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Abstract: Recent advancements in data mining techniques showcase expansive and effective 

insights. Yet, these insights often remain incomplete. In situations demanding optimal results, 

such incomplete knowledge from various agents falls short. This paper delves into the role of 

mobile agents engaging in data mining within a multi-agent environment. Each agent is tailored 

with distinct goals, mining data in line with its identified problem set. Mobile agents understand 

insights from relevant agents equipped with specialized data knowledge. Outcomes from 

diverse agents converge, serving as foundational data for mobile agents. This integration is 

facilitated by integrating adaptive automata and genetic algorithms, enhancing the mobile 

agent’s expertise on a particular task.  
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1. Introduction 

In the realm of information technology, the endeavour to unearth knowledge from 

expansive data sets using data mining techniques has garnered significant attention. 

Each data mining method caters to a unique knowledge requirement. A noteworthy 

strand of contemporary research delves into utilizing multi-agent-based data mining 

to address intricate challenges. In this modality, an array of agents deploys diverse 

data mining methods to cull valuable, albeit partial, insights from data. An essential 

limitation of this approach emerges when agents combine their gleaned knowledge, 

potentially introducing inconsistencies or unnecessary data. 

Presented herein is an innovative framework centered on mobile agent-based 

learning. This model synergizes multi-agent-based data mining, adaptive automata, 

and genetic algorithms. In contrast to conventional approaches that aggregate 

knowledge from all agents, mobile agents engage in insightful adoption of insights 

from static agents. 
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Here, static agents represent entities pre-armed with segmented knowledge 

derived from data. The core architecture of this mechanism encompasses multiple 

static agents complemented by one or more mobile agents. These mobile agents 

undergo an intelligent learning trajectory, clustering static agents through adaptive 

automata (Abu-Qadri et al., 2018). Classifying those endowed with significant 

knowledge using genetic algorithm strategies. Through this meticulous process, 

mobile agents acquire enhanced and streamlined knowledge. As they tackle specific 

challenges, these enriched mobile agents emerge as the torchbearers of solutions. The 

intricate workings of this proposed model are elaborated upon in the ensuing sections. 

Conventional knowledge refinement techniques are neither flexible, scalable, nor 

resilient in dynamic settings because they are usually built on static, rule-based 

systems. To get over these restrictions, we suggest a Knowledge Refinement 

Mechanism that works in conjunction with Genetic Algorithms and Adaptive 

Automata. While genetic algorithms maximize the refinement process by evolving 

solutions over iterations, adaptive automata allow for dynamic modeling and real-time 

learning by developing state transitions based on environmental changes. Together, 

they produce a feedback loop in which genetic algorithms guarantee effective and 

reliable solution space search while adaptive automata give a learning structure. By 

addressing the drawbacks of conventional methods, this innovative framework 

provides a scalable and adaptable solution for intelligent systems, dynamic decision-

making, and autonomous robots. 

The constraints of conventional knowledge refinement techniques are addressed 

by the suggested framework, which makes use of adaptive automata and genetic 

algorithms. The foundation is made up of adaptive automata, which dynamically alter 

their state transitions in response to input from the environment, allowing for real-time 

learning and decision-making. For instance, autonomous vehicles can change routing 

methods to reduce delays. To provide robust and scalable adaptation, genetic 

algorithms optimize the automaton’s rule set through evolutionary processes like as 

crossover, mutation, and selection. In logistics, for instance, GAs adjust routing 

choices to reduce delivery times in a variety of scenarios. Adaptive automata and GAs 

work together to establish a feedback loop in which GAs guarantee long-term 

optimization and automata give structure to dynamic responses. This makes the 

framework flexible and useful for applications such as game AI, dynamic decision-

making, and disaster response. 

Data mining serves as a conduit to unearth hidden correlations within vast data 

sets, offering pivotal insights instrumental for informed decision-making. Such 

techniques, as illustrated in Figure 1, necessitate categorization based on both their 

objectives and the nature of their outcomes. At the crux of this categorization lies the 

distinction between methodologies yielding overarching statements about the data - 

akin to summaries that specify global patterns. Producing localized perspectives that 

capture nuances and anomalies in data relationships. Figure 1 depicts the hierarchical 

phases of data mining techniques, from raw data to generalization. These challenges 

focus on covering the gap between preprocessed data to thought-provoking 

conclusions, specifically when handling large-scale databases. This study resolves the 

challenge by providing techniques that not just cover hidden patterns but also data-

driven transformations using machine learning and genetic algorithms. 
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Figure 1. Data mining techniques (key stages of refining raw data into actionable 

knowledge). 

The crux of data mining recommendations hinges on the examination of 

prevailing databases. This involves cataloging pertinent resources and suggesting 

resources resembling those previously analyzed or rated. Collaborative and content-

based filtering, integral to data mining, exhibit inherent limitations. Collaborative 

filtering, while powerful, grapples with efficiently integrating novel data or features, 

with its efficacy being tethered to a rich historical data corpus. On the other hand, 

content-based filtering faces challenges when venturing into uncharted resource 

categories, distinct from past evaluations. Moreover, this method mandates the 

expertise of a domain specialist for effective knowledge integration. Recognizing 

these inherent challenges, hybrid systems have emerged as a beacon of innovation. By 

amalgamating the virtues of collaborative filtering with content-based approaches, 

these systems optimize the recommendation process, catering seamlessly to intrinsic 

information requisites (Carlo and Andrea, 2023). Data mining has been widely used 

as a fundamental tool for knowledge discovery from manufacturing databases. The 

necessary data to be analyzed can be gathered throughout ordinary manufacturing 

operations (Chehri et al., 2024). To address this problem, a great deal of research effort 

is being put into creating algorithms that can autonomously change the algorithm 

parameters without the need for an external agent. Numerous adaptation strategies 

have already been documented in the literature; nonetheless, they can be divided into 

three groups: self-adaptive, adaptive, and deterministic (Dogan and Briant, 2021).  

An agent can be intelligent but it does not have to be. An agent may be an 

individual, a household, or even a system that makes decisions. The broad applicability 

of ABM does not do them any favours either as the concept of an “Agent” may differ 

depending on the field of research. Fortunately, several features are prevalent in all 
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agent definitions (Gao and Wang, 2024). According to Carlo and Andrea (2023), To 

solve search and optimization problems, genetic algorithms (GAs) are a bio-inspired 

approach based on Darwin’s evolutionary theory. The search process in GAs is guided 

by genetic operators, which eliminates the need to specify the steps that lead to a result 

and gives the algorithm robustness and flexibility. The search process itself is based 

on the definition of the representation and evaluation of a potential solution to the 

problem (Dogan and Briant, 2021; Goldberg and David, 1989). Data-driven systems, 

specifically in manufacturing and optimization, face different challenges in getting 

thoughtful insights from large-scale datasets. Previous recommendation models 

demonstrate constraints in scalability and contextual adaptability to handle data. These 

limitations become more known in industrial environment systems. The key problem 

discussed in this study is the inability of data mining techniques and recommendation 

systems to adaptively react to dynamic data and optimize the discovery of knowledge 

in large-scale databases of manufacturing. These systems generally lack mechanisms 

for autonomous refinements.  

Additionally, in previous studies, the applications of Automata and genetic 

algorithms have left a gap in their integrations. To bridge this gap. Introduce a 

framework that integrates adaptive automata and genetic algorithms. This framework 

incorporates adaptive automata to continuously evaluate, ensuring the performance 

even in scenarios with limited data inputs while genetic algorithms optimize the 

feature selection and decision-making processes to uncover patterns in large-scale 

datasets. 

Multi-agent systems now becoming the increasing framework for handling 

complex data mining issues, specifically, in distributed environments. The work of 

Hossain et al. (2009) explored the multiagent systems in manufacturing data mining 

for fault detection. These systems optimize agents to analyze sensor data, improving 

fault prediction accuracy and precision. This approach also had some limitations in 

handling datasets, the issue is also pointed out by Bensalem et al. (2015). 

The proposed study significantly fills the gaps left by previous studies by 

integrating genetic algorithms with adaptive automata in multi-agent systems. This 

approach covers many critical challenges in the field, unlike existing multiagent 

systems that use predefined models, this framework integrates adaptive automata that 

self-regulate to real-time data transformation, enhancing scalability and performance. 

By incorporating Genetic algorithms, the model enhances the performance of data 

mining and allows for efficient search of solutions, improving insights and 

computational flexibility. 

This paper introduces the model that connects the Genetics algorithm and 

adaptive automata to manufacturing DB (database). The proposed study combines 

mining with innovative computations to discuss the specific constraints in 

collaborative and content filtering. By utilizing the adaptive automata for dynamic 

system refinements and Genetic algorithms for comprehensive search optimization, 

the model develops cutting-edge methodologies in adaptive recommendation systems. 

The collaborative integration provides enhancements in scalability and adaptive 

contextualization, providing significant contributions in the domain of knowledge and 

decision-making. 
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2. Proposed work 

The intricate journey of knowledge discovery and data mining encompasses 

multifaceted phases. This trajectory initiates with Data Collection, meanders through 

Integration and Cleaning, delves into Data Exploration and Preparation, and then 

transitions to the Selection and Application of specific data mining tasks and 

algorithms (AMERSHI and CONATI, 2009). Due to its explorative essence, the Data 

Mining process often exhibits a cyclical pattern. At junctures where the analytical 

results appear less than satisfactory, revisiting previous steps becomes a necessity. 

Within this framework, multi-agents emerge as potent entities, imbibing knowledge 

derived from the knowledge discovery and data mining spectrum. Subsequently, 

mobile agents undertake a learning endeavour (Russell and Norving, 2003), 

assimilating insights from the collective intelligence of multi-agents. This orchestrated 

convergence culminates in the formulation of the Refined Knowledge Base (RKB), as 

shown in Figure 2, a repository brimming with polished and honed knowledge 

segments. 

 

Figure 2. Knowledge refinement mechanism- the process of refining and integrating 

knowledge into a polished knowledge base. 

In the intricate landscape of knowledge refinement, each agent possesses multi-

objective attributes tailored to its specific domain. Within this environment, when a 

mobile agent enters, it acts as an input problem set, prompting the emergence of a 

relevant agent cluster orchestrated by adaptive automata. This automata mechanism 

uniquely boasts the inclusion of self-modifying features known as adaptive actions. 

These actions undertake the pivotal role of meticulously inspecting, adding, and 

deleting transitions. Consequently, reshaping the adaptive automaton post-execution, 

as depicted in Figure 3. 
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Figure 3. Proposed framework for knowledge refinement by mobile agents focusing 

on reshaping the adaptive. 

The mobile agent, capitalizing on the inherent characteristics of the Adaptive 

Automata, integrates itself as a transition. Upon encountering the initial pertinent agent, 

the mobile agent embarks on a knowledge-enhancing journey by genetic algorithm 

methodologies. Particularly the processes of cross-over and mutation. As this agent 

traverses, encountering subsequent relevant agents, its repository of learned 

knowledge amplifies. Concluding the learning trajectory, the enriched mobile agent 

finds its place within the Refined Knowledge Base, contributing to the progressive 

evolution of refined knowledge. The correlation between Genetic algorithms, adaptive 

automata, and their techniques is the foundation of the proposed study. Allowing real-

world refinements to a dynamic knowledge environment. In this framework, adaptive 

automata ensure that the system’s learning capabilities improve by assessing and 

responding to transforming data patterns. GAs enhance this process by introducing 

comprehensive search processes and improving system parameters through 

transforming techniques. These techniques develop a comprehensive model for system 

intelligence using adaptive automata and fine-tuning performance standards by genetic 

algorithms. 

Adaptive automata are the key part of the proposed work, allowing real-time 

adjustments to change the data environment. Automation is the computational agent 

that provides decision-making processes based on feedback. The self-modifying 

features of adaptive automata ensure the system captures real-time data patterns. 

Consider a manufacturing system where sensors introduce data on production 

techniques. Adaptive automata continuously evaluate the product quality produced by 

analyzing sensor data. If an anomaly is detected such as a lack of product efficiency, 

then adaptive automata refine its parameters to improve system accuracy in detecting 

anomalies. However, the genetic algorithms could improve by adjusting their 

parameters. Through various stages of selection, mutation, and crossover, the GA 

would develop a set of parameters that increase the performance in detecting 

anomalies.  
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3. Adaptive automata 

Adaptive automata encompass a unique mechanism that permits self-

modification. This is accomplished when adaptive actions, which are linked to their 

state-transition rules, are invoked at the moment of transition application. This form 

of automata is at times referred to as structured pushdown automata, a variant of the 

classical pushdown automata (Shultz et al., 2006). Within this, states are intricately 

organized into mutually recursive finite-state submachines. Though the structured 

pushdown automata and the classical pushdown automata share equivalency in 

functionality, one cannot overlook the occasional intricacy of the adaptive automata. 

This complexity can, at times, challenge comprehensibility and manageability. 

For Adaptive automata to perform self-modification, adaptive actions attached to 

their state-transition rules are activated whenever the transition is applied. Adaptive 

automata are also known as structured pushdown automata. Structured pushdown 

automata are a variant of classical pushdown automata (Shultz et al., 2006), in which 

states are clustered into mutually recursive finite-state submachines. Structured 

pushdown automata are fully equivalent to classical pushdown automata. However, 

despite these factors, sometimes lack adaptive automata simplicity (Zorzo et al., 2011), 

making them difficult to understand and maintain.  

4. The adaptive automata mechanism 

The crux of the adaptive step lies in altering the Mobile agent’s behavior to better 

correspond with the evolving set of regulations that define its essence. Within the 

realm of Adaptive Automata, a dual-phase process ensues. The preliminary phase 

necessitates the establishment of rules for the adaptive transition by electing a Multi-

agents Cluster before rule execution. Subsequently, the utilization of the attached 

transition rules materializes. Addressing this dual process, it’s pertinent to assign a 

duo of adaptation measures, one pre-transition, and the other post-implementation, to 

cater to the non-adaptive regulations. In the action of adaptation, a specific notation 

marked by the plus sign becomes paramount to append to the existing transition list. 

Such modus operandi, incorporated within an automaton possessing adaptivity, 

sanctions the dynamic evolution of the rule set. 

 

Figure 4. Multi-agents cluster. 

As shown in Figure 4, the construct of different agents in multi-agent clusters, 

the properties of adaptive automata apply to a Mobile agent for mapping the best 
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relevant agent. The Mobile agent represented as a shaded state in Figure 4 represents 

the Transition Added in such a group of agents. When the Mobile Agent meets the 

relevant static agent then Genetic Algorithm rules apply and learn new things and then 

move further relevant static agent. Mobile Agent is learning one by one from every 

specific agent and evolves itself knowledge, and the whole sequence shows a proper 

cluster of the appropriate agents. The overall process of the movement of Mobile agent 

is linearly represent in Figure 5. 

 

Figure 5. Multi-static agents cluster in sequence. 

5. Genetic algorithms 

The majority of evolutionary algorithms are adaptive heuristics search algorithms 

known as genetic algorithms (Denny, 2013). Drawing inspiration from the principles 

of natural selection and evolution, genetic algorithms offer an array of potential 

solutions to a designated problem. Typically, these algorithms thrive in environments 

abundant in candidate solutions. While genetic algorithms exhibit versatility across 

diverse environments. Specific algorithms tailored to particular scenarios might 

overshadow their efficacy, especially in the realm of straightforward search tasks. An 

observable limitation is the extended computational duration required by these 

algorithms, rendering them unsuitable for immediate real-time applications. Despite 

these constraints, genetic algorithms stand out as proficient techniques, delivering 

high-caliber solutions within a reasonable timeframe. In the context of this research, 

the Mobile agent harnesses the power of genetic algorithms for its learning trajectory. 

Crucial components of the Genetic Algorithm encompass Random Population, Fitness, 

Selection, Crossover, Mutation, and Acceptance (Ghnemat et al., 2007). 

An overarching perspective presents the genetic algorithm’s functionality as an 

evolutionary process, engaging the entire population of mobile agents. Within each 

interaction, the Mobile Agent, upon encountering a relevant static agent within the 

Multi Static Agents Cluster, employs the genetic algorithm for knowledge acquisition. 

Sequentially engaging with each pertinent static agent, the Mobile Agent undergoes 

transformative phases of crossover and mutation. Upon concluding this cycle, the 

Mobile agent reverts to the RKB, leading to knowledge refinement (Won et al., 2012) 

and subsequent output generation. An in-depth exploration of the genetic algorithm 

will be presented in the ensuing case study section. 

6. Case study-1 

This research delves into the simulation of the Hospital Management Hierarchy, 

aiming to refine and enhance the strategic process for optimal efficiency and reliability 

within the healthcare setting. The medical domain characterizes the Hospital 

Management Hierarchy with the Medical Superintendent (MS) at the pinnacle, serving 

as the key decision-maker and overseer of the entire hospital staff. Beneath the MS, a 
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tier of Additional Medical Superintendents (AMS) emerges, tasked with overseeing 

various departments and holding a pivotal role within the hierarchical structure. 

 

Figure 6. Evaluation of the initial population (AMS & 1st DMS). 

Positioned a step below, the Deputy Medical Superintendents (DMS) operate 

under the guidance of the AMS, each directing a specific department’s managerial 

operations. It’s noteworthy to mention that the DMS layer is symbolic of data mining 

across diverse segments, interfacing directly with the foundational data. For 

illustrative purposes, consider the depiction in Figure 6.  

The mobile agent exemplifies the AMS, whereas the multi-agent symbolizes the 

DMS. Envisage a scenario where the MS mandates the collection of data concerning 

Dengue—a prevalent epidemic. The AMS, upon receipt of this directive, liaises with 

the corresponding DMS in charge of the department attending to such epidemics. This 

DMS then coordinates with various stakeholders, from physicians and nurses to data 

entry operators, each holding a piece of the puzzle regarding dengue patients. These 

granular data points encompass disease specifics, medication schedules, economic 

implications, and socio-environmental conditions. The synthesis of this data by the 

DMS epitomizes the process of refining fragmented knowledge. Once collated, this 

data is channeled upwards to the MS, crystallizing as consolidated insights. The 

overarching objective is to harness this data, ensuring enhanced patient care and 

strategic countermeasures against the epidemic’s spread. 

Table 1. Implementation of crossover and mutation functions. 

String No 

i 

Population 

(Genotypes) 

X value 

(Phenotypes) 

Fitness 

f (x) = x2 
Probability of i Expected count 

1 1101 13 169 0.867 3.48 

2 0001 1 1 0.005 0.02 

3 0100 4 16 0.082 0.32 

4 0011 3 9 0.046 0.18 

Sum  195 1 4.00 

Average  48.75 0.25 1 

Max  169 0.867 3.48 

Transitioning to the computational facet of this study, the learning mechanism of 

AMS is evaluated using genetic algorithms, as shown in Table 1. Here, the knowledge 
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base of both AMS and DMS (derived from the problem set obtained from MS) is 

explored. Imagine that both AMS and DMS possess knowledge represented as quad-

binary digits. Such binary configurations allow a clear visual of the crossover and 

mutation processes. The spectrum of a 4-digit binary can span 16 values, ranging from 

0 to 15. For instance, take randomly generated genotype solutions such as 1101, 0001, 

0100, and 0011, as shown in Figure 7. 

 

Figure 7. Hospital management hierarchy. 

While the first and third strings signify AMS knowledge, the latter two are 

indicative of DMS insights. Employing a fitness decoding mechanism, each binary 

string is translated into an integer (denoted as phenotypes), presented in Table 2. The 

fitness evaluation is ascertained using the equation f (x) = x^2, also elaborated in Table 

2. The Expected Count is derived from the equation: Expected count = N × Probability, 

with N symbolizing the population size, set at 4 in this instance. 

The next phase involves intricate genetic algorithm computations, aiming to 

ascertain the succeeding generation’s adaptability to the future environment. Initial 

steps encompass the selection of random 4-digit strings from a given population. Post 

selection, a specific mathematical criterion is employed to gauge the fitness of these 

strings. Subsequently, survival probabilities for each string are calculated, ranging 

between 0 and 1. This probability further aids in computing the survival chance for 

each string within the sampled population scaled between 0 and 4. 

The crossover mechanism, employing a singular cut point, is then initiated. The 

first two strings are interchanged, followed by a similar crossover for the subsequent 

pair. The offspring resulting from this exercise is showcased in Table 2. A subsequent 

mutation is performed on these offspring, albeit with minimal alterations. The outcome 

is a new generation of populations: 1001, 0011, 1101, 0110, which supplant the 

original sets (1101, 0001, 0100, 0011) respectively. 

(1). 1101 ≥ 1001  (2). 0001 ≥ 0011 

(3). 0100 ≥ 1101  (4). 0011 ≥ 0110 

Table 2. Evaluation of the next population. 

String No 

i 

Population 

(Genotypes) 

X value 

(Phenotypes) 

Fitness 

f (x) = X2  
Probability of i Expected count 

1 1001 9 81 0.216 0.864 

2 0101 5 25 0.067 0.268 

3 1101 13 169 0.451 1.804 

4 1010 10 100 0.266 1.064 

Sum  375 1 4.00 

Average  93.75 0.25 1 

Maximum  169 0.451 1.804 
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Hence, the total fitness has gone from 195 to 375 after a single generation, as 

shown in Table 2. This process runs again and again with new knowledge of the next 

DMS until all the relevant DMS are completed through adaptive automata. 

7. Case study-2 

This research delves into a simulation of efficient room allocations. It introduces 

a significant challenge for organizations such as Hospitals, Businesses, and 

Universities, where the need for space should be balanced. This case study is dedicated 

to simulating a Room Allocation System (RAS) implementing genetic algorithms to 

improve allocation strategies. RAS defines the allocation issues, which involves 

assigning unoccupied rooms to many users while addressing key limitations such as 

room capacity, scheduling and user preferences unlike traditional systems that often 

depend on static heuristics, Genetic algorithms-based techniques address dynamically 

evolving requirements. This makes it specifically useful for larger departments, where 

quick refinements and opposing demands are frequent. Each solution provides a 

potential room allocation structure. For example, the solution might encode which 

department is allocated to which room, considering different parameters such as the 

number of people and size of the room. This encoding develops the foundation of 

genetic operations such as mutation, crossover, and selection. The result minimizing 

unused space, overcapacity, and customization of adjacency. The Genetic Algorithms 

perform repeatedly, generating a random population of feasible solutions. High-

quality solutions are selected for their fitness scores.  

The crossover operations integrate the components of parent solutions to develop 

offspring and enable the discovery of new solutions. Additionally, mutation operations 

define some random changes in the solution, which leads to exit local optima and 

discovery of new frontiers. 

The test was conducted to evaluate the system’s efficiency. The study includes 

allocating 50 rooms to 20 departments at a medium-sized institute. Each department 

had many students and specific requirements, such as the adjacency of laboratories 

and offices. The solution successfully handles limitations and avoids scheduling 

conflicts. The genetic algorithm illustrated its efficiency by improving dynamic 

changes such as quick adjustments in room allocation within 30 seconds as shown in 

Table 3. 

Table 3. Room allocation comparison. 

Constraints Manual Allocation  Genetic algorithms-based 

Room capacity conflicts 18% 10% 

Scheduling 15% 0% 

Adjacency preferences 60% 90% 

Unoccupied space 25% 5% 

The system uses GAs to allocate rooms, considering students’ room preferences 

and other parameters such as age, department demands, and adjacency requirements. 

The detailed methodology of the strategic planning and frameworks for the proposed 

solution. A visual representation of the framework is divided in Figure 8.  
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Figure 8. Framework for development of room allocation system. 

Data collection is the basic part of the system, as it captures the students and room 

requirements for room allocation. Surveys were conducted by Google Forms to gather 

data from students living in two hostels one is male and one is female hostel. A total 

of 110 responses were collected. After the data collection process, preprocessing 

stages were conducted to prepare data for genetic algorithms such as data merging, 

cleaning, and enrichment. The study consists of solving the limitations of optimization 

issues with both hard and soft constraints. Hard constraints are non-negotiable and 

must be satisfied for the preferences. For example, age and room constraints. Soft 

constraints are not so necessary but recommended. For example, department, wing, 

and entrance preferences. 

The genetic algorithms validate the fitness scores to check how well they satisfy 

the specific constraints. After getting a solution, each solution is ranked according to 

its score. Solutions that resolve more constraints are ranked higher. In crossover, room 

allocation from parent solutions is integrated to develop offspring solutions. For 

example, Crossover must involve exchanging room allocations between different 

students who can share the same department.  

The mutation process introduces random changes to room allocations to prevent 

convergence. Ensures that genetic algorithms explore new solutions, specifically 

improving the overall score fitness of the population. The elitism method is used for 

best-performing solutions. Ensures that solutions are conserved, and provides the 

techniques for improvements.  

Resultantly, the algorithm maintains the effective room allocation without any 

changes. The genetic algorithm is repetitive. After each iteration, the population 

handles fitness evaluation, crossover, mutation, elitism, and ranked-based selection. 

The process continues until population convergence. Convergence means that an 

optimal solution has been addressed. Results are depicted in Table 4. 
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Table 4. Room allocations. 

Emails Hostel Retain Current Room Current Room New room 

Yekesman50@gmail.com Bethal splendor NO A6 C9 

Wuwepraman@gmail.com Bethal splendor NO A22 B23 

Nkelsmken50@gmail.com Bethal splendor NO B14 B33 

Dessyliam@gmail.com Bethal splendor NO B14 D31 

Chimanwoguwguw3938@gmail.com Felicia Adebisi dada YES D31 D20 

Yulongmeimei@gmail.com Felicia Adebisi dada YES E5 E5 

Yekesman50@gmail.com Felicia Adebisi dada YES E26 E26 

8. Conclusion and future research agenda 

Multi-agents are mostly used for collaborative problem-solving in distributed 

environments. Many of these environment-dependent applications deal with empirical 

analysis and mining of data. This paper describes a mechanism for solving a problem 

by learning mobile agents and combining adaptive automata and genetic algorithms to 

achieve reliability, automation, and efficiency. Multi-agent-based data mining is a 

time-consuming and complicated procedure. Still, by making use of this combination 

we can minimize the time consumption, eliminate deadlocks, and automate the whole 

process of mining. This paper has defined knowledge-based learning of mobile agents 

by using partial knowledge of multi-agents and the output of this correspondence is 

problem-specific refined knowledge. This mechanism will be an efficient approach to 

extract reliable knowledge in many fields. It will be modeled as a system and validated 

by simulation. Finally, it can be implemented in real-time scenarios to get the required 

refined knowledge.  
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