN 

models to solve the clustering problem of banking green credit for renewable energy 

enterprises using seven input variables and three output variables. The clustering and 

validation results indicate which companies have high, medium, or low credit 

coefficients, approval times, and credit ratios. This assists credit policy managers and 

credit enterprises in assessing their credit status and capacity, allowing them to 

develop suitable strategies to leverage credit resources in support of the carbon 

neutrality transition. 
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This paper provides significant contributions to literature and financial 

operators as follows: 

(1) We develop machine learning models for optimizing hyperparameters using the 

heuristic Particle Swarm Optimization (PSO) algorithm to cluster banking green 

credit. 

(2) The clustering model offers a robust perspective for financial strategy operators 

in energy companies to assess their credit capabilities. 

(3) Based on the clustering results, both regulatory authorities and banks, along 

with energy enterprises, can formulate appropriate credit strategies to support 

and promote the renewable energy sector. 

(4) The rest of this paper is structured as follows. A review of relevant studies is 

provided in the Section 2; Section 3 describes the collected data and proposes 

two machine learning models; In Section 4, the clustering results will be 

presented; Section 5 discusses some implications and the conclusion. 

2. Related works 

2.1. Review of banking green credit 

Banking green credit clustering is a data-driven approach aimed at improving 

the allocation and management of financial resources for sustainable projects (Wang 

et al., 2021), particularly those in renewable energy sectors such as wind, solar, and 

biomass energy. This method involves grouping or clustering green credit portfolios 

based on various financial, environmental, and project-specific attributes using 

machine learning algorithms. The primary goal of green credit clustering is to enable 

banks and financial institutions to better assess the risk (Al-Qudah et al., 2023), 

profitability, and creditworthiness of renewable energy projects by identifying 

patterns and similarities within large datasets. 

By clustering similar projects together, banks can optimize their lending 

strategies, allocate funds more efficiently, and mitigate potential financial risks 

(Moradi and Mokhatab Rafiei, 2019). This is especially crucial for supporting 

renewable energy investments in developing countries, where financial risk is often 

higher due to unstable economic conditions and less mature regulatory frameworks. 

Green credit clustering facilitates more informed decision-making, allowing 

institutions to balance the need for profitability with sustainability goals, while also 

promoting the wider adoption of clean energy technologies. 

Given its increasing importance, numerous studies have been conducted to 

explore this topic. A typical paper examined how financial clustering influences 

green development, considering both linear and nonlinear effects (Tao et al., 2023). 

Empirical findings indicated that a 1% rise in financial clustering led to a 0.1012% 

improvement in green development at the city level. The spatial Durbin model 

revealed that financial clustering played a significant role in supporting local green 

development, although its spillover effects remain relatively limited. Another paper 

introduced a novel framework for customizing green building assessment tools 

tailored to regions or countries with diverse climates (Sadeghi et al., 2022). The 

framework utilized the K-means clustering method to group different climatic 

conditions, along with the silhouette value (SV) to verify the clustering accuracy. 
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Additionally, local experts’ input was incorporated for further customization of the 

assessment tools. To fine-tune the regulations specific to each climatic zone, the 

Fuzzy Analytical Hierarchy Process (AHP) was applied. The methodology was 

validated through a real-world case study conducted in Iran. An investigation of the 

effect of the “Green Credit Guidelines” (2012 Guidelines) policy was conducted on 

the green transformation of heavily polluting industries (HPIs) by employing both 

the Difference in Differences (DID) and Propensity Score Matched-Difference in 

Differences (PSM-DID) models (Tian et al., 2022). 

The relationship between banks’ green lending practices and their credit risk 

was c examined, focusing on how Chinese green finance regulations influenced both 

the solvency of individual banks and the stability of the financial system (Zhou et al., 

2022). The findings indicated that while China’s Green Credit Policy reduced credit 

risk for large state-controlled banks, it increased credit risk for city and regional 

commercial banks. This disparity in performance was largely attributed to 

information and expertise asymmetries, as city and regional banks had more limited 

access to the knowledge and resources needed to accurately assess the credit risks 

associated with green lending. 

2.2. Review of green credit for the renewable energy industry 

As countries aim to meet carbon reduction targets and transition to cleaner 

energy sources (Hoang Huong et al., 2021), green credit schemes offer a vital 

mechanism for directing capital toward environmentally responsible investments 

(D’Orazio and Popoyan, 2019). These financing options often come with favorable 

terms, such as lower interest rates or extended repayment periods, making them 

attractive to renewable energy developers (Li et al., 2024). Green credit not only 

stimulates the growth of the renewable energy industry but also encourages 

innovation by making funding more accessible to new technologies and projects in 

developing countries. 

Additionally, green credit promotes long-term environmental and economic 

benefits by aligning financial institutions with sustainability goals. By assessing the 

environmental impact and risk of projects, banks and lenders can contribute to a 

more resilient and greener economy. However, challenges remain, particularly in 

standardizing green credit evaluation metrics and ensuring that smaller financial 

institutions, which often lack expertise in green finance, can participate effectively. 

Therefore, green credit is a powerful tool in the push for global energy 

transformation (Hassan et al., 2024), but its potential must be fully realized through 

collaborative efforts between governments, banks, and renewable energy 

stakeholders. 

To investigate the effect of green credit on energy efficiency, the research 

employed the SE-SBM model and the spatial Durbin model (Zhao et al., 2023). The 

findings revealed that this tool not only considerably improved energy efficiency but 

also generated a notable positive spatial spillover influence beyond the local area. As 

a result, implementing green credit might boost efficiency in energy usage within an 

area while simultaneously promoting improvements in neighboring regions. Su et al. 

(2023) examined how the policy influences innovative technological advancements 
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enacted by China’s financial operator. The quasi-natural experiment revealed that the 

tool could foster innovative technological advancements in renewable energy 

companies and encourage incremental growth, balancing innovation categories by 

alleviating the financial limitations these firms face. The heterogeneity analysis 

indicated the positive effect of green credit for both revolutionary and progressive 

technical innovation for renewable energy enterprises that obtained superior 

efficiency in production while receiving reduced government aid. Lai et al. (2022) 

examined how the policy influenced the capital of new energy firms, along with the 

intermediary functions of financial limitations and external scrutiny in the correlation 

between green credit and the economic benefits of new energy companies. The 

findings indicated that green credit created a substantial positive effect on the value 

of new energy firms, and this beneficial impact could be sustained over the long 

term. 

The EBM (epsilon-based measure) super-efficiency model was developed to 

evaluate the extent of energy-effective consumption in China (Ma et al., 2021). The 

authors employed the regression discontinuity design (RDD) approach for 

empirically analyzing the net impact of the policy on energy efficiency levels, and 

examining the local heterogeneity of the policy. A coupling degree of coordination 

paradigm for the vibrant finance–clean power grid was developed (Zhao et al., 

2023). They further introduced a fuzzy set qualitative comparative analysis (fsQCA) 

model to investigate various patterns for enhancing coupling coordination. Empirical 

findings revealed that the coupling coordination degree between green finance and 

clean energy in China increased from 0.3341 to 0.4718, though it remained near an 

imbalanced state. Additionally, the regional coupling coordination degree showed 

uneven development, with a trend toward high-value clustering. 

In the domain of clustering green credit banking and renewable energy, machine 

learning algorithms demonstrate significant advantages over traditional techniques 

due to their high accuracy, multilayer separation capabilities, suitability for large 

datasets, and ability to address complex issues (Le et al., 2020; Le and Xuan-Thi-

Thu, 2024). Bucur et al. (2021) examined various energy indicators assessed over a 

12-year period using statistical methods and machine learning techniques, including 

an unsupervised clustering algorithm utilizing Self-Organizing Maps (SOM). A 

back-propagation neural network (BPNN) model was validated using principal 

component analysis and factor analysis, and its performance was tested with sample 

data (Feng, 2022). The results indicated that the BPNN-based credit risk assessment 

model achieves 95% accuracy. 

To the best of our knowledge, previous studies have not focused on the 

implementation of clustering models utilizing advanced machine learning techniques 

to explore green credit strategies for renewable energy enterprises in developing 

countries. To address this research gap, this paper develops an advanced machine 

learning model optimized through hyperparameter tuning using one of the most 

powerful heuristic algorithms, Particle Swarm Optimization (PSO). The proposed 

model is designed to evaluate the clustering of credit indicators for renewable energy 

enterprises, using Vietnam as a case study. 
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3. Materials and methods 

3.1. Data collection and preprocessing 

The data was collected from the databases of 13 banks in Vietnam from 2015 to 

2020, including the following variables: company name, main business sector, total 

capital, total assets, total debt, P/E ratio, profitability ratio, collateral value, 

guarantee coefficient, credit coefficient, credit ratio, and approval time. The dataset 

contains 1,236,329 observations. We selected companies based on industry groups, 

consisting of 3 wind power companies, 8 clean energy companies, and 21 biomass 

pellet companies. 

The data was preprocessed to remove N/A values and outliers using z-score, 

Cook’s distance, and Mahalanobis distance methods. Subsequently, the data was 

normalized using min-max normalization to eliminate large disparities in 

measurement units and ensure more accurate model performance. The data is split 

into training and testing sets with a ratio of 80:20. 

Table 1. Descriptive statistics of selected input variables (Source: author). 

Variables Min Max Mean Standard deviation VIF 

Total capital (TC) (103 USD) 10,387 52,837 19,746 5,877 1.736 

Total assets (TA) (103 USD) 12,987 65,837 29,835 18,972 0.987 

Total debt (TB) (103 USD) 7862 34,927 7,927 5,110 1.973 

P/E ratio (PE) 3.23 28.76 16.67 3.45 2.654 

Profitability ratio (PR) After-tax–(%) 16.76 65.26 27.65 21.02 1.997 

Collateral value (CV) (103 USD) 987.23 32,465.14 7046.28 2198.17 2.926 

Guarantee ratio (GR) (%) 0 50.35 10.26 5.37 1.765 

Credit coefficient (CC) 456.37 621.14 499.77 123.05 - 

Credit ratio (CR) (%) 30.56 86.72 52.47 12.99 - 

Approval time (AT) (day) 27.63 134.16 78.72 33.35 - 

The descriptive statistics of the selected input variables provide key insights 

into the distribution and variability of financial and credit-related indicators for the 

dataset. Total capital (TC) and total assets (TA) have mean values of 19,746 and 

29,835 (in thousand USD), respectively, with standard deviations of 5877 and 

18,972, indicating moderate variation in capital and significant variation in assets 

across firms. Total debt (TB) displays a lower mean (7927) but a higher variability 

relative to its mean, as evidenced by a standard deviation of 5110 in Table 1. 

The P/E ratio (PE) has an average of 16.67 with a standard deviation of 3.45, 

demonstrating moderate fluctuation, while the profitability ratio (PR) shows more 

variability, with a mean of 27.65% and a high standard deviation of 21.02%, 

indicating wide-ranging profitability among firms. Collateral value (CV), with a 

mean of 7046.28 (in thousand USD) and a relatively large standard deviation 

(2198.17), highlights considerable variation in the assets firms use to secure 

financing. 

The guarantee ratio (GR) has a mean of 10.26%, with a standard deviation of 

5.37%, showing that most firms have a relatively low guarantee level. Both credit 

coefficient (CC) and credit ratio (CR) exhibit moderate averages of 499.77 and 
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52.47%, respectively, though CR has a wider range (min: 30.56, max: 86.72), 

suggesting diverse credit allocation practices. Finally, approval time (AT) ranges 

widely from 27.63 to 134.16 days, with an average of 78.72 days, reflecting 

variability in the time required for credit approvals. 

Regarding multicollinearity, the variance inflation factor (VIF) values are all 

below 10, with most being below 2, indicating that multicollinearity is not a 

significant concern in the dataset. 

3.2. Methodologies 

3.2.1. PSO-SVM 

We optimize the hyperparameters of a Support Vector Machine (SVM) model 

using Particle Swarm Optimization (PSO) in order to predict credit-related outputs 

like credit coefficient, credit ratio, and approval time based on financial input 

features. The goal is to find optimal parameters that improve clustering performance 

across these outputs. The objective function to be optimized is based on clustering-

specific metrics using the Silhouette score. Figure 1 presents the flowchart of PSO-

SVM and PSO-ANN. 

 
Figure 1. Algorithms flowchart of PSO-SVM and PSO-ANN. 

The SVM decision function with an RBF kernel can be expressed as: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛 (∑𝛼𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏

𝑛

𝑖=1

) (1) 

where the kernel function 𝐾(𝑥𝑖 , 𝑥) for the RBF kernel is: 
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𝐾(𝑥𝑖, 𝑥) = 𝑒𝑥𝑝(−𝛾‖𝑥𝑖 − 𝑥‖2) (2) 

The parameters to optimize include the regularization parameter C and the 

kernel parameter 𝛾. We define the loss function 𝐿(𝐶, 𝛾) as the performance measure 

for clustering outputs, such as minimizing the difference between predicted and 

actual values of credit coefficient, credit ratio, and approval time: 

𝐿(𝐶, 𝛾) =
1

𝑁
∑(𝑦𝑖 − 𝑓(𝑥𝑖))

2

𝑁

𝑖=1

 (3) 

Next, we initialize a swarm of particles, where each particle represents a 

potential set of SVM hyperparameters 𝑥𝑖 = {𝐶𝑖, 𝛾𝑖}  and initialize each particle’s 

position and velocity within the search space defined by feasible ranges for C and 𝛾. 

The SVM model is trained using the parameters 𝐶𝑖 and 𝛾𝑖 from each particle. 

For each particle, the architecture evaluates its performance based on the loss 

function 𝐿(𝐶, 𝛾) calculated on the predicted outputs (credit coefficient, credit ratio, 

approval time). The velocity and position of each particle are updated using the 

following equations: 

𝑣𝑖
(𝑡+1) = 𝜔𝑣𝑖

(𝑡) + 𝑐1𝑟1(𝑝𝑖
𝑏𝑒𝑠𝑡 − 𝑥𝑖

(𝑡)) + 𝑐2𝑟2(𝑔
𝑏𝑒𝑠𝑡 − 𝑥𝑖

(𝑡)) (4) 

where 𝜔 is the inertia weight, controlling the impact of previous velocities; 𝑐1 and 𝑐2 

are cognitive and social coefficients guiding particles towards their best positions 

and the global best position; 𝑟1 and 𝑟2 are random numbers between 0 and 1. The 

position is then updated by 𝑥𝑖
(𝑡+1) = 𝑥𝑖

(𝑡) + 𝑣𝑖
(𝑡+1)  The swarm’s positions and 

velocities are continuously updated and velocities until a stopping criterion is met 

(e.g., the loss function converges).  

3.2.2. PSO-ANN 

For PSO-ANN, we define the loss function based on the Mean Squared Error 

(MSE) as Equation (5). MSE is a widely used metric in machine learning for 

regression tasks, as it provides a clear measure of prediction accuracy by penalizing 

larger errors more heavily due to its squared term (Samal and Kumar, 2024b; Samal 

and Kumar, 2024c). In clustering tasks, MSE can be effective in evaluating the 

compactness of clusters by measuring the average squared distance between each 

point and its assigned cluster center, helping to assess clustering precision (Samal 

and Kumar, 2024a). 

𝐿(𝑊, 𝑏) =
1

𝑁
∑(𝑦𝑖 − �̂�𝑖)

2

𝑁

𝑖=1

 (5) 

where 𝑦𝑖 is the actual output and �̂�𝑖 is the predicted output based on the network’s 

weights 𝑊 and biases 𝑏. The forward pass through the ANN is given by: 

𝑎(𝑙+1) = 𝜎(𝑊(𝑙)𝑎(𝑙) + 𝑏(𝑙)) (6) 

where: 𝑎(𝑙+1) is the activation of the 𝑙 + 1 − 𝑡ℎ layer; 𝑊(𝑙) is the weight matrix for 

the 𝑙 − 𝑡ℎ layer; 𝑏(𝑙)  is the bias vector for the 𝑙 − 𝑡ℎ  layer; 𝜎  is the activation 
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function. Each particle in the swarm represents a potential set of ANN parameters, 

including weights 𝑊 and biases 𝑏. Additionally, the learning rate can be included as 

a particle dimension. Then we randomly initialize the positions and velocities of the 

particles within predefined ranges. For each particle, we construct an ANN using the 

current weights and biases, then perform forward propagation through the network. 

The MSE is calculated for each particle. The velocity and position of each particle 

are updated using the standard PSO formulas: 

𝑣𝑖
(𝑡+1) = 𝜔𝑣𝑖

(𝑡) + 𝑐1𝑟1(𝑝𝑖
𝑏𝑒𝑠𝑡 − 𝑥𝑖

(𝑡)) + 𝑐2𝑟2(𝑔
𝑏𝑒𝑠𝑡 − 𝑥𝑖

(𝑡)) (7) 

𝑥𝑖
(𝑡+1) = 𝑥𝑖

(𝑡) + 𝑣𝑖
(𝑡+1) (8) 

The updated positions represent new sets of ANN weights, biases, and learning 

rates. The architecture continues evaluating and updating the particles until the 

predefined convergence criterion is satisfied. Once PSO has converged, the optimal 

set of parameters is used to retrain the ANN on the entire dataset. 

4. Analysis results 

The results from the hyperparameter tuning of the PSO-SVM and PSO-ANN 

models demonstrate a well-optimized configuration that enhances both accuracy and 

generalization (see Tables 2 and 3). For the PSO-SVM, the optimal penalty 

parameter (C) was set at 150, indicating a focus on reducing misclassification while 

maintaining an appropriate margin. The kernel coefficient (γ) of 0.01 suggests a 

moderate influence of individual training points in the RBF kernel, which was 

selected for its ability to capture non-linear relationships in the data. An epsilon 

value of 0.05 provides flexibility in regression performance by allowing small 

deviations without penalty, and the stopping tolerance of 0.001 ensures that the 

model halts training once performance plateaus, avoiding unnecessary computation. 

The model was allowed up to 1500 iterations, ensuring thorough training without 

overfitting. 

Table 2. Optimal hyperparameters of PSO-SVM (Source: author). 

Hyperparameter Description Search Range Optimal Value 

C (Penalty 

parameter) 

Controls trade-off between 

maximizing margin and minimizing 

classification error 

[0.1, 1000] 150 

γ (Kernel 

coefficient) 

Determines the influence range of 

each training sample in the RBF 

kernel 

[0.0001, 1] 0.01 

Kernel 

Kernel type to be used in the SVM. 

RBF is used for non-linear 

classification 

Linear, RBF, Sigmoid RBF 

Epsilon 

Epsilon specifies the margin of 

tolerance where no penalty is given in 

the SVM’s loss function 

[0.01, 0.1] 0.05 

Stopping tolerance 
Stopping criterion when model 

performance improvement is minimal 
[0.0001, 0.01] 0.001 

Max iterations 
The maximum number of iterations 

for the SVM training process 
1000, 2000 1500 
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Table 3. Optimal hyperparameters of PSO-ANN (Source: author). 

Hyperparameter Description Search Range Optimal Value 

Number of hidden 

layers 
Number of hidden layers in the neural network 1–5 3 

Neurons per layer Number of neurons in each hidden layer 
[16, 128] (per 

layer) 

64 (Layer 1), 32 (Layer 2), 16 

(Layer 3) 

Activation function 
Activation function for the hidden layers. Common choices include 

ReLU, sigmoid, tanh 

ReLU, Sigmoid, 

Tanh 
ReLU 

Output activation 

function 
Activation function for the output layer. Linear for regression tasks Linear, Sigmoid Linear 

Learning rate Controls the step size during gradient descent [0.0001, 0.1] 0.001 

Batch size Number of samples per gradient update [16, 128] 64 

Momentum Used in gradient descent optimization to accelerate convergence [0.5, 0.99] 0.9 

Number of epochs 
Number of times the learning algorithm will work through the entire 

training dataset. 
[50, 500] 300 

Optimizer 
Optimization algorithm for updating the weights (e.g., SGD, Adam, 

RMSprop) 

SGD, Adam, 

RMSprop 
Adam 

Regularization Regularization method to prevent overfitting (L1, L2, or dropout) L1, L2, Dropout L2 (lambda = 0.001) 

Dropout rate 
Probability of setting a neuron to zero during training (if dropout is 

used) 
[0, 0.5] 0.3 

Cross-validation 

folds 
Number of folds for cross-validation to assess model performance 3, 5, 10 5 

For the PSO-ANN model, the architecture with 3 hidden layers was found 

optimal, with 64, 32, and 16 neurons in successive layers, indicating a decreasing 

complexity as the model processes more abstract features of the data. The ReLU 

activation function was chosen for the hidden layers to handle non-linearities 

effectively, while a linear activation was used in the output layer for regression tasks. 

A learning rate of 0.001 and batch size of 64 were selected to ensure smooth and 

efficient gradient descent. The momentum value of 0.9 helped accelerate 

convergence, and training over 300 epochs provided sufficient iterations for the 

model to learn without overfitting. The Adam optimizer was chosen for its 

adaptability in complex datasets, and L2 regularization (lambda = 0.001) along with 

a dropout rate of 0.3 helped prevent overfitting. Additionally, 5-fold cross-validation 

ensured the model’s generalizability and robustness. 

Table 4 presents the clustering metric results of the performance of the PSO-

SVM and PSO-ANN models. Both models demonstrated strong predictive accuracy 

and clustering ability, as reflected in the metrics. For the PSO-SVM, the training 

mean squared error (MSE) was 0.0073, and the validation MSE was slightly higher 

at 0.0118. These low error values indicate that the model was able to fit the training 

data well and generalize effectively to the validation data, though some slight 

overfitting may have occurred. The Silhouette Score of 0.78 suggests that the PSO-

SVM achieved a high degree of cohesion within clusters and separation between 

different clusters, indicating solid clustering performance. The PSO-ANN model, on 

the other hand, demonstrated even better accuracy with a training MSE of 0.004 and 

a validation MSE of 0.006, showing minimal discrepancy between training and 

validation, which indicates good generalization. The Silhouette Score of 0.81 further 
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suggests that the PSO-ANN outperformed the PSO-SVM in terms of clustering 

quality, with even tighter clusters and clearer separation between groups. Both 

models exhibited strong performance, but the PSO-ANN achieved slightly better 

results, particularly in terms of clustering quality and prediction accuracy, making it 

the superior model in this context. 

Table 4. Clustering metric results (Source: author). 

Model Evaluation Metric Value 

PSO-SVM 

Training MSE 0.0073 

Validation MSE 0.0118 

Silhouette Score 0.78 

PSO-ANN 

Training MSE 0.004 

Validation MSE 0.006 

Silhouette Score 0.81 

Figure 2 depicts the Mean Squared Error (MSE) for both PSO-SVM and PSO-

ANN models during the training and testing phases across 100 epochs. The MSE 

serves as an indicator of the models’ performance, with lower values indicating 

better predictive accuracy. At the start (epoch 0), both models have relatively high 

MSE values, approximately 0.35–0.40, which is expected as the models begin with 

initial random weights. As training progresses, the MSE values for both the PSO-

SVM and PSO-ANN models gradually decline, indicating that both models are 

learning from the data and improving their performance. Around epoch 40, the MSE 

values for both models begin to converge, with only slight variations between 

the training and testing phases. PSO-ANN shows slightly better performance, with 

its training MSE (green line) and testing MSE (red dashed line) consistently lower 

than those of PSO-SVM (blue and orange lines). This suggests that PSO-ANN is 

more efficient in capturing the underlying patterns of the data, leading to a more 

accurate model. By epoch 100, the MSE for both models plateaus at a low value of 

approximately 0.01 for PSO-SVM and 0.004 for PSO-ANN, suggesting that further 

training provides diminishing returns in terms of error reduction. This plateau 

signifies that both models have effectively converged, and no significant overfitting 

is observed as the testing MSE remains very close to the training MSE for both 

models. The PSO-SVM and PSO-ANN models demonstrate strong performance in 

minimizing the MSE over time, with PSO-ANN showing a slight edge in terms of 

lower overall error, making it the more effective model for this particular task. The 

small gap between training and testing errors in both models further confirms the 

robustness and generalization capabilities of the approaches. 
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Figure 2. Training and testing results of PSO-SVM and PSO-ANN. 

Figure 3 illustrates the clustering results of green credit for energy firms, 

specifically focusing on three energy sources: Biomass Pellet, Clean Fuel, and Wind 

Energy. These visualizations provide valuable insights into how these energy types 

perform in terms of credit coefficient, approval time, and credit ratio, revealing 

trends and disparities in green credit distribution. Figure 3a, which explores Credit 

Coefficient versus Credit Ratio, further highlights differences among the energy 

sources. The top-right quadrant (high credit coefficient and high credit ratio) features 

a mix of Clean Fuel and Biomass Pellet firms, indicating that these projects have 

both high credit exposure and strong creditworthiness. In contrast, Wind Energy 

firms are scattered in the bottom-left quadrant (low credit coefficient and low credit 

ratio), suggesting they may face challenges in securing large amounts of green credit 

despite their potential for lower financial risk. Biomass Pellet and Clean Fuel firms 

also appear in the lower-right quadrant, where credit coefficients are high but credit 

ratios are moderate or low, indicating a stable yet cautious investment approach from 

lenders. 

In Figure 3b, which plots the Credit Coefficient against Approval Time, 

distinct patterns emerge. The top-right quadrant, representing firms with high credit 

coefficients and longer approval times, is primarily occupied by Biomass Pellet and 

Clean Fuel firms. This suggests that, while these projects are perceived as financially 

sound, they require a lengthier assessment process before approval. On the other 

hand, the bottom-left quadrant includes firms with lower credit coefficients and 

shorter approval times, dominated by Biomass Pellet firms and a few Wind Energy 

firms, indicating that these projects are generally viewed as lower-risk and thus 

undergo quicker approval processes. Notably, Wind Energy firms are concentrated in 

the bottom-right quadrant, reflecting high credit coefficients paired with relatively 

short approval times. This suggests that despite their financial complexity, wind 

energy projects are considered attractive by green credit schemes, receiving faster 

approvals. 
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Figure 3c represents the relationship between Credit Ratio and Approval Time. 

This visualization offers insights into how these factors interact across different 

energy sources, revealing trends in credit allocations and the speed at which credit 

applications are approved. In the top-right quadrant, representing both high credit 

ratios and long approval times, the Biomass Pellet firms are notably present. This 

suggests that while these projects are granted a significant portion of the credit, they 

also experience delays in approval, possibly due to their complexity or the thorough 

assessment required. Projects in this quadrant are likely seen as high-return but high-

risk, necessitating more extensive due diligence before approval. On the other hand, 

Clean Fuel firms appear primarily in the bottom-left quadrant, where both the credit 

ratio and approval time are relatively low. This indicates that these projects receive a 

smaller share of credit but are approved more quickly. The clustering of these firms 

in this area may imply that clean fuel projects are considered lower-risk but also less 

capital-intensive, requiring less scrutiny and faster processing times. Wind Energy 

firms appear scattered across the quadrants, with a few located in the bottom-right 

quadrant (high credit ratio and short approval time). This positioning reflects a 

favorable scenario for wind energy projects, where they receive substantial credit 

while enjoying faster approvals, possibly due to the maturity of wind energy 

technology and its recognized potential for contributing to green development. 

Biomass Pellet firms are distributed more uniformly across the quadrants, 

reflecting a balanced approach to their credit allocation and risk profile. Wind 

Energy firms, while securing favorable credit terms with high coefficients and low 

approval times, struggle to receive high credit ratios, suggesting that lenders may be 

cautious about extending large credit amounts to these projects. Clean Fuel firms, on 

the other hand, show greater variability in both credit ratios and coefficients, 

implying that these projects face more uncertainty in credit evaluations, possibly due 

to the complexity or novelty of the technology involved. Biomass Pellet projects 

benefit from more stable and consistent credit support, while Clean Fuel projects 

face longer approval times and higher variance in credit conditions, indicating a need 

for more specialized financial assessments. The clustering patterns across these 

charts suggest that different renewable energy types require tailored financial 

mechanisms to address their unique risks and opportunities in the green credit 

landscape. These patterns underscore the need for tailored financial strategies in 

green credit policies, ensuring that various renewable energy types receive the right 

amount of credit support while minimizing delays in the approval process. The chart 

suggests that Wind Energy projects are particularly well-positioned to capitalize on 

green credit, while Biomass Pellet and Clean Fuel projects may require further 

adjustments in credit mechanisms to enhance their financial viability and reduce 

delays. 
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Figure 3. Clustering results of green credit for energy firms. (a) Quadrant chart of credit coefficient and credit ratio; 

(b) quadrant chart of credit ratio and approval time; (c) quadrant chart of credit coefficient and approval time. 

5. Discussion and conclusion 

This study successfully addressed the initial research problem. First, the authors 

developed a robust machine learning model optimized through the PSO algorithm to 

identify effective hyperparameters. The clustering model achieved high accuracy 

with an MSE of approximately 0.01 for the PSO-SVM model and 0.004 for the PSO-

ANN model. Second, the clustering model effectively segmented energy enterprises 

using quadrant charts. Based on this, companies can forecast their credit coefficient, 

credit ratio, and approval time. Lastly, the results provide recommendations for firms 

to strategically manage their credit capacity, enabling them to efficiently and 

promptly access credit resources by leveraging the input variables of the model. 

This study presents significant theoretical and practical implications. 

Theoretically, the machine learning model optimized by PSO represents an 

advancement in the implementation techniques for credit clustering. Compared to 

traditional segmentation methods, the accuracy achieved by this model is notably 

impressive (Mirza et al., 2023; Machado and Karray, 2022). By leveraging these 

sophisticated machine learning techniques, the research introduces a novel approach 
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to green credit analysis for wind energy, clean fuel, and biomass pellet sectors in 

Vietnam. The integration of Particle Swarm Optimization (PSO) with Support 

Vector Machines (SVM) and Artificial Neural Networks (ANN) not only enhances 

the accuracy of the clustering process but also demonstrates the potential for 

optimizing hyperparameters in complex financial scenarios. This methodological 

advancement moves beyond traditional clustering approaches by providing a more 

precise and tailored solution for segmenting enterprises based on credit criteria. 

Furthermore, this study extends the theoretical framework of green finance by 

incorporating machine learning and heuristic optimization, opening new avenues for 

research in credit risk assessment and green credit policy development, especially in 

emerging markets with diverse energy sectors. Compared to some machine learning 

models applied to clustering tasks, the results of this study have not shown a 

significantly superior accuracy, with an MSE of approximately 0.004. Other studies, 

such as those conducted by Yang et al. (2019) and Hassan et al. (2021), report 

considerably lower MSE values. However, within the scope of this topic, our results 

demonstrate marked improvement over traditional classification methods, 

particularly in the context of banks in developing countries. This outcome will 

facilitate more efficient and streamlined credit assessment and approval procedures 

for energy-sector enterprises, enabling higher credit limits and thereby accelerating 

the carbon-neutral transition. 

The practical implications of this study are significant for the banking sector 

and renewable energy enterprises in Vietnam, particularly those involved in wind 

energy, clean fuel, and biomass pellet production. By implementing PSO-SVM and 

PSO-ANN clustering models for green credit analysis, banks can enhance their credit 

risk assessment and lending strategies for renewable energy projects. The models 

developed in this study offer improved accuracy in predicting credit coefficients, 

approval times, and credit ratios for renewable energy enterprises, enabling more 

informed lending decisions. 

For financial institutions, the results of this study provide a practical tool to 

better segment enterprises based on creditworthiness, allowing for more efficient 

allocation of green credit resources. Banks can optimize their credit approval 

processes by identifying which firms are more likely to meet credit requirements and 

benefit from green financing, ultimately reducing loan processing time and 

associated risks. Additionally, this methodology helps align financial practices with 

Vietnam’s sustainable development goals, encouraging investment in renewable 

energy sectors. 

For renewable energy companies, the study offers actionable insights into how 

they can improve their credit standing and access to green financing. By 

understanding the key input factors that influence credit decisions—such as total 

capital, asset value, and debt levels—enterprises can strategically manage their 

financials to increase their chances of securing green loans. This fosters more 

effective financial planning and strengthens their capacity to scale up renewable 

energy projects. In turn, this supports the broader goal of transitioning to a low-

carbon economy, helping Vietnam meet its renewable energy targets. 

This paper opens up future research directions, including the potential to further 

compare the performance of various hyperparameter optimization algorithms—such 
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as Bayesian optimization, Genetic Algorithm (GA), and Whale Optimization 

Algorithm (WOA)—to validate clustering results. Additionally, as machine learning 

techniques excel in high accuracy but are less focused on interpretability, future 

studies could integrate explanatory methods, such as the method of moment quantile 

regression (Kai et al., 2024; Leng et al., 2024), to examine influential factors in 

green credit policies across detailed quantiles. This approach could facilitate deeper 

application in managing credit projects for energy enterprises. Moreover, the 

findings of this research have the potential for broad application not only within the 

energy sector but could also extend to other fields like transportation and logistics, 

which utilize green fuel solutions. 
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