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Abstract: The power of Artificial Intelligence (AI) combined with the surgeons’ expertise 

leads to breakthroughs in surgical care, bringing new hope to patients. Utilizing deep learning-

based computer vision techniques in surgical procedures will enhance the healthcare industry. 

Laparoscopic surgery holds excellent potential for computer vision due to the abundance of 

real-time laparoscopic recordings captured by digital cameras containing significant 

unexplored information. Furthermore, with computing power resources becoming increasingly 

accessible and Machine Learning methods expanding across various industries, the potential 

for AI in healthcare is vast. There are several objectives of AI’s contribution to laparoscopic 

surgery; one is an image guidance system to identify anatomical structures in real-time. 

However, few studies are concerned with intraoperative anatomy recognition in laparoscopic 

surgery. This study provides a comprehensive review of the current state-of-the-art semantic 

segmentation techniques, which can guide surgeons during laparoscopic procedures by 

identifying specific anatomical structures for dissection or avoiding hazardous areas. This 

review aims to enhance research in AI for surgery to guide innovations towards more 

successful experiments that can be applied in real-world clinical settings. This AI contribution 

could revolutionize the field of laparoscopic surgery and improve patient outcomes. 

Keywords: artificial intelligence; deep learning; computer vision; laparoscopic surgery; 

semantic segmentation; anatomical structure 

1. Introduction 

Artificial Intelligence (AI) is a field within computer science that aims to 

comprehend and construct intelligent entities, frequently displayed as software 

applications (Russell and Norvig, 2016). Machine learning (ML) is a subfield of AI 

that encounters challenges with raw data, so it requires data preprocessing and feature 

extraction to obtain meaningful information, which is time-consuming and requires 

domain expertise(Jordan and Mitchell, 2015). Deep learning (DL) is a rapidly evolving 

approach that emerged from ML and enables direct learning from raw data (LeCun et 

al., 2015). Deep learning has its roots in the 1940s and has experienced three major 

developmental phases, with the most recent return starting in 2006 (Goodfellow et al., 

2016). Sengupta et al. identified several factors contributing to the rise of deep learning 

in the 21st century. These include the availability of big data with high-quality labels, 

advancements in optimization algorithms, specialized software platforms for 

integrating deep learning architectures, and increased parallel computing power 
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(Sengupta et al., 2020). DL is a cross-disciplinary field that becomes more effective 

as more data becomes available. Deep learning models can potentially solve problems 

across various sectors in the modern world (Ahmed et al., 2023). DL models have 

demonstrated efficacy in various domains, including cybersecurity (Alazab and Tang 

2019; Sarker 2021), bioinformatics (Amiri et al., 2024; Cao et al., 2020), robotics 

(Soori et al., 2023), climate prediction modeling (Lee et al. 2020, Rasp et al., 2018), 

commercial (Shin and Woo, 2024) industrial (Jauhar et al., 2024), education (Safarov 

et al., 2023) and healthcare (Rahman et al., 2024). 

AI is transforming healthcare, with recent breakthroughs in the surgical field due 

to the vast advancements of deep learning-based computer vision techniques (Esteva 

et al., 2019; Taher et al., 2022). Laparoscopic surgery presents a notable potential for 

applying computer vision techniques, primarily because of the large number of real-

time laparoscopic videos recorded by digital cameras containing valuable, 

underutilized information (Madad Zadeh et al., 2020). Moreover, computational 

power resources are increasingly accessible, and ML algorithms are experiencing 

rapid expansion across various sectors (Anteby et al., 2021). According to a statement 

made in 1978 by Dr. Frank Spencer, a cardiovascular surgeon, the successful 

execution of surgery predominantly depends on 75% decision-making and 25% 

manual skill (Spencer, 1978). Deep learning-based computer vision algorithms in 

laparoscopic surgical videos can aid decision-making (Anteby et al., 2021). The 

powerful combination of Computer Vision (CV) and Deep Learning (DL) models 

offers real-time guidance in the operating room, empowering surgeons with valuable 

insights and analyzing surgical videos to provide post-operative feedback (Guo et al., 

2023; Mascagni et al., 2021).  

While innovative experiments have been using DL for anatomical navigation in 

laparoscopic surgery, the research field remains in its early stages. This review 

investigates recent research on deep learning-based computer vision for anatomical 

navigation in laparoscopic surgery, aiming to enlighten researchers and enrich the field 

of AI-based surgery. Developing a real-time intraoperative deep learning model for 

visual guidance to support the surgeon’s decisions in identifying specific anatomical 

structures for dissection or avoiding hazardous areas can elevate the field of 

laparoscopic surgery to new heights.  

The research used Google Scholar, PubMedCentral, and Science Direct databases 

to review articles published in English from 2017 to January 2024. Research keywords 

are “anatomical navigation in laparoscopic surgery,” “minimally invasive surgery and 

AI,” “semantic segmentation in laparoscopic surgery,” “image-guided surgery,” and 

“deep learning-based computer vision and surgery.” There are a total of 31 articles 

matching these keywords. Of these, 15 studies have been approved for presenting 

anatomical navigation through semantic segmentation in laparoscopic surgery. Some 

presented studies also worked on tool segmentation but were not mentioned here. 

Moreover, studies on DL in robot-assisted surgery are excluded. 

This study initially provides a concise overview of laparoscopic surgery. 

Subsequently, it explains the specific types of computer vision models based on deep 

learning utilized in laparoscopic surgery. It then thoroughly examines anatomical 

navigation in laparoscopic surgery employing semantic segmentation approaches. The 

study explores performance metrics commonly used for semantic segmentation and 
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then delves into its limitations. The conclusion represents the suggested future 

direction of DL and laparoscopic surgery. 

2. Related works 

This section explains the use of deep-learning-based computer vision for 

intraoperative anatomical structure navigation in laparoscopic surgery and provides an 

overview of current experimental studies on this topic. 

2.1. Laparoscopic surgery 

Laparoscopy, also called Minimally Invasive Surgery (MIS), is a standard 

surgical procedure where the abdominal cavity is filled with gas to create room. 

Afterward, small incisions are made in the abdominal wall to introduce ports, allowing 

access for both a camera and surgical instruments. The surgery is then conducted with 

guidance from images transmitted to a video monitor (Badgery et al., 2022). 

Laparoscopic surgery is preferred to open surgery since there is less postoperative 

pain, rare complications, and fast recovery (Rivas and Díaz-Calderón, 2013; Ziogas 

and Tsoulfas, 2017). However, it’s important to acknowledge certain disadvantages 

associated with this approach. In laparoscopic surgery, the workspace is more confined 

than in open surgery, resulting in a more restricted field of view, which may lead to 

misinterpretation and further complications (Madani et al., 2022; Tomimaru et al., 

2018). The intraoperative stage is more complex due to tissue deformation, visual 

clarity challenges, and environmental circumstances (Taher et al., 2022). Achieving a 

safe dissection during surgery through expert intraoperative performance is an 

ongoing process that involves interpreting the surgical field and making crucial 

decisions (Madani et al., 2015). Surgical expertise and empirical findings indicate that 

skilled surgeons can visualize “safe” and “dangerous” dissection areas within 

challenging and unfamiliar anatomical landscapes (Madani et al., 2017). According to 

a recent review of human performance flaws in operations, more than 50% of patients 

who had postoperative problems were shown to be caused by identifiable human 

mistakes (Kolbinger et al., 2023), accounting for 18.8% of surgical complications are 

caused by misidentification incidents occurring during surgeries errors because of 

anatomy misrecognition (Suliburk et al. 2019).  

Establishing a real-time deep-learning model during surgery can significantly 

advance laparoscopic procedures. The model aims to visually guide surgeons, helping 

them identify specific anatomical structures for dissection or avoid potentially 

hazardous locations. 

2.2. Deep learning-based computer vision in laparoscopic surgery 

DL and CV are two subfields of AI that have actively contributed to laparoscopic 

surgery research for various purposes. Deep learning-based computer vision is the 

automated analysis of digital images replicating human visual abilities using machine 

learning techniques, particularly deep learning (Kolbinger et al., 2023). The processes 

primarily utilizing deep learning approaches in computer vision can be generally 

categorized into image classification, object detection, semantic segmentation, and 

instance segmentation (Kitaguchi et al., 2022). In image classification, images are 
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classified according to visual differences and can be applied for real-time automatic 

phase recognition in surgery (Kitaguchi et al., 2020; Padoy, 2019; Twinanda et al., 

2016). Object detection uses boxes around particular objects with labels to identify 

what is inside the box, such as surgical instrument detection (Yamazaki et al., 2020). 

Semantic segmentation classifies and labels each pixel in the image into a specific 

group, which can be helpful in intraoperative guidance (Madani et al., 2022). Instance 

segmentation is best applied when overlapping objects with different labels need to be 

identified, such as instrument intersection in surgery (Ross et al., 2021). This review 

focuses on the semantic segmentation process because it plays a crucial role in 

providing intraoperative guidance by effectively recognizing anatomical landmarks. It 

enhances decision-making processes and facilitates more precise dissection, lowering 

injury chances (Kitaguchi et al., 2022; Madani et al., 2022). Convolutional Neural 

Networks (CNNs) are widely recognized as the driving force behind the significant 

advancements in DL, particularly in image recognition tasks. Their introduction has 

led to remarkable improvements in the accuracy and performance of image recognition 

algorithms (Soffer et al., 2019). CNN’s deep learning architecture is widely employed 

to autonomously identify and classify components within laparoscopic surgery images 

and videos. These networks emulate the structure and function of the biological visual 

cortex, making them a prevalent and practical choice for such tasks (Hashimoto et al., 

2018). CNNs are integrated with other algorithms by choosing the most suitable 

algorithm combination to achieve its objective for performance enhancement 

(Beyersdorffer et al., 2021; Hashimoto et al., 2018). When the aim is semantic 

segmentation, essential algorithms commonly utilized include convolutional layers, 

max-pooling layers, fully connected layers, batch normalization layers, rectified linear 

units, and a global-pooling layer (Gu et al., 2018; LeCun et al., 1998). Nevertheless, 

most research efforts in deep learning-based computer vision for laparoscopic surgery 

have yet to succeed in a tangible clinical phase (Kolbinger et al., 2023; Maier-Hein et 

al., 2022). 

2.3. Anatomical navigation studies with semantic segmentation 

Anatomical structure identification has three main components: binary 

classification, organ detection, and organ segmentation (Anteby et al., 2021). This 

section will review recent experiments and studies conducted to identify anatomical 

structures with organ semantic segmentation for intraoperative guidance to aid 

surgeons in decision-making. Recognizing anatomical structures poses a significant 

challenge compared to identifying surgical instruments. Utilizing semantic 

segmentation for anatomical structures as surgical landmarks may lead to anticipated 

advancements in this area (Kitaguchi et al., 2022). This review focuses on anatomical 

navigation using the semantic segmentation technique in laparoscopic surgery. Table 

1 summarizes these studies, showing which laparoscopic procedurehas been tested, 

the DL model applied, the Dataset name, and the main performance metric, which is 

either Dice Coefficient (DC) or Intersection over Union (IoU), and in some studies is 

the F1/Dice score. 

 

 



Journal of Infrastructure, Policy and Development 2024, 8(15), 8939.  

5 

Table 1. Summary of anatomical navigation in laparoscopic surgery with semantic segmentation. 

Reference Laparoscopic Procedure Dataset Name DL Model 
Performance Metrics 

IoU DC 

(Gibson et al., 2017) Liver resection Proprietary 

F-CNNs 

(Caffe DL 

framework) 

NA ≥ 0.95 

(Scheikl et al., 2020) LC EndoVis 2019 

U-Net,  

TernausNet,  

LinkNet,  

SegNet, FCN 

0.783 NA 

(Madad Zadeh et al., 2020) 
Laparoscopic 

hysterectomies  

Proprietary 

(SurgAI)  
Mask R-CNN 

uterus:0.85 

ovaries:0.30 
NA 

(Kitaguchi et al., 2021) TaTME Proprietary DeepLabv3+ NA 0.77 

(Bamba et al., 2021) 
Colorectal, 

hernia, sigmoid resection 
Proprietary 

IBM Visual 

Insights 
NA NA 

(Mascagni et al., 2022) LC 
Proprietary  

(CVS) 
DeepCVS  0.67 NA 

(Igaki et al., 2022) TME Proprietary DeepLabv3+ NA 0.84 

(Kitaguchi et al., 2022) Colorectal resection LapSig300 
DeepLabv3 

ResNeSt-269 
NA 0.816  

(Madani et al., 2022) LC 

Cholec80 

M2CAI16- workflow 

Challenge  

CholeNet.  

GoNoGoNet  
> 0.5 0.7 

(Silva et al., 2022) LC CholecSeg8k 

U-Net, U-Net++, 

DynUNet, UNETR, 

DeepLabV3+  

NA 0.62 

(Kojima et al., 2023) colorectal surgery Proprietary 
DeepLabV3+,  

Xception 
NA 

HGN: 0.56 

SHP: 0.49 

(Laplante et al., 2023) LC 

Proprietary 

(Prospectively 

collected) 

GoNoGoNet NA 
go zone: 0.58 

nogo zone: 0.80 

(Kolbinger et al., 2023) 
Anterior rectal resections 

or rectal extirpations 

Dresden Surgical 

Anatomy 

DeepLabv3, 

SegFormer 

DeepLabv3 

specific: 0.28–0.83 

Combined: 0.23–

0.77 

SegFormer: 

specific: 

0.31–0.85 

Combined: 0.26–

0.67 

NA 

(Sengun et al., 2023) Adrenalectomy Proprietary 
ESFPNet 

(B2, B3, B4) 
0.66 0.77 

(Narihiro et al., 2024) Colorectal surgery Proprietary 

UreterNet  

FPN, 

EfficientNetB7 

NA 0.716 

FCN = Fully Convolutional Network, LC = Laparoscopic Cholecystectomy, IoU = Intersection over 

Union, DC = Dice Coefficient, TaTME = Transanal Total Mesorectal Excision, TME = Total 

Mesorectal Excision, CVS = Critical View of Safety, HGNs = HypoGastric Nerves, SHP = Superior 

Hypogastric Plexus, FPN = Feature Pyramid Networks, NA = Not Available. 

Table 1 emphasizes the recent studies that show the potential of anatomical 

segmentation by different deep-learning models to equip surgeons with an accurate 

guidance system and minimize surgical injuries and complications. Laparoscopic 

Cholecystectomy (LC) is a common minimally invasive surgical procedure that 
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contributes significantly to computer vision technology advancements (Guo et al., 

2023). The main factor is the publicly available datasets for AI-based research. In this 

review, and as shown in Table 1, several studies utilized LC datasets such as 

CholecSeg8k, Cholec80, M2CAI16-workflow Challenge, and EndoVis 2019. 

Moreover, Lablante et al. did their experiments with a small dataset by applying the 

same GoNoGoNet deep learning model from the study by Madani et al. The aim is to 

validate the model’s ability to identify safe and dangerous zones compared to expert 

surgeons with real-time guidance to reduce injury rates (Laplante et al., 2023; Madani 

et al., 2022). GoNoGoNet consists of two models: the “Go” model identifies safe 

zones within the hepatocystic triangle in each frame. In contrast, the “No go” model 

identifies areas that are not safe and could potentially cause major bile duct injury. The 

third DL model, “CholeNet,” is used to identify gallbladder, liver, and hepatocystic 

triangle anatomical structures. CholeNet and GoNoGoNet models are constructed 

using a deep CNN architecture for semantic segmentation, leading to good 

performance results (Madani et al., 2022). Scheikl et al. present 69 experiments 

conducted using various combinations of five DL architectures (with their variations) 

and three loss functions on the LC dataset from the Surgical Workflow and Skill 

Analysis of the Endoscopic Vision Challenge 2019. The study aims to introduce a 

context-aware assistance system for surgeons (Scheikl et al., 2020). Mascagni et al. 

also utilize LC recordings to segment hepatocystic anatomy by 2-stage DeepCVS 

using DeepLab v3+ with Xception 65 as a backbone to assess the Critical View of 

Safety (CVS) criteria (Mascagni et al., 2022). Silva et al. applied five DL networks 

(U-Net, U-Net derivatives, and DeepLabV3+) to segment eight anatomical structures 

from the CholecSeg8k dataset, aiming to determine the most effective computer-aided 

system (Silva et al., 2022). CholecSeg8k is a part of the Cholec80 dataset composed 

of LC procedures. 

On the other hand, several studies are presented here, and their datasets are not 

from LC procedures. Gibson et al. used the “Caffe” deep learning framework, a CNN 

architecture, for liver segmentation on a laparoscopic liver resection dataset. The study 

concluded that DL can accurately segment the liver from other structures (Gibson et 

al., 2017). Madad Zadeh et al. provided a semantic segmentation dataset for 

gynecology laparoscopic surgical images called “SurgAI.” The dataset is classified 

into three categories: uterus, ovaries, and surgical instruments obtained from Mask 

Regional Convolutional Neural Network (Mask R-CNN) (Madad Zadeh et al., 2020). 

Bamba et al. (2021) annotated frames containing the GI tract, blood, vessels, and 

uterus from different surgery recordings obtained from the surgery department at 

Tokyo Women’s Medical University. The study aims to enhance surgical education 

by utilizing the IBM Visual Insights framework, which incorporates various types of 

DL software (Bamba et al. 2021). In their feasibility study, Kitaguchi et al. attempted 

to minimize the likelihood of Urethral Injuries (UIs) during transanal total mesorectal 

excision (TaTME) surgery by proposing DeepLabV3+ deep learning model for 

segmenting the prostate area in real-time (Kitaguchi et al., 2021). Another feasibility 

study conducted by Kitaguchi et al. on image navigation to identify Inferior 

Mesenteric Artery (IMA) in laparoscopic colorectal surgeries. They used a subset from 

the LapSig300 dataset and employed DeepLabV3+ with ResNeSt-269 as a backbone 

(Kitaguchi et al., 2022). In their feasibility study, Igaki et al. (2022) developed an 
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image-guided navigation system using a DeepLabV3+ deep learning-based semantic 

segmentation model to locate the areolar tissue in the Total Mesorectal Excision 

(TME) plane. The dataset for this study was obtained from laparoscopic left-sided 

colorectal resection videos (Igaki et al., 2022). An experimental pilot study by Kojima 

et al. aims to protect the autonomic nerves, specifically the hypogastric nerve (HGN) 

and superior hypogastric plexus (SHP), during colorectal resection using the 

DeepLabV3+ with Xception deep learning algorithm for semantic segmentation 

(Kojima et al., 2023). Kolbinger et al. conducted an experimental study to help 

surgeons accurately identify eleven anatomical structures during laparoscopic 

colorectal procedures. The study aimed to achieve anatomical recognition near the 

human expert performance and compared the performance of the DeepLabV3+ and 

SegFormer deep learning models Moreover, the study provides the publicly available 

Dresden Surgical Anatomy dataset for machine learning research (Kolbinger et al., 

2023). Sengun et al. conducted an experimental study with three efficient stage-wise 

feature pyramid networks (ESFPNet) to obtain real-time guidance during laparoscopic 

transabdominal left adrenalectomy by identifying the left adrenal vein (Sengun et al., 

2023). Narihiro et al. (2024) performed semantic segmentation on experiments by a 

CNN model called “UreterNet” to avoid Iatrogenic Ureteral Injury (IUI) depending 

on laparoscopic colorectal surgery. 

The experimental studies discussed here all recommend using CNN architecture 

for semantic segmentation, utilizing various networks. However, the DeepLabV3+ 

deep learning model has been used in multiple studies for anatomical image navigation 

systems. Additionally, some studies have applied multiple DL models to enhance their 

results. 

The best Dice Similarity Coefficient (DSC), or in short, Dice Coefficient (DC) 

study result is by Gibson et al., which achieved more than 95% in liver segmentation. 

The high DC result could be due to the liver size and appearance, which can be easily 

identified and segmented (Gibson et al., 2017). The rest of the studies that computed 

DC ranged between 0.5 and 0.8; however, there is no direct comparison between these 

studies because the dataset size, anatomical type, and deep learning algorithms differ. 

For studies that use Intersection over Union (IoU) as a metric for evaluation, the results 

obtained are between 0.28 and 0.85. 

Several factors may impact the results of performance metrics. These include the 

size and quality of the dataset, the precise frames annotation of the ground truth, the 

location of the anatomical part (whether it’s under fats or covered with blood), 

environmental factors in the operating room (such as smoke or blur), the source of the 

dataset (whether it’s from multiple institutions to ensure generalizability and prevent 

overfitting, or from a single data source), and the DL algorithms applied with different 

validation techniques. 

The following subsections provide detailed information about the study design of 

the literature presented in Table 1. They include details about the dataset annotation 

methods, the experimental optimization plan, and the evaluation metrics used in these 

studies and conclude with a discussion of patient privacy. 
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2.3.1. Data annotation 

Table 2. Data annotation information summary. 

Reference Anatomical Structure Frame/Video No. Manual Annotation Tool Annotator(s) 

(Gibson et al., 2017) Liver 2050 frames/13 videos NA 

Clinical research 

associate in General 

Surgery 

(Scheikl et al., 2020) Liver, fat, and Gb 210 images/12 videos Polygon tool Medical students 

(Madad Zadeh et al., 2020) Uterus, ovaries 461 images Supervisely online software 
1 junior surgeon, 1 

expert surgeon 

(Kitaguchi et al., 2021) Prostate area  500 images/17 videos Microsoft Surface Pen 
2 board-certified 

colorectal surgeons 

(Bamba et al., 2021) 
GI tract, blood, vessels, 

uterus 

Image: GI tract = 1781, 

Vessels = 352; blood = 

208; uterus= 63  

Polygon tool Field experts 

(Mascagni et al., 2022) Hepatocystic anatomy 2854 images/201 videos 
Custom-made annotation 

software 

3 surgeons, have 

different surgical 

experiance 

(Igaki et al. 2022) Areolar tissue in the TME 600 images/32 video NA One colorectal surgeon  

(Kitaguchi et al., 2022) IMA lymph dissection line 1200 images/60 videos Microsoft Surface Pen 2 colorectal surgeons 

(Madani et al., 2022) 
Gb, liver, and hepatocystic 

triangle 
2627 frames/290 video Think Like A Surgeon 

3 acute care and MIS 

surgeons, fourth high-

volume hepatobiliary 

surgeon for review 

(Silva et al., 2022) 

AW, Liver, GT, Fat, Gb, 

CT, Blood, Cystic Duct, 

Hepatic Vein, Liver 

Ligament 

8080 frames/17 video Pixel Annotation Tool NA 

(Kojima et al., 2023) 
HGN, SHP, and their 

colorectal branches 

HGN:12978frames (245 

videos)  

SHP:5198 frames 

(44videos) 

NA 

Junior colorectal surgeon 

with one board certified 

colorectal surgeon, two 

non-medical staff 

(Laplante et al., 2023) 
hepatocytic triangle, 

gallbladder, liver 
47 frames/25 videos Think Like A Surgeon  

High-volume expert 

surgeons  

(Kolbinger et al., 2023) 

Abdominal wall, Colon, 

IMA, Intestinal veins, 

Liver, Pancreas, Small 

intestine, Spleen, Stomach, 

Ureter, Vesicular glands 

13195images (32 videos) CVAT  

3 annotators 

independently, then 

fusion by the STAPLE 

algorithm  

(Sengun et al., 2023) Left adrenal vein 2000 image (40 videos) CVAT 

An endocrine surgeon 

and a surgeon-in-

training, reviewed by 2 

senior endocrine 

surgeons  

(Narihiro et al., 2024) Ureter 14,069 images (304 videos) NA 

10 annotators under 3 

board-certified colorectal 

surgeons 

LC = Laparoscopic Cholecystectomy, UI = Urethral injury, TaTME = Transanal Total Mesorectal 

Excision, TME = Total Mesorectal Excision, CVS = Critical View of Safety, IMA = Inferior 

Mesenteric Artery, BDI = Bile Duct Injury, AW = Abdominal wall, GT = Gastrointestinal Tract, CT = 

Connective Tissue, Gb = Gallbladder, HGNs = HypoGastric Nerves, SHP = Superior Hypogastric 

Plexus, NA = Not Available, CVAT = Computer Vision Annotation Tool. 

The first step for the semantic segmentation algorithm applied in medical image 

segmentation is to prepare the dataset by pixel-wise annotating the targeted anatomical 
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structures. In contrast to medical images like CT and MRI scans, identifying organ 

areas in intraoperative video is challenging due to unclear surrounding boundaries. 

Pixel-wise annotation reflects the spatial location and appearance, which requires 

manual annotation for each frame. Like an expert surgeon, a qualified professional 

must perform the data annotation. Table 2 provides a summary of the literature data 

annotation-related information. 

2.3.2. Semantic segmentation optimization methods 

Developing a deep learning model for semantic segmentation of anatomical parts 

in MIS requires optimization methods to guarantee the best applicable results. 

However, as of the date of this literature, no study has met the clinical criteria to be 

applied inside the operating room. Optimizing experiments begins with the dataset; 

when the data size is small, some studies use augmentation to increase the size and 

consider different angles and situations that the frame may encounter. Also, to increase 

the training size of the data and evaluate the performance, most studies followed the 

N-fold cross-validation, where N= dataset partition number. Usually, N-1 partitions 

were used for the training set, and the last part was used for the validation set. This is 

done N times where, in each iteration, the validation set will change. The partitions 

should be per-case level to avoid data from the training set appearing in the validation 

set (Madani et al., 2022). Experimental design summary of the literature is shown in 

Table 3. 

Table 3. Experimental design summary. 

Reference 
Data  DL Design 

Augmentation N-fold cross-validation Pretrained DL architecture Hyperparameters 

(Gibson et al., 2017) N 13-fold cross-validation N 

Fully-CNN: 

Convolutional feature layer, 

Four deep residual learning 

units  

Three segmentation units  

Fusion layer  

Logistic loss  

Learning rate 

weight decay 

momentum 

(Scheikl et al., 2020) Y N Y 

U-Net  

TernausNet/VGG 

encoder 

FCN/up sampling sizes 

LinkNet/ResNet encoder 

SegNet 

Adam Optimizer 

learning rate 

loss functions: 

Soft-Jaccard (SJ) 

Generalized Dice (GD)  

Cross Entropy (CE)  

(Madad Zadeh et al., 

2020) 
N N Y 

Mask R-CNN from Facebook 

AI Research  

Transfer learning (update 

NN weights) 

(Kitaguchi et al., 2021) Y 5-fold cross-validation Y DeepLab v3 plus  NA 

(Bamba et al., 2021) N N N 

IBM Visual Insights:  

GoogLeNet,  

Faster R-CNN,  

Tiny YOLO V2,  

YOLO V3,  

Detectron, 

SSD 

SSN 

5e-4 Weight decay 

0.9 Momentum 

1e-3 Learning rate 

4000 max iterations 

(Mascagni et al., 2022) N 5-fold cross-validation Y 

Two stages of DeepCVS  

Deeplab v3+ 

6-layer classification network  

NA 
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Table 3. (Continued). 

Reference 
Data  DL Design 

Augmentation N-fold cross-validation Pretrained DL architecture Hyperparameters 

(Igaki et al. 2022) N N Y DeepLabv3plus.  NA 

(Kitaguchi et al., 2022) N 5-fold cross-validation Y 

DeepLabv3+  

ResNeSt-269 network 

backbone  

Y 

(Madani et al., 2022) N 10-fold cross-validation N 

GoNoGoNet/CholeNet 

PSPNet: 

CNN; ResNet50 

Pyramid pooling module  

(multi-scale) 

NA 

(Silva et al., 2022) Y N N 

DeepLabV3+  

U-Net,  

U- Net++ 

DynUNet 

UNETR (transformers and 

CNN)  

Average Dice loss  

Adam optimizer.  

1e-4 learning rate  

500 epochs 

(Kojima et al., 2023) N 5-fold cross-validation Y 
DeepLabV3+ 

Xception  
Y 

(Laplante et al., 2023) N 10-fold cross-validation N GoNoGoNet NA 

(Kolbinger et al., 2023) Y 4-fold cross-validation Y 

DeepLabv3/SegFormer 

Structure-specific model 

(individual 

encoders/decoders)  

Combined model  

(common encoder/individual 

decoders) 

Cross-entropy loss 

AdamW optimizer 

1e-4 learning rate 

100 epochs 

(Sengun et al., 2023) N N Y 

ESFPNet:  

(B2, B3, B4) sizes 

MiT encoder 

ESFP decoder  

Binary Cross Entropy  

AdamW optimization,  

1e-4 learning rate, 200 

epochs  

(Narihiro et al., 2024) N N N 

UreterNet: 

FPN(CNN) 

EfficientNetB7 (backbone) 

Y 

N = No, Y = Yes, NA = Not Available, PSPNet = Pyramid Scene Parsing Network, SSD = Single Shot 

Detector, SSN = Structured Segment Network, MiT = Mix Transformer, FPN = Feature Pyramid 

Network. 

2.3.3. Results evaluation metrics 

The main performance metric that reflects the semantic segmentation 

performance of deep learning algorithms in identifying anatomical structures is the 

Dice Similarity Coefficient (DSC) or Intersection over Union (IoU), as presented in 

all literature. However, other performance metrics are also adopted in some studies to 

demonstrate the efficient segmentation capability of deep learning algorithms. The F1 

score with dice represents the spatial correlation between ground truth annotation and 

model prediction; however, three studies adopted the F1 score. Precision, recall, 

sensitivity, and specificity are commonly reported in various studies, along with 

Positive Predictive Value (PPV) and Negative Prediction Values (NPV). Frame Per 

Second (FPS) measures the model inference time per frame to evaluate if it is a near 

real-time performance. If the frame rate exceeds 20 frames per second, it operates in 

real-time, as in the DeepLabv3 FPS result (Kolbinger et al., 2023).  

Table 4 presents the evaluation metrics computed in the literature. Section 3 will 
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provide a thorough explanation of these evaluation metrics. 

Table 4. Presence of evaluation metrics in literature. 

Reference F1score DC IoU PPV NPV FPS Precision Recall Specificity Sensitivity 

(Gibson et al., 2017)           

(Scheikl et al., 2020)           

(Madad Zadeh et al., 2020)           

(Kitaguchi et al., 2021)           

(Bamba et al., 2021)           

(Mascagni et al., 2022)           

(Igaki et al. 2022)           

(Kitaguchi et al., 2022)           

(Madani et al., 2022)           

(Silva et al., 2022)           

(Kojima et al., 2023)           

(Laplante et al., 2023)           

(Kolbinger et al., 2023)           

(Sengun et al., 2023)           

(Narihiro et al., 2024)           

2.3.4. Ethical considerations 

All the studies mentioned in this literature followed a protocol reviewed and 

approved by the research ethics board responsible for study registration. Additionally, 

all studies obtained informed consent from all participants, and all the mentioned 

datasets were anonymized. 

3. Evaluation metrics in semantic segmentation 

Anatomical structures’ semantic segmentation model 

s often measure performance using the following metrics: DSC, IoU, F1 score, 

PPV, NPV, recall, precision, specificity, and sensitivity, as presented in Table 4. 

However, it’s important to note that specificity and accuracy can be misleading in 

scenarios with small anatomical structures due to a potential bias toward the true 

negative class imbalance (Müller et al., 2022). Other research also emphasizes Frames 

Per Second (FPS), which indicates the frequency of model intervention within each 

frame measured in milliseconds (ms) (Kolbinger et al., 2023). This metric assesses 

whether the system operates in near real-time performance or experiences delays. 

However, the DSC is the predominant measure utilized in most scientific articles on 

MIS for evaluating the accuracy of semantic segmentation (Liu et al., 2021).  

The DSC is defined as follows: 
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DSC=
2×|𝐴⋂𝐵|

|𝐴|+|𝐵|
 (1) 

where A is the manual annotation of an expert surgeon, and B is the DL prediction of 

anatomical area o, The degree of overlap between A and B directly correlates with the 

level of success of DL, which is quantified by a number ranging from 0 to 1. The ideal 

correlation coefficient is 1, indicating a perfect match, whereas 0 means no overlap 

(Kitaguchi et al., 2022; Liu et al., 2021). 

Figure 1 depicts the DSC assessment using images from experiments 

implemented by the YOLOv8x-seg deep learning model to segment the left ureter. 

Subfigure (a) displays the manual annotation performed by a colorectal surgeon, 

denoted as (A). while subfigure (b) displays the predicted value by the DL model, 

denoted as (B). Subfigure (c) represents the intersection of (A) and (B), and this is 

denoted as (A ∩ B). Subfigure (d) presents the mathematical formula of the DSC 

metric with A, B, and (A ∩ B) parameters and their visual representation in the case 

of left ureter segmentation. Figure 1 is a modified version of the figure originally 

shown in (Kitaguchi et al., 2022).  

 

Figure 1. DSC illustrated example from left ureter segmentation. 

IoU is also employed in many experimental studies in semantic segmentation but 

with a stricter overlap assessment. For minimally invasive surgery, like laparoscopic 

surgery, the boundaries of anatomical structure images are not well-defined, making 

DSC more practical than IoU (Kitaguchi et al., 2022). In terms of the confusion matrix, 

intersection over union is calculated as follows: 

IoU =
TP

TP + FP + FN
 (2) 

where TP = True Positive, FP = False Positive, FN = False Negative (Müller et al. 
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2022). Kolbinger et al. (2022) and Madani et al. (2022) utilized F1/Dice spatial 

correlation index score to measure the accuracy of object segmentation. Dice 

coefficient score is computed in terms of confusion matrix, as shown: 

Dice (DSC) =
2TP

2TP + FP + FN
 (3) 

Dice score is computed for each sample (image) to present the overlap between 

groud truth and model prediction in semantic segmentation (Igaki et al., 2022; 

Kitaguchi et al., 2022; Quero et al., 2022). F1 score represents the overall performance 

of a model by the precision and recall metrics combinations (Quero et al., 2022). The 

F1/Dice score considers the size of the object and its positional accuracy (Carass et 

al., 2020). However, it is important to assume that the value of fine anatomical 

structures will be underestimated compared to surgeon vision. This small error can 

have a significant impact on the denominator of the formula, which includes both False 

Positive (FP) and False Negative (FN) values (Eelbode et al., 2020), as shown: 

F1

Dice
=

TP

TP +
1
2

(FP + FN)
 (4) 

Other evaluation metrics mentioned in Table 4 are calculated as follows (Müller 

et al. 2022; Narihiro et al. 2024): 

Precision =
TP

TP + FP
 (5) 

Recall =
TP

TP + FN
 (6) 

Sensitivity =
TP

TP + FN
 (7) 

Specificity =
TN

TN + FP
 (8) 

4. Challenges of using DL in laparoscopic surgery 

In laparoscopic surgery, computer vision research has primarily focused on 

preclinical phases. Until now, no AI model using intraoperative surgical imaging data 

has been implemented in operating rooms (Kolbinger et al. 2023; Maier-Hein et al., 

2022). Several factors are hindering the advancement of AI’s role in MIS. A key 

barrier is the need for a centralized infrastructure for data storage, annotation, model 

development, and deployment. The limited availability of high-quality annotated 

images and video datasets hinders AI’s progress in MIS. Many studies have used 

datasets from a single institution, which limits generalizability. The insufficient 

collaboration between scientific researchers and surgeons limits the possibility of 

developing AI solutions that may successfully meet unfulfilled patient demands in the 

field of surgery. The small size and fatty tissue coverage of vessels and nerves pose a 

significant challenge to surgeons and AI regarding anatomical factors. The growing 

adoption of AI in surgery presents various technological, ethical, therapeutic, and 
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business-related obstacles. To facilitate the rapid and secure growth of AI 

implementation in the field of surgery, it is imperative to ensure that surgeons possess 

comprehensive fundamental AI principles and their potential applications across 

various stages of surgical patient care. 

5. Conclusion 

This review explores recent advancements in deep learning-based computer 

vision for anatomical navigation in laparoscopic surgery, seeking to inform 

researchers and advance the field of AI-assisted surgery. A real-time intraoperative 

deep learning model for visual guidance could significantly enhance laparoscopic 

surgery by aiding surgeons in identifying specific anatomical structures and avoiding 

potential hazards. 

Postoperative issues were caused by identifiable human errors, contributing to 

mistakes due to misrecognition of anatomy. Nevertheless, it is crucial to recognize 

specific drawbacks linked to laparoscopic surgery, which involves a limited 

workspace resulting in a narrower field of view, which could lead to 

misunderstandings and risky decisions. Developing a real-time intraoperative deep 

learning model to provide visual guidance, aiding surgeons in identifying specific 

anatomical structures for dissection or avoiding risky areas, has the potential to 

advance the field of laparoscopic surgery significantly. 

For future perspectives, it is advisable to prepare the data for preprocessing and 

annotation by expert surgeons from all surgery departments to enhance the research 

on this topic. A standardized data pipeline facilitating international collaboration and 

centralized model deployment through a cloud-based environment is crucial for 

advancing AI in surgery, especially in complex laparoscopic procedures. Also, the DL 

models should be practiced in the operating room in a simulated way to address the 

possible risks and potential obstacles.  

Conflict of interest: The authors declare no conflict of interest. 
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