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Abstract: This study conducts a comparative analysis of various machine learning and deep 

learning models for predicting order quantities in supply chain tiers. The models employed 

include XGBoost, Random Forest, CNN-BiLSTM, Linear Regression, Support Vector 

Regression (SVR), K-Nearest Neighbors (KNN), Multi-Layer Perceptron (MLP), Recurrent 

Neural Network (RNN), Bidirectional LSTM (BiLSTM), Bidirectional GRU (BiGRU), 

Conv1D-BiLSTM, Attention-LSTM, Transformer, and LSTM-CNN hybrid models. 

Experimental results show that the XGBoost, Random Forest, CNN-BiLSTM, and MLP 

models exhibit superior predictive performance. In particular, the XGBoost model 

demonstrates the best results across all performance metrics, attributed to its effective learning 

of complex data patterns and variable interactions. Although the KNN model also shows 

perfect predictions with zero error values, this indicates a need for further review of data 

processing procedures or model validation methods. Conversely, the BiLSTM, BiGRU, and 

Transformer models exhibit relatively lower performance. Models with moderate performance 

include Linear Regression, RNN, Conv1D-BiLSTM, Attention-LSTM, and the LSTM-CNN 

hybrid model, all displaying relatively higher errors and lower coefficients of determination 

(R²). As a result, tree-based models (XGBoost, Random Forest) and certain deep learning 

models like CNN-BiLSTM are found to be effective for predicting order quantities in supply 

chain tiers. In contrast, RNN-based models (BiLSTM, BiGRU) and the Transformer show 

relatively lower predictive power. Based on these results, we suggest that tree-based models 

and CNN-based deep learning models should be prioritized when selecting predictive models 

in practical applications. 

Keywords: supply chain; order prediction; deep learning; machine learning; hybrid model; 

supply chain tier 

1. Introduction 

In the contemporary global economy, the efficacy of a company’s Supply Chain 

Management (SCM) strategy has become a crucial determinant of its competitiveness 

and operational efficiency (Chopra and Meindl, 2016). Accurately predicting order 

quantities at various tiers within the supply chain is essential for inventory 

management, production planning, and seamless logistics operations. However, the 

complexity and volatility of the supply chain environment often make accurate 

forecasting challenging when relying solely on traditional prediction techniques 

(Goodfellow et al., 2016; Ivanov and Dolgui, 2020). An increase in uncertainties at 

different stages of the supply chain can result in a decline in the overall efficiency of 

the supply network (Kouvelis et al., 2006).  

Advancements in Artificial Intelligence (AI) technologies have led to the 

widespread adoption of deep learning and machine learning models for solving 
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prediction problems across various industries. These models excel at learning complex 

data patterns and achieving high prediction accuracy based on those patterns (Ayus et 

al., 2023; Schmidhuber, 2015). In the realm of SCM, there is a growing trend to apply 

these AI-based predictive models to enhance forecasting performance (LeCun et al., 

2015). Given the complexity and volatility inherent in supply chains, AI models can 

offer superior predictive capabilities compared to traditional methods.  

The purpose of this study is to apply various deep learning, machine learning, 

and hybrid deep learning models to predict order quantities within supply chain tiers 

and to compare and analyze their performance. Through this, we aim to identify the 

optimal model that can maximize prediction accuracy in supply chain management. 

The models employed in this research include machine learning models such as 

XGBoost, Linear Regression, SVR, Random Forest, KNN, and MLP, as well as deep 

learning and hybrid models like Recurrent Neural Network (RNN), Bidirectional 

LSTM (BiLSTM), Bidirectional GRU (BiGRU), CNN-BiLSTM, Conv1D-BiLSTM, 

Attention-LSTM, Transformer, and LSTM-CNN hybrid models (LeCun et al., 2015; 

Schmidhuber, 2015; Vaswani et al., 2017).  

Data generated within supply chains typically exhibit high dimensionality and 

non-linearity, adding complexity to prediction tasks (Vaswani et al., 2017). To address 

these challenges, this study aims to achieve high predictive performance by effectively 

learning complex patterns using various AI models. Deep learning models, in 

particular, have demonstrated exceptional performance in processing time-series data 

and complex data structures. Leveraging these characteristics can play a crucial role 

in forecasting order quantities at supply chain tiers (LeCun et al., 2015).  

This research differentiates itself from previous studies in several ways. First, we 

conduct a comprehensive comparative analysis of various machine learning and deep 

learning models (e.g., XGBoost, Linear Regression, Random Forest, CNN-BiLSTM), 

providing detailed evaluations of each model’s predictive performance. Unlike prior 

studies that focused on specific models, our holistic review of diverse approaches 

enhances practical applicability. Second, by simultaneously analyzing the 

performance of tree-based models and deep learning models, we elucidate the relative 

strengths of both methodologies. Third, we experimentally validate the effectiveness 

of hybrid models (e.g., CNN-BiLSTM), demonstrating how new model architectures 

can be utilized to tackle supply chain forecasting challenges. In these respects, this 

study offers originality and practical utility that set it apart from existing research.  

Furthermore, this study empirically demonstrates that the adoption of AI 

technologies can provide tangible benefits in supply chain management. Accurate 

order forecasting can contribute to reduced lead times, improved inventory 

management, and enhanced resilience of the entire supply chain (Schmidhuber, 2015). 

Consequently, companies can maximize operational efficiency in their supply chains 

based on improved predictive capabilities and secure a competitive advantage. 

2. Literature review 

Deep learning and machine learning are considered highly effective tools that can 

be applied to supply chain management. These technologies can learn complex data 

patterns, process large-scale data in real-time, and significantly improve prediction 
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accuracy. Several studies have highlighted the importance of deep learning and 

machine learning technologies in supply chain management. 

Cannas et al. (2024) emphasized that AI can enhance competitiveness in 

Operations and Supply Chain Management (OSCM) by reducing costs, shortening 

lead times, and improving service levels. However, they also pointed out barriers such 

as the need for data quality assurance, skill shortages, and high investment costs in AI 

adoption. Their research presents both the benefits and obstacles of AI, providing 

useful guidelines for future research and practice. 

Culot et al. (2024) noted that AI is playing an increasingly important role in 

supply chain functions, confirming that technologies like machine learning, deep 

learning, Natural Language Processing (NLP), and computer vision are being used in 

data analytics, demand forecasting, and logistics optimization. The application of these 

technologies greatly enhances supply chain efficiency. 

Ashraf et al. (2024) proposed a method for real-time detection and analysis of 

disruptions in cognitive digital supply chain twins using a hybrid deep learning model, 

focusing on enhancing supply chain resilience. This approach opens new possibilities 

in supply chain management. 

Singh (2023) explained that AI and machine learning play crucial roles in 

facilitating digital transformation and securing competitive advantages in supply chain 

management. These technologies optimize supply chain efficiency and reduce costs, 

thereby improving overall resilience. 

Pietukhov et al. (2023) suggested a hybrid forecasting model that integrates the 

lean maturity assessment of supply chains with logistic regression and neural network 

technologies, indicating the potential for advancement in supply chain analytics. 

Kassa et al. (2023) argued that as supply chains become more vulnerable to 

various disruptions, AI technologies have the potential to strengthen supply chain 

resilience beyond what traditional risk management methods can offer. 

Stranieri and Stella (2022) analyzed the performance of addressing inventory 

management problems using the latest Deep Reinforcement Learning (DRL) 

algorithms and applying them to supply chain management. 

Yang et al. (2023) emphasized that in the context of the COVID-19 pandemic 

significantly impacting supply chain risk management, machine learning technologies 

can play a vital role in preventing supply chain risks and enhancing response speed. 

Rolf et al. (2024) highlighted the growing importance of unsupervised learning 

as the complexity of supply chain management increases. Unsupervised learning is 

widely applied in areas like location planning and vehicle routing optimization by 

extracting new insights from unstructured data. 

The studies mentioned above emphasize that AI and machine learning 

technologies play a crucial role in maximizing efficiency and resilience in supply 

chain management. These technologies improve supply chain performance in various 

aspects such as cost reduction, lead time shortening, service level improvement, real-

time disruption detection, and risk prediction. However, they also point out that the 

successful adoption of AI and machine learning requires overcoming several obstacles, 

including ensuring data quality, addressing skill shortages, and managing high 

investment costs. 
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In the field of demand forecasting within supply chains, numerous studies have 

been conducted to efficiently apply deep learning and machine learning algorithms 

(Ahn et al., 2024; Douaioui et al., 2024). 

Aamer et al. (2021) revealed that machine learning algorithms like neural 

networks, artificial neural networks, and support vector machines are widely used for 

demand forecasting in supply chains, particularly in the industrial sector. 

Jahin et al. (2024) proposed a Multi-Channel Data Fusion Network (MCDFN) 

that integrates CNN, Long Short-Term Memory (LSTM), and Gated Recurrent Unit 

(GRU) to effectively extract spatial and temporal features of time-series data, 

explaining that this model outperforms other deep learning models. 

Husna et al. (2023) conducted demand forecasting in the retail industry using 

machine learning and deep learning techniques to reduce costs and optimize inventory, 

reporting that the Random Forest algorithm showed the most efficient and highly 

accurate predictions. 

Tirkolaee et al. (2021) investigated how machine learning technologies can be 

used to overcome the limitations of traditional analytical methods as the amount of 

data increases in supply chain management. They suggested potential contributions in 

various areas of supply chain management, including supplier selection, supply chain 

risk prediction, and production and inventory management. 

Zohdi et al. (2022) compared various machine learning algorithms, including 

Extreme Learning Machine (ELM), to analyze the accuracy of intermittent demand 

forecasting, indicating that artificial neural network-based methods showed the best 

performance. They also explained that while deep learning and machine learning 

techniques are effectively applied in supply chain demand forecasting, there is no 

dominant algorithm across all areas of supply chain demand forecasting. 

The common conclusion of these studies is that deep learning and machine 

learning algorithms are highly effective in demand forecasting within supply chains. 

These technologies are widely used across various industrial sectors and demonstrate 

superior performance over traditional methods, especially in processing complex time-

series data and achieving prediction accuracy. Additionally, machine learning and 

deep learning models can make significant contributions across various areas—

including supplier selection, risk prediction, production, and inventory management—

in the modern supply chain environment where data volume is rapidly increasing. 

Therefore, the goal of this study is to apply various deep learning and machine 

learning techniques to order prediction in supply chains and to experimentally 

compare the performance of each technique to propose the optimal predictive model. 

Through this, we aim to assist supply chain management practitioners in selecting 

effective predictive models when making data-driven decisions. 

3. Model description 

3.1. Supply chain model 

The supply chain considered in this study consists of a Manufacturer, Distributor, 

Wholesaler, Retailer, and Customer (Figure 1). 



Journal of Infrastructure, Policy and Development 2024, 8(14), 9683. 
 

5 

 

Figure 1. Supply chain model. 

Customer demand in the supply chain is assumed to be stochastic rather than 

deterministic to reflect real-world conditions. It is modeled using the Autoregressive 

(AR) (1) process as expressed in Equation (1): 

𝐷𝑡  =  𝜇 + 𝜌𝐷𝑡−1 + 𝜖𝑡, |𝜌| < 1 (1) 

In Equation (1), 𝐷𝑡  and 𝐷𝑡−1  represent customer demand at time t and t−1, 

respectively, while μ denotes a constant greater than or equal to zero. 𝜖𝑡 is an error 

term at time t that is independently and identically distributed with a mean of 0 and 

𝜎2, and ρ represents the first-order autocorrelation coefficient. The AR (1) model 

explains how customer demand fluctuates over time and is useful for analyzing the 

trend and variability of demand across the entire supply chain. 

In Equation (1), the factors affecting the customer demand process are σ and ρ. 

The parameter σ represents the degree of demand fluctuation and indicates the variance 

of demand. The parameter ρ explains the trend of customer demand and demonstrates 

the autocorrelation of demand. 

In Figure 1, when the customer demand described by Equation (1) occurs, an 

order is placed with the Retailer tier, and this order is subsequently propagated 

upstream. In this process, the role of each tier is defined as ordering to the upstream 

tier an order quantity that is the sum of the expected demand and the order quantity 

received from the downstream tier. For a tier that has received an order from the 

downstream tier, the expected demand at time t, denoted as 𝐸𝐷𝑡, is calculated as the 

sum of the incoming order from the downstream tier at time t−1, 𝐼𝑂𝑡−1 , and the 

expected demand of the tier at time t−1, 𝐸𝐷𝑡−1 , weighted by the relative weight 

between the order quantity and expected demand, represented by θ (where 0 ≤ θ ≤ 1). 

This relationship is expressed in Equation (2): 

𝐸𝐷𝑡  =  𝜃 ∙ 𝐸𝐷𝑡−1 + (1 − 𝜃) ∙ 𝐼𝑂𝑡−1 (2) 

In Equation (2), when θ = 0, the expected demand of the tier is not considered, 

and only the incoming orders from the downstream tier are taken into account. 

Conversely, when θ = 1, the incoming orders from the downstream tier are ignored, 

and only the expected demand of the tier itself is considered. This model illustrates 
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how each tier weighs and incorporates orders and demand, enabling a more precise 

understanding of the interactions between tiers. 

Each tier employs a periodic review order-up-to-level (R, S) inventory 

management policy, where R represents the review period and SSS denotes the order-

up-to-level. This policy involves regularly reviewing inventory at set intervals and 

ordering up to a predetermined level to maintain stock. Doing so enhances inventory 

optimization within the supply chain and increases flexibility in responding to demand 

fluctuations 

3.2. Data collection and preprocessing 

In the supply chain model illustrated in Figure 1, stochastic customer demand 𝐷𝑡 

follows an AR (1) process with mean (μ) set to 100, customer demand variability (σ) 

set to 10, and a demand trend parameter (ρ) value of −0.6. These parameters are chosen 

to replicate realistic demand patterns observed in supply chain simulations. Here, μ 

represents the average demand level, σ indicates the variability of demand, and ρ 

denotes the autocorrelation between demands, reflecting the persistence or 

reversibility of demand over time. 

The simulation runs for 600 weeks (t = 1, …, 600), during which customer 

demand expressed by Equation (1) is delivered to the retailer, we calculate the 

expected demand, 𝐸𝐷𝑡 at each tier (Manufacturer, Distributor, Wholesaler, Retailer). 

To enhance robustness and ensure statistical reliability, the simulation is repeated 170 

times, with each run utilizing a unique random seed. This repetition captures 

variability in demand, allowing us to better assess the accuracy of demand forecasting 

at each tier and compare model performance under diverse conditions. 

Thus, the total experimental dataset comprises 408,000 samples (4 tiers × 170 

sets × 600 weeks), enabling comprehensive analysis across different demand scenarios. 

This high volume of data increases the statistical power of the results and allows for 

rigorous testing of each model’s robustness under varied demand patterns.  

In the data preprocessing phase, missing values were addressed by imputing them 

with the mean of each variable’s historical values, ensuring no data loss while 

maintaining consistency. Data normalization was also applied to rescale features to a 

standard range, reducing the impact of scale differences among features and improving 

model convergence during training. 

Feature engineering techniques were utilized to enhance model interpretability 

and predictive power. Key features derived from the original demand data included 

demand lag features (previous period demands), which capture temporal patterns, and 

rolling mean and standard deviation features, which represent recent demand trends 

and volatility. Interaction terms between certain features were also generated to 

capture complex dependencies, which are especially beneficial for tree-based models. 

Data is split into 64% training data, 16% validation data, and 20% test data to ensure 

that an adequate amount of data is available for each stage of model development. This 

split minimizes the risk of overfitting, helping to ensure reliable model generalization. 

Training data are used to optimize model parameters, validation data for 

hyperparameter tuning and model selection, and test data for assessing the final 

model’s performance on unseen data. This split allows us to confirm how effectively 
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the model generalizes to real-world conditions and different scenarios, thus providing 

a realistic assessment of performance. 

3.3. Applied models 

To verify the accuracy of supply chain demand forecasting, this study applies 

various deep learning models, machine learning models, and hybrid deep learning 

models. Each model was selected for its suitability in processing and predicting time-

series data and its ability to learn complex demand patterns that may occur in supply 

chains. 

The deep learning models used are RNN, Bidirectional Long Short-Term 

Memory (BiLSTM), Bidirectional Gated Recurrent Unit (BiGRU), Attention-LSTM, 

and Transformer. These models are specifically designed to effectively capture the 

characteristics of time-series data and are expected to enhance performance in demand 

forecasting. 

The machine learning models include XGBoost, Linear Regression, SVR, 

Random Forest, KNN, and MLP. These models are relatively simple, offer fast 

computational performance, and have the advantage of handling various data patterns. 

Table 1. Hyperparameters of models. 

Model Hyperparameters 

RNN units = 150 (1st RNN layer), units = 100 (2nd RNN layer), dropout = 0.2 

BiLSTM units = 150 (1st LSTM layer), units = 100 (2nd LSTM layer), dropout = 0.2 

BiGRU units = 150 (1st GRU layer), units = 100 (2nd GRU layer), dropout = 0.2 

Attention-LSTM units = 100 (LSTM), num_heads = 2, key_dim = 32 (Attention) 

Transformer num_heads = 4, key_dim = 32 (MultiHeadAttention), units = 100 (Dense) 

XGBoost 

• n_estimators: 100 (number of trees to use) 

• learning_rate: 0.1 (learning rate) 

• max_depth: 6 (maximum depth of the trees) 

• min_child_weight: 1 (minimum sum of weights of all observations required in a child node) 

• subsample: 1.0 (ratio of samples to use for training) 

• colsample_bytree: 1.0 (ratio of features to use per tree) 

• gamma: 0 (minimum loss reduction required to make a further partition on a leaf node) 

• reg_alpha (alpha): 0 (weight of the L1 regularization term) 

• reg_lambda (lambda): 1 (weight of the L2 regularization term) 

• objective: ‘reg’ (loss function for regression problems) 

Linear Regression 

• fit_intercept: True (whether to calculate the intercept for this model) 

• normalize: False (whether to normalize the regressors; applicable only when fit_intercept = False) 

• copy_X: True (whether to copy the input data; if False, it may overwrite the input data) 

• n_jobs: None (whether to use all CPU cores; None means 1 unless in a joblib.parallel_backend context) 

SVR (Linear) kernel = ‘linear’ 

Random Forest n_estimators = 100, random_state = 42 

K-Nearest Neighbors n_neighbors = 5 

MLP (Multi-Layer Perceptron) hidden_layer_sizes = (100,100), max_iter = 500, random_state = 42 

CNN-BiLSTM filters = 64, kernel_size = 3 (Conv1D), units = 100 (LSTM), dropout = 0.2 

Conv1D-BiLSTM filters = 64, kernel_size = 3 (Conv1D), units = 100 (LSTM), dropout = 0.2 

LSTM-CNN units = 100 (LSTM), filters = 64, kernel_size = 3 (Conv1D) 
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The hybrid deep learning models are CNN-BiLSTM, Conv1D-BiLSTM, and 

LSTM-CNN. These models combine the feature extraction capabilities of CNN with 

the time-series data learning abilities of LSTM to maximize predictive performance. 

The hyperparameters applied for each model are summarized in Table 1. 

When setting the hyperparameters for each model, this study followed 

configurations suggested to yield optimal performance for time-series models like 

RNN, LSTM, and GRU, as presented in the studies by Greff et al. (2017) and 

Jozefowicz et al. (2015). Specifically, we adopted the units and dropout values 

recommended in their research. The hyperparameters for XGBoost were based on the 

default settings proposed by Chen and Guestrin (Chen and Guestrin, 2016) and 

Prokhorenkova et al. (2018), where parameters such as n_estimators, learning_rate, 

and max_depth have been reported to significantly influence performance. 

For the Transformer model, we adhered to the architecture and hyperparameter 

settings suggested by Vaswani et al. (2017). Their study explained that 

hyperparameters like num_heads and key_dim in the Multi-Head Attention structure 

critically affect model performance. In alignment with this, we set the values of 

num_heads and key_dim to optimize the Transformer’s performance in our study. 

The stopping conditions for each model are summarized in Table 2. All deep 

learning models applied common stopping conditions using the EarlyStopping 

callback, with monitor = ‘val_loss’, patience = 10, and restore_best_weights = True. 

Table 2. Stopping conditions of models. 

Model Stopping conditions 

RNN Train for a maximum of 200 epochs or terminate early if EarlyStopping conditions are met. 

BiLSTM Train for a maximum of 200 epochs or terminate early if EarlyStopping conditions are met. 

BiGRU Train for a maximum of 200 epochs or terminate early if EarlyStopping conditions are met. 

Attention-LSTM Train for a maximum of 200 epochs or terminate early if EarlyStopping conditions are met. 

Transformer Train for a maximum of 200 epochs or terminate early if EarlyStopping conditions are met. 

XGBoost 
Training concludes after all n_estimators (100 trees by default) are generated- Since early_stopping_rounds is not 

set, all trees are trained 

Linear Regression No explicitly defined stopping condition; training concludes when optimal weights are learned from the data. 

SVR (Linear) 
Training stops after reaching the default max_iter (maximum iterations, default is -1 for unlimited iterations) or 

when convergence criteria are met. 

Random Forest The training concludes after all n_estimators (100 trees by default) are generated. 

K-Nearest Neighbors  

MLP (Multi-Layer 

Perceptron) 
Training stops after reaching max_iter (maximum iterations, default is 200) or when convergence criteria are met. 

CNN-BiLSTM Train for a maximum of 200 epochs or terminate early if EarlyStopping conditions are met. 

Conv1D-BiLSTM Train for a maximum of 200 epochs or terminate early if EarlyStopping conditions are met. 

LSTM-CNN Train for a maximum of 200 epochs or terminate early if EarlyStopping conditions are met. 

As demonstrated, most machine learning models terminate based on predefined 

iteration counts or convergence criteria. In contrast, deep learning models employ 

EarlyStopping callbacks to halt training early depending on improvements in 

validation loss. This approach helps prevent overfitting and enhances training 

efficiency. 
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4. Results and analysis 

In this study, we compared the performance of various machine learning and deep 

learning models by taking into account factors such as customer demand, expected 

demand, and hyperparameters in the supply chain model. The predictive performance 

of each model was evaluated using Mean Squared Error (MSE), Mean Absolute Error 

(MAE), Root Mean Squared Error (RMSE), and the coefficient of determination (R²). 

Table 3 presents the experimental results of each model. 

Table 3. Experimental results of models. 

Model MSE MAE RMSE R2 

RNN 1.688564 1.076484 1.299448 −0.366993 

BiLSTM 3.463235 1.492647 1.860977 −1.803694 

BiGRU 3.303734 1.463424 1.817618 −1.674569 

Attention-LSTM 9.171739 × 10⁻1 0.782845 0.957692 0.257493 

Transformer 3.421401 1.485400 1.849703 −1.769826 

XGBoost 3.727327 × 10⁻9 0.000050 0.000061 1.000000 

Linear Regression 1.153874 0.676716 1.074185 0.065871 

SVR (Linear) 7.415028 × 10⁻2 0.197907 0.272305 0.939971 

Random Forest 1.720588 × 10⁻⁴ 0.001324 0.013117 0.999861 

K-Nearest Neighbors 0.000000 0.000000 0.000000 1.000000 

MLP (Multi-Layer Perceptron) 3.988533 × 10⁻3 0.047603 0.063155 0.996771 

CNN-BiLSTM 7.823669 × 10⁻⁴ 0.020056 0.027971 0.999367 

Conv1D-BiLSTM 6.693360× 10⁻1 0.682174 0.818130 0.458133 

LSTM-CNN 1.147804 0.914008 1.071356 0.070784 

The XGBoost model exhibited the best predictive performance, with MSE, MAE, 

and RMSE values approaching zero and an R² value of 1.0. This suggests that 

XGBoost effectively learned complex patterns and interactions among variables in the 

data. 

The Random Forest model also demonstrated very high performance, with an 

MSE of 1.720588 × 10⁻⁴, MAE of 0.001324, RMSE of 0.013117, and an R² of 

0.999861. This result can be attributed to the ensemble technique used by Random 

Forest, which combines multiple decision trees to enhance predictive power. 

The CNN-BiLSTM model showed the best performance among deep learning 

models, with an MSE of 7.823669 × 10⁻⁴, MAE of 0.020056, RMSE of 0.027971, and 

an R² of 0.999367. This high prediction accuracy was achieved by combining the 

feature extraction capabilities of CNN with the time-series learning abilities of 

BiLSTM. 

The MLP model also exhibited excellent performance, with an MSE of 

3.988533 × 10⁻³, MAE of 0.047603, RMSE of 0.063155, and an R² of 0.996771. 

In contrast, the BiLSTM, BiGRU, and Transformer models showed relatively 

poor performance, with high MSE and MAE values and negative R² values. This 

indicates that these models did not effectively learn from the dataset used in this study. 
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The Linear Regression model demonstrated moderate performance, with an MSE 

of 1.153874, MAE of 0.676716, RMSE of 1.074185, and R² of 0.065871. This 

suggests that the assumption of linearity in the data may not have been sufficiently 

met. 

The KNN model showed MSE, MAE, and RMSE values all equal to zero and an 

R² value of 1.0. However, this is an unrealistic result, raising suspicions of data leakage 

or errors in the model evaluation method. Therefore, the results of the KNN model are 

unreliable and require additional review. 

The SVR (Linear) model exhibited relatively high performance with an R² value 

of 0.939971, but its MSE and MAE values were higher compared to the tree-based 

models. 

The Conv1D-BiLSTM, Attention-LSTM, and LSTM-CNN hybrid models 

showed moderate performance, with relatively high MSE and MAE values and low R² 

values. 

Figure 2 illustrates a bar graph comparing the MSE, MAE, RMSE, and R² values 

of each model. This confirms that models like XGBoost, Random Forest, and CNN-

BiLSTM exhibited superior performance. In contrast, BiLSTM, BiGRU, and 

Transformer models showed relatively lower performance. 

 

Figure 2. Comparison of model performance metrics (MSE, MAE, RMSE, R²). 

To evaluate the variability and stability of the predictive performance of each 

model, we visualized the distribution of MSE and MAE for each model using box 

plots in Figure 3. 
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Figure 3. Distribution of MSE and MAE for each model. 

Since MSE is sensitive to large errors, the MSE value significantly increases 

when large errors occur. From the MSE distributions of each model in Figure 3, the 

following interpretations can be made: 

XGBoost, Random Forest, and K-Nearest Neighbors models have MSE values 

close to zero, with very narrow box plot ranges and lower and upper bounds at almost 

the same position. This suggests that these models have very little prediction error and 

highly stable predictive performance. Particularly, XGBoost and Random Forest, as 

tree-based ensemble models, effectively learn complex patterns in the data, resulting 

in outstanding predictive performance. 

CNN-BiLSTM and MLP models show very low MSE values with relatively 

narrow distributions. This indicates that deep learning–based models perform well on 

supply chain data and have relatively small prediction errors. Specifically, the CNN-

BiLSTM model exhibits high performance by combining the feature extraction 

capabilities of CNN with the time-series learning abilities of BiLSTM. 

BiLSTM, BiGRU, and Transformer models show very high MSE values with 

wide distributions. This indicates an unstable predictive performance and a tendency 

to record large errors in any data. In particular, the Transformer model may have been 

overly sensitive to specific characteristics of the data or failed to learn effectively. 

In Figure 3, MAE represents the mean of the absolute values of the errors, 

assigning equal importance to all errors. The MAE distributions of each model exhibit 

the following characteristics: 

XGBoost, Random Forest, and KNN models have very low MAE values with 

narrow box plot ranges. This suggests that the absolute prediction errors are very small 

and that the models showed consistent performance across the entire dataset. Notably, 

the KNN model shows zero errors for all predictions, which may indicate overfitting 

or peculiarities in data processing, necessitating further investigation in future research. 

CNN-BiLSTM and MLP models display low MAE values with narrow 

distributions, indicating small prediction errors and consistent performance. This 

reaffirms that deep learning–based models have high predictive accuracy. 
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BiLSTM, BiGRU, and Transformer models have relatively high MAE values 

with wide distributions. This suggests that these models exhibit large prediction errors 

on specific data points and have unstable performance. Despite having bidirectional 

capabilities in time-series learning, BiLSTM and BiGRU show large prediction errors 

on this dataset. 

Linear Regression, RNN, Conv1D-BiLSTM, and Attention-LSTM models have 

MAE distributions that are moderately dispersed, indicating that while they perform 

at a certain level, they do not achieve optimal performance. 

Next, we performed residual analysis on the models (BiLSTM, BiGRU, and 

Transformer) with low predicted performance to evaluate how these models learned 

in the supply chain demand forecasting problem. Figure 4 shows scatter plots 

illustrating the relationship between the residuals and actual values for each model. 
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Figure 4. Residual Analysis of BiLSTM, BiGRU, and transformer models. 

The residual analysis of the BiLSTM model is shown in the first graph of Figure 

4. Although the BiLSTM model has the characteristic of being able to learn time-series 

data bidirectionally, it exhibited large prediction errors in this experiment. As seen in 

the scatter plot, many data points have residuals that deviate significantly from the 

baseline zero. Particularly, the residuals are not evenly distributed and tend to be large 

in specific intervals. These results suggest that the BiLSTM model did not effectively 

learn the patterns in the supply chain data. 

The residual analysis of the BiGRU model is shown in the second graph of 

Figure 4. Similar to BiLSTM, the BiGRU model can learn time-series data 

bidirectionally and has higher computational efficiency due to its GRU structure. 

However, in this experiment, the BiGRU model also showed large prediction errors. 

As observed in the scatter plot, the residuals are not concentrated around the baseline 

zero but are widely dispersed. 

The residual analysis of the Transformer model is presented in the third graph of 

Figure 4. The Transformer model is based on the attention mechanism and has various 

applications in processing time-series data. However, in the supply chain data of this 

study, the Transformer model showed poor predictive performance. The residual 

analysis reveals that many points have residuals significantly deviating from the 

baseline zero. Particularly, the residuals are asymmetrically distributed, with extreme 

errors in certain regions. This indicates that the Transformer model was not effectively 

trained on the dataset and may have reacted overly sensitive to specific time-series 

patterns or noise in the data. 

In summary, we confirmed that tree-based models (XGBoost, Random Forest) 

and the CNN-BiLSTM model are most effective for predicting supply chain order 

quantities. In contrast, RNN-based models (BiLSTM, BiGRU) and the Transformer 

model showed relatively poor performance. These results suggest that data 

characteristics and model suitability must be considered when selecting predictive 

models. 
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5. Discussions and conclusions 

This study conducted a comparative analysis of the predictive performance of 

diverse machine learning and deep learning models on a supply chain order dataset. 

The performance of each model was evaluated using metrics such as MSE, MAE, 

RMSE, and the coefficient of determination (R²). 

Tree-based models, particularly XGBoost and Random Forest, along with the 

CNN-BiLSTM model, demonstrated the superior performance of the supply chain 

model. Notably, the XGBoost model achieved the highest accuracy across all 

evaluation metrics, including an R² value of 1.0, which reflects the model’s strong 

capacity to capture complex patterns and feature interactions. This result suggests that 

the XGBoost model, by utilizing its ability to learn intricate relationships in the data, 

is highly suited for supply chain predictions. Similarly, the Random Forest model 

performed effectively, supporting its robustness in leveraging multiple decision trees 

to capture various aspects of the data, thus providing high predictive accuracy. The 

CNN-BiLSTM and MLP models also performed well, showcasing the potential of 

deep learning approaches in identifying complex patterns in supply chain data. 

However, RNN-based models, such as BiLSTM, BiGRU, and the Transformer 

model, exhibited relatively poor performance, characterized by high error values and 

low or negative R² values. These results indicate that, although RNN-based models 

generally excel in time-series analysis, they may face challenges when applied to 

datasets with different characteristics, such as the supply chain data used in this study. 

The Transformer model showed a similar performance limitation, reinforcing the 

possibility that these models are less suited for capturing complex static interactions 

within non-sequential datasets like this one. 

Models with moderate performance, including Linear Regression, RNN, 

Conv1D-BiLSTM, Attention-LSTM, and the LSTM-CNN hybrid model, exhibited 

higher error metrics and lower R² values than top-performing models. These results 

suggest that such models may not fully explain the variance in the supply chain dataset 

or might exhibit poor data fit, limiting their applicability in this context. 

The findings of this study provide practical insights into the use of predictive 

models in supply chain management. Tree-based models, due to their high accuracy 

and robustness, are recommended for applications requiring precise order quantity 

predictions. The CNN-BiLSTM model also shows promise, especially when more 

complex pattern extraction is necessary. Conversely, RNN-based models and the 

Transformer model may require modifications or enhanced data preprocessing to 

improve their applicability in this domain. 

It is important to note that the study has limitations, primarily in its model-

specific approach to supply chain data. Future research may consider incorporating 

external factors such as economic indicators or weather data to assess whether these 

models can improve their performance with additional contextual information. 

Additionally, the study did not extensively evaluate the computational requirements 

of each model, which is crucial for assessing practical feasibility in real-time 

applications. Including such analysis in future studies would allow for a better 

understanding of each model’s resource efficiency, particularly for business 
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implementations. Building on this study’s findings, future research can aim to 

optimize model performance through various techniques:  

1) Enhanced Feature Engineering: Conducting feature importance analysis and 

refining input variables could help identify and exclude less impactful variables. 

Additionally, advanced feature engineering, including the creation of new 

features, may further improve model accuracy. 

2) Hyperparameter Optimization: Using techniques like grid search or Bayesian 

optimization could enhance the performance of models, especially tree-based 

models like XGBoost and Random Forest, which are highly sensitive to 

parameter tuning. 

3) Cross-Validation: Implementing k-fold cross-validation would provide a more 

robust evaluation of the model’s generalizability and help reduce overfitting risks. 

4) Ensemble and Regularization Techniques: Applying ensemble methods, such as 

stacking or bagging, along with advanced Transformer architectures, could 

further refine predictions. Regularization techniques, including dropout, would 

also aid in improving model generalization. 

5) Computational Complexity and Resource Analysis: Examining the 

computational load of each model could provide practical insights into model 

efficiency, helping to determine which models are suitable for deployment in real 

business environments. 

Lastly, future studies should also focus on analyzing the bias-variance trade-off 

to evaluate each model’s tendency to overfit or underfit, which is crucial for 

determining model suitability in supply chain prediction. 

In conclusion, this study evaluated the performance of various models for supply 

chain order predictions, with XGBoost, Random Forest, and the CNN-BiLSTM model 

emerging as the most effective. In contrast, RNN-based models and the Transformer 

model demonstrated lower accuracy. These findings suggest prioritizing tree-based 

models and CNN-based deep learning models for practical applications, while future 

studies may explore additional strategies to further enhance model performance and 

usability. 
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