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Abstract: This paper explores the integration of Large Language Models (LLMs) and 

Software-Defined Resources (SDR) as innovative tools for enhancing cloud computing 

education in university curricula. The study emphasizes the importance of practical knowledge 

in cloud technologies such as Infrastructure as a Service (IaaS), Platform as a Service (PaaS), 

Software as a Service (SaaS), DevOps, and cloud-native environments. It introduces Lean 

principles to optimize the teaching framework, promoting efficiency and effectiveness in 

learning. By examining a comprehensive educational reform project, the research demonstrates 

that incorporating SDR and LLMs can significantly enhance student engagement and learning 

outcomes, while also providing essential hands-on skills required in today’s dynamic cloud 

computing landscape. A key innovation of this study is the development and application of the 

Entropy-Based Diversity Efficiency Analysis (EDEA) framework, a novel method to measure 

and optimize the diversity and efficiency of educational content. The EDEA analysis yielded 

surprising results, showing that applying SDR (i.e., using cloud technologies) and LLMs can 

each improve a course’s Diversity Efficiency Index (DEI) by approximately one-fifth. The 

integrated approach presented in this paper provides a structured tool for continuous 

improvement in education and demonstrates the potential for modernizing educational 

strategies to better align with the evolving needs of the cloud computing industry. 

Keywords: LLMs; cloud computing; software-defined resources (SDR); lean principles; 
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1. Introduction 

1.1. Background 

Cloud computing has revolutionized the way organizations access, manage, and 

utilize computing resources, providing scalable, on-demand services that align with 

modern business needs. With enterprises increasingly shifting to cloud-based 

solutions, there is a growing demand for professionals with deep expertise in cloud 

technologies (Gartner Research, 2016). However, traditional educational models often 

struggle to keep up with the rapid pace of advancements in cloud computing, leading 

to a significant skills gap and impacting the ability of graduates to meet industry 

expectations. 

The emergence of Large Language Models (LLMs), such as ChatGPT, presents 

new opportunities to enhance educational experiences. LLMs have shown significant 

potential in providing interactive, adaptive, and personalized learning environments, 

which can support students in acquiring complex technical skills more effectively 

(Extance, 2023). Their integration into cloud computing education offers a promising 

CITATION 

Pan W, Yang Y, Yin H. (2024). 

Integrating LLMs and software-

defined resources for enhanced 

demonstrative cloud computing 

education in university curricula. 

Journal of Infrastructure, Policy and 

Development. 8(12): 8751. 

https://doi.org/10.24294/jipd.v8i12.8751 

ARTICLE INFO 

Received: 26 August 2024 

Accepted: 25 September 2024 

Available online: 4 November 2024 

COPYRIGHT 

 
Copyright © 2024 by author(s). 

Journal of Infrastructure, Policy and 

Development is published by EnPress 

Publisher, LLC. This work is licensed 

under the Creative Commons 

Attribution (CC BY) license. 

https://creativecommons.org/licenses/

by/4.0/ 



Journal of Infrastructure, Policy and Development 2024, 8(12), 8751.  

2 

way to modernize curricula, making them more responsive to the dynamic nature of 

cloud technologies. 

1.2. Problem statement 

Despite the rapid advancements in cloud computing, educational curricula often 

lag behind, focusing more on theoretical knowledge than on the practical skills needed 

for cloud environments. This gap is exacerbated by the increasing complexity of cloud 

services, which now include Infrastructure as a Service (IaaS), Platform as a Service 

(PaaS), Software as a Service (SaaS), DevOps practices, and cloud-native 

technologies. Current educational models do not sufficiently address the need for 

hands-on experience with these technologies, leaving students underprepared for 

industry challenges. 

Additionally, while LLMs have shown promise in enhancing learning, their 

potential remains underexplored in the context of cloud computing education. There 

is a pressing need to integrate LLMs into curricula to provide students with real-time 

feedback and personalized learning paths, thereby bridging the gap between 

theoretical instruction and practical application. 

1.3. Research objective 

This paper advocates for a transformative approach to cloud computing education 

by integrating Software-Defined Resources (SDR) and LLMs into university 

curricula. The study emphasizes the importance of embedding practical applications 

of IaaS, PaaS, SaaS, DevOps, and cloud-native technologies to better equip students 

for the evolving demands of the cloud computing industry. Furthermore, it proposes 

the use of LLMs as interactive learning tools to provide immediate feedback and 

personalized guidance, fostering deeper understanding and skill acquisition in cloud 

technologies (ByteDance Cloud Native, 2024; Extance, 2023). 

In university education, achieving adequate diversity in a course means ensuring 

that: 1) the core themes of the course are properly organized; 2) the most valuable 

knowledge in the field is taught, while less significant content is excluded; and 3) the 

course is agile enough to synchronize with the evolving knowledge in the field. This 

approach is supported by agile course design principles that emphasize flexibility and 

adaptability in curriculum development (Rowan et al., 2022). Moreover, the use of 

agile methodologies fosters responsiveness to changing educational requirements, 

ensuring that students are equipped with the latest skills and knowledge (López-

Alcarria et al., 2019). Lastly, incorporating innovative course design strategies like 

inquiry-based learning and project-based approaches ensures that the focus remains 

on critical knowledge areas, enhancing both engagement and relevance in the 

educational process (Mintz, 2021). 

To achieve this, the paper introduces the innovative Entropy-Based Diversity 

Efficiency Analysis (EDEA) framework, which assesses and optimizes both the 

diversity and efficiency of educational content. While traditional methods like the 

Herfindahl index and Theil entropy index have been widely applied to measure 

diversity in higher education (Widiputera et al., 2017), the EDEA framework goes 

further by integrating a diversity metric with an efficiency measure. This integrated 
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strategy bridges the gap between traditional educational practices and the rapidly 

evolving technological landscape, preparing students to thrive in modern cloud 

environments. 

2. Materials and methods: Implementing software-defined 

resources in cloud computing education 

2.1. Concept and definition 

Software-Defined Resources (SDR) have two key implications in the context of 

cloud computing education. First, SDR refers to the abstraction of physical resources 

into virtual entities managed through software, enabling the dynamic allocation, 

configuration, and centralized management of cloud services and resources. This can 

be achieved through cloud platforms or code-based tools such as Azure Service Fabric 

(Bai, 2019) and Kubernetes (Burns et al., 2022), which allow developers to define and 

manage cloud resources programmatically. This aligns with the interactive and hands-

on approach needed in modern cloud education, where tools like LLMs can enhance 

the understanding and application of these concepts. 

Second, SDR serves as a guiding principle for establishing the content of cloud 

knowledge and skills education. Only content directly related to SDR—meaning the 

use of cloud technologies to define, manage, and operate resources—should be 

considered part of cloud computing knowledge. 

The following definition summarizes the core concept of cloud computing and 

SDR: 

Definition 1. Cloud Computing and Software-Defined Resources (SDR). In essence, 

the cloud consists of resources, and cloud computing abstracts and manages those 

resources using software technologies. This is called Software-Defined Resources 

(SDR). 

Technologies or concepts that are not directly connected to SDR and can exist 

independently should not be taught as cloud knowledge. This distinction is crucial 

because the scope of cloud services has become increasingly complex, and current 

teaching practices often stray from this core. By clearly defining what constitutes 

cloud computing knowledge, we can ensure that cloud education remains focused on 

the essential competencies required for modern cloud environments, rather than being 

diluted by peripheral topics. 

In the realm of cloud computing, traditional terms such as Software-Defined 

Infrastructure (SDI) (Kandiraju et al., 2014) and Software-Defined Data Center 

(SDDC) (Gartner Research, 2016) are widely recognized. While SDI and SDDC 

provide a solid foundation for understanding cloud infrastructure, they do not fully 

address the evolving needs of developers and application deployers. Recent 

advancements, such as machine learning-based performance prediction models for 

Software-Defined Networking (SDN), further demonstrate the potential of integrating 

ML techniques to optimize SDR environments (Jiang et al., 2024). 

2.2. The lag and limitations of educational disciplinary classification 

Current university software education lags behind the needs of the industry, 
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primarily because the scope of software technologies is vast and evolves rapidly. It is 

difficult for educators to keep pace with these changes, as mastering the breadth and 

depth of modern software development is a challenge even for experts. As a result, 

curricula often fail to adequately prepare students for the demands of the software 

industry. 

The traditional classifications of computer science and software engineering, as 

outlined in the ACM Computing Classification System (CCS) (ACM, 2012), the 

IEEE/ACM Joint Task Force on Computing Curricula (IEEE Computer Society and 

ACM, 2013), and SWEBOK (Software Engineering Body of Knowledge) (IEEE 

Computer Society, 2014), offer detailed standards and recommendations. However, 

modern software development has expanded to cover multiple programming 

languages, frameworks, toolchains, and emerging technologies such as cloud 

computing, microservices, and DevOps. Although information technology and 

software engineering have rapidly evolved over the past decade, SWEBOK, as a 

crucial software engineering knowledge classification system, has not been updated 

since 2014. This stagnation means that many modern practices and technologies, such 

as cloud-native architectures and continuous integration/continuous deployment 

(CI/CD), are not adequately represented. 

Cloud computing, which plays a critical role in modern software infrastructure, 

further amplifies this gap. The rapid growth and complexity of cloud technologies, 

from infrastructure (IaaS) to platform services (PaaS), make it even harder for 

academic institutions to keep up. Consequently, cloud computing education has never 

been properly established, leaving students underprepared for the cloud-centric 

realities of the software industry. 

2.3. Cloud computing: An evolved software engineering 

Cloud Computing can be seen as an advanced version of software engineering, 

as it diverges significantly from traditional software engineering concepts. 

• Architectural Perspective Shift: In cloud environments, issues like resilience, 

availability, and security, which were traditionally the focus of architecture 

design, are now addressed by cloud service capabilities, leading to a greater focus 

on microservices architecture. For example, Azure offers multiple redundancy 

options for storing data, which can include storing data in either three or six 

copies, depending on the redundancy level chosen (Koo, 2020). 

• Automation of Architecture: The “microservices orchestration” in cloud 

computing achieves automated management of architecture, marking a 

significant departure from basic software engineering. These changes 

demonstrate that cloud computing is no longer merely a supplement to traditional 

soft-ware engineering but represents an evolution, bringing new challenges and 

opportunities. For example, ByteDance uses Kubernetes, a cloud-native 

container orchestration tool, to manage over 10 million Pods and more than 

210,000 servers in China (ByteDance Cloud Native, 2024). 

• Emphasis on DevOps Automation: Cloud computing has driven the automation 

of software engineering processes, particularly through DevOps practices such as 

deployment, scaling, and infrastructure management. Many manual operations 
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have been replaced by automated tools and platforms (Scholl et al., 2019). 

Traditional computer science and software engineering courses typically focus 

on foundational concepts like algorithms, data structures, and object-oriented 

programming, often emphasizing manual processes in software development 

rather than the automated practices now common in cloud-native environments. 

With the rise of cloud-native technologies, the focus has shifted to developing 

and managing applications across distributed environments, introducing new 

categories such as microservices architecture, continuous integration and 

continuous deployment (CI/CD), and Infrastructure as Code (IaC). These areas 

are crucial for building resilient and scalable systems but are often not deeply 

covered within traditional educational frameworks. 

2.4. CNCF cloud native landscape: A new knowledge classification 

The increasing complexity of cloud-native environments, as discussed in the 

previous section, has necessitated the development of new frameworks for 

understanding and categorizing modern software development knowledge. The CNCF 

Cloud Native Landscape (CNCF Cloud Native Landscape, 2024), considered a natural 

choice, includes hundreds of tools, providing a new classification of software 

development knowledge that goes beyond traditional computer science and software 

engineering classifications. 

Table 1. Evolving knowledge framework in cloud-native technologies: Categorization and significance across key 

domains. 

Category Subcategories 

App Definition and Development 
Application Definition & Image Build, Database, Continuous Integration & Delivery, Streaming & 

Messaging 

Orchestration & Management 
Scheduling & Orchestration, Service Mesh, Remote Procedure Call, Service Proxy, API Gateway, 

Coordination & Service Discovery 

Runtime Cloud Native Storage, Cloud Native Network, Container Runtime 

Provisioning Security & Compliance, Automation & Configuration, Container Registry, Key Management 

Observability and Analysis Observability, Continuous Optimization, Chaos Engineering, Feature Flagging 

Definition 2. Cloud Native. Cloud-native technologies leverage cloud infrastructure, 

including IaaS, PaaS, and other cloud services, with node provisioning, storage, 

networking, and load balancing deeply integrated into microservices and pods. Built 

on top of these services, cloud-native approaches introduce abstractions that enable 

automation, scalability, and resilience, providing a modern perspective on software 

development and engineering. These technologies are designed to create dynamic, 

scalable, and distributed systems that efficiently address the complexities of modern, 

cloud-centric software environments, while also supporting continuous integration, 

continuous deployment (CI/CD), and DevOps practices. 

Table 1 outlines the evolving knowledge framework in cloud-native 

technologies, representing a significant departure from traditional technology 

frameworks. It focuses on modern cloud-native technologies that have emerged 

largely within the past decade. A substantial portion—likely over 70%—of the 

technologies and knowledge represented in this framework have developed or matured 
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in the last 10 years. 

Cloud-native technologies represent a significant shift in paradigms, rapid 

evolution of cloud-native tools, and a notable change in focus. 

2.5. SDR: Addressing the design challenges of cloud computing courses 

Cloud computing, as a critical technology in modern software development, has 

become an essential part of the software school curriculum. However, software 

schools face multiple challenges when teaching cloud computing in the current higher 

education environment. 

• The Overlooked Perspective—Cloud as a Business: From a commercial 

standpoint, “cloud” is essentially the commercialization of computing technology 

and resources. The core of cloud services lies in the on-demand provision of 

computing resources, storage, networking, etc.—all of which are software-

defined resources (SDR). This is fundamentally different from the traditional IT 

infrastructure purchase and management methods. Understanding the business 

model of the cloud and recognizing how it offers flexibility, scalability, and cost-

effectiveness to enterprises is a core part of cloud computing education. 

• Breadth and Depth of Knowledge: SDR has triggered rapid evolution in soft-ware 

engineering and development technologies. The expansion of software 

development knowledge and the diversification of technology stacks make it 

challenging to address software development skills education within traditional 

computer science knowledge and educational discipline classifications. 

• Misconceptions in Course Design: There has long been confusion in course 

design. Distributed computing, big data, and virtualization technologies, although 

related to cloud services, are not unique to them. These technologies existed 

before the rise of cloud computing and are widely applied in non-cloud 

environments. These technologies themselves are not SDR, although they enable 

SDR. The complexity and depth of these technologies make them more suitable 

for specialized courses rather than being the core content of an introductory cloud 

computing course. Overemphasizing these non-cloud-specific technologies in a 

foundational cloud course may lead to two issues: 

• Lack of Depth: Due to time and course schedule constraints, students may 

find it challenging to deeply understand and master these complex 

technologies in an introductory cloud course, ultimately resulting in 

superficial knowledge without systematic understanding. 

• Hindering the Formation of Correct Concepts: Students may be confused by 

the course content and fail to accurately understand the core concepts and 

true value of cloud computing, mistakenly thinking that cloud computing is 

merely a combination of distributed computing, big data, and virtualization, 

thereby overlooking not only its commercial value but also its role in 

enabling scalability, flexibility, and innovation through services like 

Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and 

Software as a Service (SaaS). 

• Balancing Course Design: How to balance sufficient theoretical background with 

ample practical opportunities in a foundational course is a significant challenge. 
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The course needs to strike a balance between breadth and depth, ensuring that 

students can apply this knowledge in real projects upon completing the course. 

• Rapid Technological Updates: The field of cloud computing is rapidly evolving, 

with technology stacks and best practices potentially changing within a short 

period. Therefore, course content needs to be regularly updated to stay aligned 

with industry trends. 

2.6. Teaching strategies based on SDR 

To effectively address these challenges, teaching strategies based on SDR can be 

adopted. 

• Focus on the Essence of Cloud Services: A foundational cloud computing course 

should primarily focus on the business model of cloud services, on-demand 

services, and the abstraction and management of resources, helping students 

understand that the essence of “cloud” is to provide flexible and efficient 

computing resources rather than being a collection of specific technologies. 

• Distinguishing Technology from its SDR Application: Distributed computing, 

big data, and virtualization technologies can be briefly introduced, but the 

emphasis should be on how these technologies are applied within the context of 

Software-Defined Resources (SDR) in the cloud environment, rather than 

focusing on their theoretical foundations or implementation details. By 

discussing these technologies in relation to cloud computing applications, 

students can better understand how cloud services utilize them to deliver scalable, 

flexible, and commercially viable solutions. 

• Using Real Cloud Resources: By directly operating resources on cloud platforms, 

students can experience high availability, auto-scaling, data redundancy, and 

other features that are vital components of modern cloud computing. Using real 

cloud resources enhances the practical aspect of learning and helps students better 

adapt and apply these technologies in their future careers. Therefore, hands-on 

experience with cloud resources is crucial for cloud computing education. 

• Establishing Correct Concepts: To help students form a correct understanding of 

cloud computing, it is essential to base knowledge selection, hands-on practice, 

and case studies on the principles of Software-Defined Resources (SDR). By 

focusing on real-world applications that illustrate how SDR drives scalability, 

flexibility, and automation in cloud services, students can better grasp the 

commercial value of cloud computing while avoiding common misconceptions.  

• Dynamic Course Content Adjustments: Dynamic adjustments to course content 

are a critical strategy to address rapid technological updates. By combining 

student feedback, course content can be regularly updated to reflect the 

emergence of new technologies and tools in the field of cloud computing, 

ensuring that students are learning practical and forward-looking knowledge. 

Through these strategies, software schools can more effectively balance theory 

and practice when teaching cloud computing, helping students build a solid knowledge 

foundation and flexible application capabilities, thereby laying a strong foundation for 

their career development in cloud computing-related fields. 
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3. Integrating lean principles with SDR and LLMs in cloud 

computing education 

Integrating SDR into curricula ensures students gain practical skills in managing 

cloud resources, which is crucial for modern cloud environments. LLMs can aid in 

this by providing immediate assistance and enhancing problem-solving capabilities. 

For example, tools like Microsoft Copilot in Azure (Microsoft Copilot in Azure, 2024) 

offer real-time guidance and support, helping students to navigate and understand 

complex cloud environments more effectively. 

 

Figure 1. Workflow for Integrating GPT-4o (LLMs Chat Assistant) and Azure 

Copilot (LLMs Assistant in Cloud Portal) in Cloud-Native Learning. 

Figure 1 illustrates the integrated workflow for utilizing GPT-4o (LLMs Chat 

Assistant) and Azure Copilot (LLMs Assistant in Cloud Portal) in a cloud-native 

learning environment. This diagram depicts the step-by-step process where students 

begin by initiating the learning process, deepening their understanding of cloud-native 

concepts through interactions with GPT-4o, and then transitioning to practical 

applications facilitated by Azure Copilot. The workflow emphasizes the iterative 

nature of learning, where theoretical insights gained through GPT-4o are applied in 

real-world. 

As cloud computing continues to evolve, tools like Microsoft Copilot in Azure 

are expected to become increasingly prevalent across all major cloud platforms and 

cloud-native tools. These integrated tools will provide real-time intelligent assistance, 

helping users manage and utilize cloud resources more efficiently. As this trend 

progresses, each major cloud service provider is likely to introduce its own intelligent 

assistant, further enhancing the user experience and driving innovation in cloud 

computing education. 

The concept of Lean principles, as detailed by Scholl et al. (2019), focuses on 

eliminating waste and optimizing processes to enhance efficiency. Originally rooted 

in manufacturing, particularly the Toyota Production System, these principles have 

profound implications in the context of modern cloud computing and software 

development. This can be particularly seen in the integration of Software-Defined 

Resources (SDR) and Large Language Models (LLMs) in cloud computing education. 
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Incorporating SDR and LLMs into cloud computing education is a natural 

extension of Lean principles. Both SDR and LLMs enhance efficiency, reduce waste, 

and optimize processes—key tenets of Lean methodology. In the context of cloud 

computing courses, these technologies ensure that resources are used effectively, and 

students receive high-quality, streamlined education. 

LLMs streamline the learning process by providing real-time support and 

personalized feedback, ensuring that students can learn more effectively and 

efficiently. 

• Immediate Support: LLMs can provide instant answers to student queries, 

reducing downtime and ensuring the learning process remains smooth and 

uninterrupted. This immediate support helps maintain a continuous and efficient 

learning environment, which is particularly beneficial given the numerous 

foundational concepts involved in cloud technology, allowing students to 

complete the learning content within the given timeframe. 

• Personalized Learning Paths: By tailoring responses to each student’s needs, 

LLMs ensure that every student receives the specific guidance they require, 

thereby enhancing learning efficiency. In advanced courses like cloud computing 

and application development, students often have diverse interests and technical 

backgrounds, making a personalized learning path highly valuable. 

• Automated Assessment: LLMs can assist in grading and providing feedback on 

assignments, accelerating the assessment process and allowing instructors to 

focus on more complex teaching tasks. With advanced models like OpenAI’s o1 

(OpenAI, 2024), which inherently utilize techniques such as Chain of Thought 

(CoT) reasoning (Wei et al., 2022), LLMs can significantly automate the 

assessment process in cloud technology learning, reducing the reliance on manual 

prompt engineering. 

• Resource Utilization: LLMs can curate and summarize vast amounts of 

educational material and cloud technology knowledge, making it easier for 

students to grasp complex concepts without being overwhelmed by information 

overload. Additionally, this prevents students from wasting time on software 

installation and VM configuration. 

By integrating SDR and LLMs into cloud computing education, educators can 

apply Lean principles in a modern technological context, fostering an environment of 

continuous improvement and efficiency. This approach not only enhances the 

educational experience but also prepares students to effectively manage and utilize 

cloud technologies in their future careers. 

4. Practical application and curriculum integration 

Having explored the integration of Lean principles with Software-Defined 

Resources (SDR) and Large Language Models (LLMs) in cloud computing education, 

the next step is to demonstrate how these theoretical frameworks are practically 

applied within a cloud computing curriculum. It is through hands-on experience, real-

world applications, and access to essential cloud resources that students can solidify 

their understanding of these concepts. In this section, we outline the cloud resources 

utilized in the course and highlight key practice topics that ensure students gain the 
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necessary skills to thrive in modern cloud environments. 

Table 2. Cloud resources usage in cloud computing course. 

Cloud Resources Unit Total Amount 

Cloud VM Servers (on Tencent Cloud) 2 CPU cores, 4GB of memory, and 4Mbps of bandwidth. Approximately 40,000 h 

Kubernetes Cluster (on Aliyun Cloud) 2 nodes 3 months, deployed over 270 applications 

Azure Container Registry Container images Approximately 300 images 

Azure Cognitive AI Hours * Endpoints 4 weeks * 2 endpoints 

Azure OpenAI Hours 3 weeks 

Azure Functions Hours 4 weeks 

Azure Data Lake Hours 3 months 

4.1. Cloud resources usage table 

Our cloud computing course typically accommodates around 60–80 students per 

semester. The course is designed to provide hands-on experience with a range of cloud 

services and technologies, requiring substantial cloud resources to support the various 

practical exercises and projects. Table 2 summarizes the cloud resources utilized 

throughout a semester-long cloud computing course, detailing the specific cloud 

services used, their configurations, and the total amount of each resource consumed. 

These resources include virtual machines (VMs), Kubernetes clusters, container 

registries, cognitive AI services, OpenAI services, Azure Functions, and data lake 

storage, all of which are integral to providing students with a comprehensive learning 

experience in cloud computing. 

4.2. Course practice topics 

To ensure students gain hands-on experience with cloud computing technologies, 

the following practice topics are integrated into the course: 

a) Creating cloud servers 

b) Constructing and managing containers 

c) Using Azure App Service 

d) Using Azure Container Registry 

e) Programming with Azure Data Lake objects and tables 

f) Deploying Pods to Kubernetes Cluster and accessing via NodePort 

g) Utilizing Azure DevOps for CI/CD pipelines 

h) Large-scale deployment of applications and services on Kubernetes Cluster 

i) SaaS AI for object detection 

j) SaaS AI for ChatGPT conversations 

4.3. Impact on other courses 

Cloud platforms and services not only influence cloud computing courses but 

also impact other subjects. For example, in the course “Algebraic Code and AI 

Frameworks,” which provides an overview of all mainstream programming languages, 

cloud technology is leveraged to provide practical tools to students. This course uses 

VMs and containers to facilitate hands-on practice as outlined in Table 3. 
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Table 3. Practical teaching of 20 popular programming languages in a single course. 

Course Component Technology Used Details 

Swift, Haskell, Rust VM Hands-on REPL programming 

C#, F#, Python 
NET Interactive  

Notebook (NET Interactive, 2024) 
Container-based learning 

Scala, Kotlin, et al. Zeppelin (Apache Zeppelin, 2024) Container-based learning 

5. Development and definition of entropy-based diversity efficiency 

analysis (EDEA) 

By integrating cloud technologies and hands-on practice in the curriculum, 

students gain valuable real-world skills. However, beyond the technical aspects, it’s 

equally important to ensure that the educational content itself is diverse and efficiently 

aligned with students’ evolving needs in modern cloud computing environments. This 

leads to the need for a systematic evaluation of how well the curriculum balances 

diversity and effectiveness. In the following section, we introduce the Entropy-Based 

Diversity Efficiency Analysis (EDEA), a framework developed to assess and optimize 

the distribution and efficiency of educational content, informed by the datasets derived 

from cloud computing course implementations. 

In educational research, several methods have been established to measure 

diversity, particularly in the context of curriculum design and institutional policies. 

Commonly used metrics such as the Herfindahl index, Shannon entropy, and the Theil 

entropy index have provided valuable insights into the distribution and concentration 

of diverse elements within an educational setting (Widiputera et al., 2017). These 

methods primarily focus on measuring diversity by examining the spread or 

concentration of different categories, such as courses, disciplines, or student 

demographics, within a given framework. While these indices offer quantitative 

assessments of diversity, they often overlook the efficiency or relevance of the 

distributed content, which is crucial for dynamic learning environments that must 

adapt to rapidly evolving fields like cloud computing. 

Recognizing this gap, the Entropy-Based Diversity Efficiency Analysis (EDEA) 

framework presented in this paper introduces a novel approach by integrating 

traditional diversity measurement with efficiency metrics. Unlike conventional 

methods that solely focus on the extent of diversity, the EDEA framework enables the 

comparison of the diversity efficiency across different courses, allowing educators to 

reference these metrics when assessing the effectiveness of Software-Defined 

Resources (SDR) and Large Language Models (LLMs). Additionally, the EDEA 

framework can be extended to analyze other educational factors, providing a flexible 

tool for evaluating a wide range of educational interventions. This dual focus ensures 

that, while the curriculum is diverse, it also aligns with the practical and evolving 

needs of students, particularly in technical fields where both depth and breadth are 

essential. This approach is in line with recent studies that emphasize the need for more 

comprehensive diversity measures that consider statistical efficiency and robustness 

(Ghosh and Basu, 2023). 

In the context of rapid advancements in cloud computing and Large Language 

Models (LLMs), educators have unprecedented opportunities to expand the breadth 
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and depth of their teaching content. This expansion is not merely about increasing the 

quantity of content, but more importantly, it enables the inclusion of material that 

would otherwise be constrained by traditional teaching conditions. By leveraging 

cloud technology and LLMs, we have been able to extend our teaching content to its 

fullest potential, allowing students to engage with more real-world applications and 

technical practices. 

To systematically analyze and quantify the effects of this expanded teaching 

content, we propose the Entropy-Based Diversity Efficiency Analysis framework 

(EDEA framework). The EDEA framework evaluates and optimizes the diversity and 

efficiency of course content through three key steps, ensuring that students are exposed 

to a broad and balanced knowledge system throughout their learning process, while 

also allowing comparisons of efficiency across different learning environments and 

courses. 

Definition 3. Entropy-Based Diversity Efficiency Analysis (EDEA). The Entropy-

Based Diversity Efficiency Analysis (EDEA) is a quantitative framework designed to 

assess and optimize the diversity and efficiency of educational content using entropy 

metrics. It evaluates how well-balanced and efficiently distributed key knowledge 

components are within a course to ensure an optimal learning experience. EDEA can 

also incorporate external influencing factors into the time-series data of the Diversity 

Efficiency Index (DEI). By applying both linear and nonlinear regression analyses, it 

determines the extent and effectiveness of these factors in improving DEI. 

Having introduced the EDEA framework and its purpose in optimizing the 

diversity and efficiency of educational content, we now delve into the step-by-step 

process for applying EDEA. The following sections detail the methodology, beginning 

with the calculation of entropy for teaching content. 

5.1. Step 1: Calculating the entropy of teaching content relative to a given 

range 

Information Entropy is a fundamental concept in information theory used to 

measure uncertainty or diversity within a system. In the analysis of educational 

content, entropy can be used to evaluate the distribution uniformity of various 

knowledge modules within a course. Specifically, the entropy calculation formula is 

as follows: 

𝑃(𝑥𝑖) =
Value of (𝑥𝑖)

Sum of all values
 (1) 

Here, 𝑃(𝑥𝑖)  represents the proportion of the i-th knowledge module in the total 

teaching content of a course. Based on this, the actual entropy of the course can be 

calculated as: 

Entropy = − ∑ 𝑃(𝑥𝑖) log2 𝑃(𝑥𝑖) (2) 

A higher entropy value indicates a more uniform distribution of course content 

and a broader coverage of knowledge. 
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5.2. Step 2: Calculating the diversity efficiency index (DEI) 

The Diversity Efficiency Index (DEI) is used to measure the diversity and 

distribution efficiency of teaching content. The calculation of DEI involves using the 

Weighted Max Entropy, which considers the relative importance of each knowledge 

module in the course content. The formula for calculating Weighted Max Entropy is: 

Weighted Max Entropy = − ∑
𝑤𝑖

∑ 𝑤𝑖

𝑛

𝑖=1

log2 (
𝑤𝑖

∑ 𝑤𝑖
) (3) 

where 𝑤𝑖 represents the weight of the i-th knowledge module. When all weights 

𝑤𝑖 are equal, the formula for Weighted Max Entropy simplifies to: 

Max Entropy = log2 𝑛 (4) 

which represents the maximum possible entropy for uniformly distributed 

knowledge modules. The DEI is then defined as the ratio of actual entropy to weighted 

max entropy: 

DEI =
Actual Entropy

Weighted Max Entropy
 (5) 

The DEI value ranges between 0 and 1. A value closer to 1 indicates that the 

distribution of course content is near the ideal state, balancing the breadth of coverage 

with the appropriate allocation of teaching time and focus for each module. In the 

calculation of weighted maximum entropy, different categories are assigned different 

weights according to their importance. Therefore, the DEI may exceed 1, indicating 

that the diversity of the actual data distribution surpasses the expected diversity of the 

weighted distribution. 

5.3. Step 3: Analyzing the impact of different factors on DEI using 

regression and nonlinear regression 

To further understand and optimize the design of teaching content, we use linear 

regression and nonlinear regression analysis to measure the quantitative impact of 

different factors on DEI and assess the significance of these factors on DEI values. In 

this study, we mainly consider the following factors: 

• Course Year (Year): Evolution of course setup and content over time. 

• Course (Series): Differences among various course series. 

• Use of Cloud Technology (X1): Whether cloud technology and Software-

Defined Resources (SDR) were used. 

• Use of LLMs (X2): Whether Large Language Models (LLMs) were introduced 

in teaching. 

Using Linear Regression Analysis, we construct the following regression model 

to evaluate the impact of these factors: 

DEI = 𝛽0 + 𝛽1 × year + 𝛽2 × series + 𝛽3 × 𝑥1 + 𝛽4 × 𝑥2 (6) 

where 𝛽0  is the intercept and 𝛽1 , 𝛽2 , 𝛽3 , 𝛽4  are the coefficients estimated by the 

regression model. Notably, the variable series is a categorical variable that has been 

transformed using one-hot encoding. As a result, 𝛽2 represents a vector of coefficients 
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corresponding to the different categories within series. In this case, the regression 

equation expands to include multiple terms for each one-hot encoded category of 

series. For example, if series includes two categories, the model becomes: 

DEI = 𝛽0 + 𝛽1 × year + 𝛽2,1 × series1 + 𝛽2,2 × series2 + 𝛽3 × 𝑥1 + 𝛽4 × 𝑥2 (7) 

Here, 𝛽2,1 and 𝛽2,2 represent the specific effects of the individual categories of series. 

This allows the model to account for the distinct influence of each category on the 

dependent variable DEI. 

Building upon this, we further employ Random Forest Regression to capture the 

nonlinear relationships between these factors and DEI, especially when the 

interactions among different factors have complex effects on the diversity efficiency 

of teaching content. Through Random Forest analysis, we can derive the importance 

ranking of each factor on DEI, providing data support for educators to optimize course 

design. 

5.4. The value of the EDEA framework 

The EDEA framework not only equips educators with a systematic method to 

assess and compare the diversity and efficiency of teaching content across different 

courses, but also provides valuable insights into how Software-Defined Resources 

(SDR) and Large Language Models (LLMs) enhance educational efficiency. By 

integrating entropy calculations, DEI metrics, and regression analysis, educators can 

pinpoint specific course modules for optimization and adjust teaching strategies 

accordingly. This ensures that courses remain aligned with the evolving technical 

landscape, addressing students’ practical needs in rapidly changing environments such 

as cloud computing and AI-driven technologies. The flexibility of the EDEA 

framework also allows for its extension to analyze other educational factors, providing 

a comprehensive tool for continuous improvement in curriculum design. 

6. Data analysis 

6.1. Dataset description 

This study utilizes two datasets, SDR-Dataset and AI-Dataset, spanning six years 

from 2019 to 2024. Both datasets contain the same amount of data each year, allowing 

for consistent year-over-year analysis. 

• SDR-Dataset focuses on the “Cloud Computing and Cloud Services” course, 

detailing the allocation of total course hours across six categories: IaaS, PaaS, 

SaaS, DevOps, Cloud-Native, and SDR. The weight of each category in the SDR-

Dataset is equal to 1, reflecting a balanced curriculum approach. 

• AI-Dataset centers on the “Algebraic Code and AI Framework” course, showing 

the proportional distribution of course hours across 20 programming languages. 

Each language is rated on a 5-point scale (from 1 to 5), indicating its importance 

in the course content, with higher numbers signifying greater emphasis. The total 

proportion of all languages each year sums to 1. 

These datasets provide a basis for calculating entropy and Diversity Efficiency 

Index (DEI) to analyze diversity and effectiveness in educational content across 
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different years and categories. 

To maintain conciseness and clarity, the raw data tables for the SDR-Dataset and 

AI-Dataset are not included in the main body of this paper. Instead, they are provided 

as supplementary material, allowing interested readers to reference and verify the 

details as needed. 

6.2. Entropy calculation and visualization 

 

Figure 2. Evolution of course content distribution in cloud computing education (2019–2024). 

Figure 2 illustrates the evolution of course content distribution in cloud 

computing education from 2019 to 2024, using a 100% stacked bar chart. This chart 

shows the allocation of course hours across six categories: PaaS, IaaS, SaaS, Cloud-

Native, DevOps, and SDR. The vertical axis represents the percentage of total course 

hours dedicated to each category, highlighting changes in course emphasis over time. 

The data presented in this figure will be used to calculate entropy, measuring the 

diversity of course content distribution across the years. 

 

  
(a) (b) 

Figure 3. Entropy Changes Over Time for. (a) SDR-Dataset; (b) AI-Dataset. 

Figure 3 displays the entropy values calculated from two datasets across the 
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years 2019 to 2024. Figure 3a shows the entropy trend for the SDR-Dataset, indicating 

a gradual increase from 2019 to 2024, suggesting a steady diversification in the course 

content distribution over the years. The Weighted Max Entropy for the SDR-Dataset 

is marked as 2.585, providing a reference for the maximum potential entropy based on 

the weighted distribution of content modules. 

Figure 3b illustrates the entropy trend for the AI-Dataset, where entropy remains 

low until 2023, followed by a sharp rise in 2024. The Weighted Max Entropy for the 

AI-Dataset is marked as 4.177, and the Max Entropy is 4.322, reflecting the diversity 

of programming languages taught in that year. The sudden rise indicates a significant 

expansion in the diversity of the course content. 

6.3. Diversity efficiency index (DEI) calculation 

 

Figure 4. Trends of diversity efficiency index (DEI) for SDR-Dataset and AI-

Dataset from 2019 to 2024. 

In this section, we summarize the DEI calculations for the SDR-Dataset and AI-

Dataset to evaluate the diversity and balance of course content over time. DEI is 

computed as the ratio of observed entropy to the maximum possible entropy, providing 

a normalized measure of content distribution efficiency. 

• SDR-Dataset DEI: The DEI for the SDR-Dataset shows a steady increase from 

2019 to 2024, indicating a more balanced and efficient distribution of content 

across various categories (PaaS, IaaS, SaaS, Cloud-Native, DevOps, SDR). This 

trend reflects the course content’s diversification and even distribution among 

these topics. 

• AI-Dataset DEI: The DEI for the AI-Dataset remains low until 2022, indicating 

less efficient distribution. However, a sharp rise in DEI is observed in 2023 and 

2024, highlighting a significant diversification and integration of multiple 

programming languages into the course content. This increase is influenced by 

the weighted calculation of maximum entropy. 

Figure 4 displays the DEI trends for both datasets over six years. The two series 

in the plot compare the evolution of diversity efficiency in the “Cloud Computing and 

Cloud Services” course (SDR-Dataset) and the “Algebraic Code and AI Framework” 

course (AI-Dataset). The SDR-Dataset shows a steady, gradual increase in diversity 

efficiency, reflecting continuous diversification and balanced content distribution. In 
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contrast, the AI-Dataset exhibits a sharp rise in DEI after 2023, largely driven by the 

weighted calculation of maximum entropy, which accounts for the varying importance 

of different programming languages. These DEI trends offer valuable insights into the 

content evolution and instructional effectiveness of these courses, helping educators 

optimize curriculum design for more balanced and comprehensive learning outcomes. 

6.4. Regression analysis and random forest analysis 

6.4.1. Introduction of key variables and their impact 

This subsection introduces the timing of cloud technology (X1) and LLMs (X2) 

usage and examines how these variables, along with year and series, affect the 

Diversity Efficiency Index (DEI).  We will analyze how the variables—year, series, 

use of cloud technology (X1), and use of LLMs (X2)—influence the Diversity 

Efficiency Index (DEI) using regression and random forest models. The dataset 

applied for both analyses is detailed in Table 4, which includes the yearly DEI values 

and the associated indicators for cloud and LLMs usage across two courses from 2019 

to 2024. In this table, the Series column is represented using one-hot encoding, where 

(1, 0) denotes the “Cloud Computing and Cloud Services” course (Series 1) and (0, 1) 

denotes the “Algebraic Code and AI Framework” course (Series 2). This encoding 

ensures that the courses are treated as categorical variables without implying any 

ordinal relationship between them. 

6.4.2. Linear regression analysis 

Linear regression was conducted to analyze the impact of the variables Year, 

Series, X1 (indicating the use of cloud technology, SDR), And X2 (indicating the use 

of LLMs) on the DEI. 

Table 4. Summary of Yearly Diversity Efficiency Index (DEI) Values for Two Courses with Cloud and LLMs Usage 

(2019–2024). 

Year Series X1(Use Cloud) X2(Use LLMs) DEI 

2019 1, 0 1 0 0.241783005 

2020 1, 0 1 0 0.458915023 

2021 1, 0 1 0 0.530623079 

2022 1, 0 1 0 0.737201821 

2023 1, 0 1 1 0.894124431 

2024 1, 0 1 1 0.940066454 

2019 0, 1 0 0 0 

2020 0, 1 0 0 0 

2021 0, 1 0 0 0 

2022 0, 1 0 0 0.13014622  

2023 0, 1 0 0 0.13014622  

2024 0, 1 1 1 0.69570029  

Table 5 summarizes the linear regression results, providing insights into the 

significance and strength of these variables’ relationships with DEI. The analysis 

highlights which factors most influence the efficiency of content diversity in 
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educational settings, serving as a basis for understanding their impact. 

Table 5. Summary of linear regression results for analyzing the impact of year, series, use of cloud technology, and 

use of LLMs on the diversity efficiency index (DEI). 

Variable Coefficient Standard Error t-Statistic p-Value 
95% Confidence Interval 

(Lower) 

95% Confidence 

Interval (Upper) 

Intercept −155.1606 45.4791 −3.4117 0.0113 −262.7015 −47.6197 

Year 0.0769 0.0225 3.4177 0.0112 0.0237 0.1302 

Series1 0 0 65535 N/A 0 0 

Series2 −0.2599 0.1091 −2.3815 N/A −0.5179 −0.0018 

X1 (Use Cloud) 0.2187 0.1237 1.7673 0.1205 −0.0739 0.5113 

X2 (Use LLMs) 0.1942 0.1022 1.8996 0.0993 −0.0475 0.4359 

Figure 5 illustrates the coefficient impact of cloud technology (X1), Large 

Language Models (LLMs, X2), year, and course series on DEI growth. As shown, both 

cloud technology (X1) and LLMs (X2) contribute positively to the DEI, with cloud 

technology increasing DEI by approximately 0.2187 and LLMs by 0.1942. The year 

variable also has a positive but smaller contribution of 0.0769, while Series 1 has no 

observable effect (coefficient = 0). However, the negative coefficient for Series 2 

(−0.2599) suggests a less favorable impact on DEI growth. The red dashed line 

represents the optimal DEI growth, indicating the maximum potential. This figure 

visually demonstrates the influence of these variables on content diversity efficiency, 

complementing the regression analysis results from Table 5. 

 

Figure 5. Coefficient impact on DEI Growth for use of cloud (X1), LLMs (X2), and 

other factors. 

Figure 6 illustrates the Diversity Efficiency Index (DEI) trends for both the SDR-

Dataset and AI-Dataset from 2019 to 2024, alongside their respective regression fitting 

curves. The solid lines represent the actual DEI values observed over time, while the 

dashed lines show the regression model’s predictions based on the data trends. The 

regression fitting provides insight into the projected DEI growth, indicating how well 

the diversity and efficiency of course content is expected to evolve. For the SDR-

Dataset, the regression curve closely follows the observed values, suggesting a steady 

and reliable improvement in course diversity. In contrast, the AI-Dataset shows a 
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significant increase in DEI starting in 2023, and the regression fitting aligns with this 

sharp rise, reflecting the substantial integration of new content in recent years. This 

figure highlights the potential for future improvements in both datasets, guided by the 

regression analysis. 

 

Figure 6. Trends of diversity efficiency index (DEI) and regression fitting for SDR-Dataset and AI-Dataset from 2019 

to 2024. 

6.4.3. Model evaluation and statistical significance 

The statistical data provided by the regression analysis offers valuable insights 

into the overall fit and robustness of the model, as shown in Tables 6 and 7. The 

model’s performance is supported by both the regression statistics and ANOVA 

analysis. 

Table 6. Summary of regression statistics for the diversity efficiency index (DEI) 

model. 

Statistic Value 

Multiple R 0.9803 

R Square 0.9609 

Adjusted R Square 0.7958 

Standard Error 0.0886 

Observations 12 

Table 7. Summary of ANOVA for the diversity efficiency index (DEI) model. 

Source df SS MS F Significance F 

Regression 5 1.35306966 0.27061393 43.0750753 0.000126696 

Residual 7 0.05497081 0.00785297   

Total 12 1.40804047    

As seen in Table 6, the Multiple R value of 0.9803 and R Square of 0.9609 

indicate a strong correlation between the independent variables and the dependent 

variable, Diversity Efficiency Index (DEI). Specifically, the model explains 96.09% 

of the variance in DEI, demonstrating a highly accurate fit to the data. 

Additionally, the Adjusted R Square of 0.7958 accounts for the number of 

predictors in the model. While this value is slightly lower than the unadjusted R 
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Square, it remains robust, reflecting the model’s ability to generalize well despite 

increased complexity. 

The model’s Standard Error is 0.0886, suggesting a relatively low level of 

prediction error. This value indicates that the predicted DEI values are close to the 

actual observed values, further confirming the model’s accuracy. 

The ANOVA analysis shown in Table 7 reinforces the statistical significance of 

the model. With an F-statistic of 43.08 and a Significance F (p-value) of 0.0001267, 

the model as a whole is statistically significant. The low p-value suggests that the 

independent variables included in the regression model have a meaningful impact on 

the DEI. 

These statistical measures serve as important supplements to the regression 

results presented earlier, highlighting the model’s goodness-of-fit, the relevance of the 

variables, and the overall significance of the model. The combination of high R 

Square, low standard error, and significant ANOVA results underlines the reliability 

of the findings and supports the robustness of the regression model used to analyze the 

DEI. 

6.4.4. Random forest regression analysis 

This subsection presents the results of the random forest regression analysis, 

which was used to capture non-linear relationships between the variables—year, 

series, use of cloud technology (X1), and use of LLMs (X2)—and the Diversity 

Efficiency Index (DEI). Random forest regression is particularly useful in 

understanding variable importance and their impact on DEI. 

Table 8. Feature importance summary from random forest regression analysis for 

predicting diversity efficiency index (DEI). 

Feature Importance 

Year 26.40% 

Series 1 14.48% 

Series 2 13.60% 

X1 (Use Cloud) 21.01% 

X2 (Use LLMs) 24.51% 

To achieve optimal model performance, hyperparameters were tuned using 

random search, resulting in the following best parameters: 

• The number of trees in the forest: 50 

• Minimum number of samples required to split an internal node: 2 

• Minimum number of samples required to be at a leaf node: 1 

• Number of features to consider when looking for the best split: 1 

• Maximum depth of the tree: 4 

The best score obtained for the model was a negative mean squared error (MSE) 

of - 0.0326, indicating strong predictive performance for the dataset. 

These feature importances are summarized in Table 8. The random forest 

regression analysis confirms that the year is the most impactful factor in determining 

DEI, followed by the use of cloud technology (X1) and the use of LLMs (X2). The 

findings suggest that technological integration in education significantly enhances 
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content diversity and efficiency, providing valuable insights for curriculum 

development. 

6.5. Results discussion 

The regression and random forest analyses provide valuable insights into the 

factors that influence the Diversity Efficiency Index (DEI) in cloud computing and AI 

education. The linear regression analysis reveals that both cloud technology (X1) and 

LLMs (X2) have a positive effect on DEI, with cloud technology showing a stronger 

impact. Although LLMs also contribute to DEI growth, their effect is less significant 

in the regression model, reflecting that cloud technology plays a more central role in 

diversifying and balancing course content. 

Despite the relatively small dataset used in this study, the results from both the 

regression and random forest analyses are acceptable. A key advantage of combining 

these two analyses is that while multiple linear regression effectively isolates the 

impact of each individual factor, the random forest analysis provides a more reliable 

assessment of the overall importance of each factor in a non-linear fashion. 

Additionally, the non-linear nature of random forest analysis requires significantly 

more computation time compared to linear regression, indicating that a much broader 

solution space was explored. This makes the combined approach especially valuable 

in drawing insights from smaller datasets. 

The random forest regression analysis further confirms the dominant influence of 

year, which accounted for 26.40% of the total feature importance, followed by the use 

of LLMs at 24.51%, and cloud technology at 21.01%. These findings indicate that 

technological integration, particularly the use of cloud-based resources, is crucial for 

optimizing course content diversity and efficiency. The increasing DEI for the SDR-

Dataset over the years suggests a steady improvement in balancing different content 

categories, reflecting an effective cloud education strategy. In contrast, the sharp rise 

in DEI for the AI-Dataset in 2023 and 2024 highlights the rapid diversification of 

programming languages, aligning with the evolving curriculum needs to accommodate 

a broader set of technical skills. 

These results imply that while both cloud technology and LLMs contribute to 

enhancing educational diversity, cloud technology plays the more dominant role. The 

findings also demonstrate how targeted technological integration, particularly of cloud 

infrastructure and LLMs, can optimize curriculum development to better balance 

traditional and modern teaching methods, resulting in more comprehensive learning 

outcomes. 

7. Benefits and evidence from educational reform project 

7.1. Improved student outcomes 

Data from our educational reform project shows that focusing on SDR 

significantly enhances students’ ability to manage cloud resources, resulting in better 

application performance and resource utilization. Additionally, the use of LLMs like 

ChatGPT has shown potential in improving student engagement and creativity by 

providing real-time feedback and personalized learning experiences. 
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By applying SDR concepts and Lean principles, teaching efficiency has 

significantly improved, as evidenced by: 

a) Broader Content in Cloud Computing Courses: The scope of technology taught 

has expanded from initially focusing solely on PaaS to now encompassing a com-

prehensive knowledge base that includes IaaS, PaaS, SaaS, DevOps, and cloud-

native technologies. 

b) Expansion in Programming Language Courses: There has been a dramatic shift 

from teaching just one programming language to now covering 20 languages 

simultaneously, enhancing both the breadth and depth of the curriculum. 

c) Optimized Use of Teaching Time: Students no longer spend valuable class time 

configuring environments and resources. Instead, they focus on acquiring the 

most valuable knowledge, skills, and insights. For example, prior to SDR 

implementation, each student needed to configure their computers 5-6 times for 

setting up environments; now, this step is no longer required. 

7.2. Establishing cloud computing course content with SDR concepts 

The knowledge surrounding cloud platforms and cloud-native technologies has 

become extensive. Topics such as distributed applications, big data, and virtualization 

technologies are no longer appropriate for inclusion in cloud computing courses. 

These subjects are better suited for dedicated courses offered by computer science or 

software engineering departments. By applying SDR concepts, we can clearly 

delineate the knowledge specific to cloud platforms and services from those 

technologies that do not exclusively belong to cloud computing. This distinction 

allows for better curriculum planning and helps shape a clear and distinct 

understanding of cloud technology. 

After several reforms and teaching practices, the fundamental course on cloud 

computing should include the following content: 

a) Cloud Computing: This refers to the technology of software-defined resources. 

b) IaaS (Infrastructure as a Service): This includes services related to computing, 

storage, networking, security, management, and Infrastructure as Code (IaC). 

This level should also cover hybrid cloud, multi-cloud, and edge technologies. 

c) PaaS (Platform as a Service): Cloud services built and managed on top of IaaS 

using tools such as Azure Service Fabric and Kubernetes. Typical examples 

include App Services, serverless technology, as well as cloud-based middleware 

and databases. Once a product is cloud-based, its availability is generally 

described by a Service Level Agreement (SLA). 

d) SaaS (Software as a Service): This includes various software functions accessed 

via API, with AI functionalities being a typical service. SaaS enterprise 

applications existed even before cloud platforms. 

e) DevOps: This involves software engineering automation services enabled by the 

cloud.  

f) Cloud-Native: This refers to large-scale application builders on the cloud, with 

Kubernetes and related technologies being typical examples. 

These content areas appear to be relatively stable and suitable for teaching over 

the coming years. 
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8. Discussion 

This study highlights the transformative potential of combining Software-

Defined Resources (SDR) and Large Language Models (LLMs) in enhancing both the 

diversity and efficiency of educational content. By leveraging these technologies, 

educators can create more streamlined and effective teaching practices, which are not 

only applicable to cloud-based courses but also extend to courses outside the cloud 

domain. Below are several key points of discussion: 

a) Lean Optimization in Teaching Processes with SDR and LLMs. The integration 

of SDR and LLMs leads to a more streamlined and lean teaching process, 

impacting not only courses that utilize cloud technologies but also those that do 

not. The ability to dynamically generate task-specific software tools through 

LLMs, combined with transparent cloud deployment, enables students to access 

these tools easily. This transparency significantly enhances teaching efficiency, 

as students no longer have to configure complex environments individually. 

Moreover, the use of these technologies is expected to transform not only 

educational processes but also a wide range of administrative and configuration, 

and knowledge and skill consumption tasks, making them more agile and 

efficient. 

b) Significance of the Data Used in This Study. Although the dataset used in this 

study is not large, it spans six consecutive years of teaching practices, 

representing a longitudinal perspective on educational changes. The variations in 

the data over time are driven by significant, real-world factors, and the patterns 

observed are not random. These clearly defined trends make the analysis results 

highly valuable for understanding the impact of technological interventions in 

education. The distinct shifts in the Diversity Efficiency Index (DEI) provide 

meaningful insights into how SDR and LLMs influence educational outcomes. 

The analysis conducted in this study demonstrates that the integration of cloud 

technologies and Large Language Models (LLMs) in educational courses 

significantly enhances Diversity Efficiency Index (DEI) by approximately 

0.2187 and 0.1942, respectively. These results provide a valuable benchmark for 

educators and course designers aiming to optimize teaching practices. 

c) EDEA Framework as a New Approach. The Entropy-Based Diversity Efficiency 

Analysis (EDEA) framework offers a novel method for evaluating educational 

diversity efficiency. Unlike existing diversity analysis methods based solely on 

entropy, such as those proposed by Widiputera et al. (2017) and Ghosh and Basu 

(2023), the EDEA framework integrates both diversity and efficiency into its 

assessment. This makes it particularly relevant for analyzing the impact of SDR 

and LLMs, as these technologies enable dynamic and efficient content delivery. 

The EDEA framework can become a critical tool for assessing the efficacy of 

combining cloud technologies with LLMs in optimizing educational outcomes. 

d) Generative AI Supported Agile Paradigm for Course Creation. The integration of 

cloud technologies (SDR) and LLMs will facilitate the development of numerous 

new courses across various fields. This is a shift from traditional workflows, as 

it introduces innovations in both teaching techniques and course design, paving 

the way for an agile teaching paradigm supported by generative AI. Unlike the 
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agile methodologies discussed by López-Alcarria et al. (2019), which focus on 

flexibility in educational content design, the combination of LLMs and SDR will 

enable real-time dynamic process support. LLMs bring extensive knowledge of 

new techniques and information, while SDR provides an agile, scalable 

infrastructure that enables the transparent and dynamic deployment of process 

tools for any potential tasks or workflows across diverse domains, not limited to 

cloud computing or software development. Educators, equipped with their 

expertise in teaching, can leverage these technologies to continuously update and 

create new courses, ensuring university education stays aligned with industry 

needs. The lag between academia and the demands of the job market, which has 

long been an issue in fields like software development and engineering, will be 

significantly reduced as the integration of SDR and LLMs allows for constant 

innovation in teaching content. This combination promises to eliminate the 

educational gap, ensuring students receive up-to-date, relevant knowledge and 

skills across all domains. 

9. Conclusion 

9.1. Summary 

This paper underscores the transformative impact of integrating Software-

Defined Resources (SDR) and Large Language Models (LLMs) into university cloud 

computing curricula. These technologies contribute to the creation of dynamic, 

engaging, and efficient learning environments, aligning educational content with the 

evolving demands of the cloud computing industry. By incorporating real-world 

applications and hands-on experience with cloud tools, students are better equipped 

with the practical skills and knowledge required to navigate modern cloud 

environments. LLMs enhance the learning process by providing interactive and 

adaptive feedback, fostering a more personalized and efficient educational experience. 

The introduction of the Entropy-Based Diversity Efficiency Analysis (EDEA) 

framework further strengthens this approach by offering educators a systematic tool 

for assessing and optimizing the diversity and efficiency of course content. Notably, 

the EDEA analysis revealed that the application of SDR (i.e., cloud technologies) and 

LLMs can each improve a course’s Diversity Efficiency Index (DEI) by approximately 

one-fifth. This demonstrates the significant impact of integrating these technologies in 

enhancing both content diversity and efficiency. 

While the influence of SDR and LLMs on course design and teaching is well-

suited to be measured through diversity efficiency metrics, other benefits—such as the 

enhancement of students’ confidence—are also evident, though more challenging to 

quantify. The EDEA framework empowers educators to ensure that their courses 

maintain a balanced and relevant knowledge base, adapting to rapid advancements in 

cloud computing and AI. This combined approach ensures that students engage with 

critical topics in cloud computing while benefiting from the efficiencies introduced by 

SDR and LLM technologies. 
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9.2. Future directions 

As cloud computing continues to evolve, emerging technologies such as edge 

computing, serverless architectures, and the integration of artificial intelligence and 

machine learning (AI/ML) will shape the future landscape of cloud services. 

Educational curricula must remain dynamic and continuously updated to reflect these 

advancements. Collaboration with industry partners will be key to maintaining the 

relevance and applicability of curricula to real-world needs. 

The ongoing integration of LLMs, such as Microsoft’s Copilot in Azure, presents 

new opportunities for enhancing student engagement and deepening understanding of 

SDR and cloud technologies. Future research could extend the application of the 

EDEA framework to other fields, such as business management or healthcare, where 

diversity and efficiency play critical roles. Additionally, incorporating advanced 

machine learning models like deep learning could help capture more complex, non-

linear relationships among variables, leading to more precise evaluations of diversity 

and efficiency in educational content. 

By embracing these technological trends and integrating innovative tools, 

educators can ensure that students not only develop proficiency in current cloud 

technologies but also cultivate the adaptability needed to thrive in an ever-changing 

technological landscape. 
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