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Abstract: Cyber-physical Systems (CPS) have revolutionized urban transportation worldwide, 

but their implementation in developing countries faces significant challenges, including 

infrastructure modernization, resource constraints, and varying internet accessibility. This 

paper proposes a methodological framework for optimizing the implementation of Cyber-

Physical Urban Mobility Systems (CPUMS) tailored to improve the quality of life in 

developing countries. Central to this framework is the Dependency Structure Matrix (DSM) 

approach, augmented with advanced artificial intelligence techniques. The DSM facilitates the 

visualization and integration of CPUMS components, while statistical and multivariate analysis 

tool such as Principal Component Analysis (PCA) and artificial intelligence methods such as 

K-means clustering enhance complex system the analysis and optimization of complex system 

decisions. These techniques enable engineers and urban planners to design modular and 

integrated CPUMS components that are crucial for efficient, and sustainable urban mobility 

solutions. The interdisciplinary approach addresses local challenges and streamlines the design 

process, fostering economic development and technological innovation. Using DSM and 

advanced artificial intelligence, this research aims to optimize CPS-based urban mobility 

solutions, by identifying critical outliers for targeted management and system optimization. 

Keywords: Cyber-Physical Systems; urban mobility; multilevel analysis; dependency 

structure matrix; artificial intelligence; developing countries 

1. Introduction 

The integration of Cyber-Physical Systems (CPS) technology in urban 

environments has facilitated the development of smart cities and intelligent 

transportation systems, promising efficient, sustainable, and interconnected mobility 

networks (Chakraborty and He, 2020). However, the inherent complexity of CPS, 

characterized by the intricate convergence of multi-physical systems and complex 

interactions, poses significant challenges to the effective implementation of these 

advanced solutions (Samalna et al., 2023a). 

Developing countries face unique mobility challenges due to rapid urbanization, 

population growth, limited resources, uneven internet access, and the need for 

increased awareness and education, as well as a deep understanding of local 
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challenges, cultures, and existing practices (Balsalobre et al., 2023; Metaxas et al., 

2023; Ngossaha et al., 2024). Wegener (2013) highlights the urgent need to renovate 

urban mobility in these countries, and provides an overview of the drivers, feedback 

mechanisms, and constraints of mobility in relation to depleting energy resources. 

Similarly, Hunjra et al. (2024) suggest that developing countries should benefit from 

sustainable projects, and propose a tool to assess the sustainability of urban transport 

projects based on the integration of indigenous and scientific knowledge. 

Demissie et al. (2016) argue that integrating Information and Communication 

Technology (ICT) tools into mobility systems has the potential to meet the diverse 

needs of city urban dwellers in developing countries. To address these challenges, it 

is crucial to develop urban mobility systems that are not only technologically 

advanced, but also flexible, modular, and sustainable. This requires a comprehensive 

and systematic approach that takes into account the various factors that influence the 

implementation of CPS in these contexts. 

The integration of Cyber-Physical Systems (CPS) into urban mobility systems 

offers flexible and sustainable solutions to meet today’s challenges (Juma and Shaalan, 

2020). However, the implementation of tightly coupled CPS into a complex system of 

interconnected components with interactive dependencies poses significant 

challenges. Engineering methods can help overcome these challenges by providing a 

systematic approach to designing and optimizing complex systems, and understanding 

their dependencies and behavioral characteristics (Wilson and Vasile, 2023). In this 

context, this paper aims to explore an optimized approach for the implementation of 

CPS-based Urban Mobility Systems (CPUMS) in developing countries. The core of 

this approach is the use of the Dependency Structure Matrix (DSM), a powerful system 

engineering tool that enables the identification of critical dependencies and key factors 

essential for successful CPS integration. By organizing interactions within the system, 

the DSM provides valuable insight into the intricate relationships between system 

components, facilitating effective decision-making and resource allocation. 

In addition, to improve the implementation process, we use advanced 

dimensionality reduction techniques such as Principal Component Analysis (PCA) 

and the K-means clustering algorithm with the Calinski-Harabasz index. These 

methods play an important role in identifying the optimal number of clusters and 

streamlining the clustering process, thereby facilitating a deeper understanding of 

CPUMS development. 

The rest of this paper is structured as follows. Section 2 reviews the related works 

on CPUMS and design and requirement engineering approaches for modeling 

complex system. Section 3 presents our methodological approach for designing a 

flexible system architecture, including our proposed approach and system analysis 

toward flexible architecture. In Section 4, we present our results and discuss their 

implications. Finally, in Section 5, we conclude the paper and note the future research 

directions. 

2. Literature review 

This section presents related studies in the literature on CPUMS and design 

requirement engineering approaches to complex system modeling. 
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2.1. Cyber physical urban mobility system 

CPUMS have attracted the attention of the research community, with very recent 

research being published in major international peer-reviewed journals. For example, 

in response to the rapid population growth and increasing number of vehicles in cities 

in developing countries, the authors (Samalna et al., 2023a) conducted an analysis of 

the challenges and opportunities of implementing CPS to improve urban mobility 

management. And for the first time, the new paradigm “Cyber-Physical Urban 

Mobility Systems” appeared in the article by Samalna et al. These authors use this 

paradigm to refer to the strong integration of urban mobility systems with CPS. 

The authors (Pundir et al., 2022) were interested in their studies on the 

contribution of transport networks with CPS in smart cities. The authors tried to 

understand intelligent transport systems combined with CPS, their conceptual 

framework, connected and automated vehicles, and other related communication 

technologies and networks. The authors formulated a perspective on urban mobility in 

future smart cities and the capabilities of CPS. The work carried out by the authors 

(Samalna et al., 2023b) provides an answer to the expectations of Pundir et al. by 

proposing an architectural framework for the design of a CPUMS, but for developing 

countries. Samalna et al. argue that cyber-physical-architectures are very recent 

approaches that aim to couple physical system architectures with algorithms to 

facilitate the control and management of complex interactions. 

There is a research article presenting UTSC-CPS, a CPS for urban traffic 

lightscontrol (Zhang et al., 2020). The authors propose to a system for decision-makers 

and researchers to construct and simulate different types of traffic scenarios, rapidly 

develop and optimize new control strategies. The UTSC-CPS system allows effective 

control strategies to be applied to real traffic management. Moreover, what is very 

interesting, is that this new system consists of an architecture that fuses private cloud 

computing and edge computing, which effectively enhances the software and 

hardware performance of the urban traffic light control system, and achieves the 

perception and protection of information security in the cloud and devices, 

respectively, within the fusion framework. 

Research by Tariq (2024) explores the transformative potential of smart 

transportation systems in sustainable urban mobility. As cities face rapid urbanization 

and environmental challenges, digital transportation offers solutions by leveraging 

advanced technologies to enhance transportation efficiency, reduce environmental 

impacts, and improve urban livability. Tariq examines the components, 

functionalities, and benefits of smart transportation, highlighting their role in traffic 

management, public transport, logistics, and urban planning. 

Studies by Alahi et al. (2023) examine the challenges cities face in providing 

convenient, secure, and sustainable lifestyles amid growing urbanization and 

population. The Internet of Things (IoT) offers a solution by connecting physical 

objects through electronics, sensors, and communication networks, transforming 

smart city infrastructures. Alahi et al. (2023) review smart cities, detailing their 

characteristics and the IoT architecture, and analyzes various wireless communication 

technologies suitable for specific applications. The authors also discuss AI algorithms 

relevant to smart city scenarios and the integration of IoT and AI, highlighting the role 
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of 5G networks in enhancing urban environments. They emphasize the opportunities 

created by combining IoT and AI to improve urban living quality, sustainability, and 

productivity, providing insights into the future of smart cities and their positive impact 

on urban residents. 

The work of Conrad et al. (2023) discusses Intelligent Vehicular Cyber-Physical 

Systems (ICPSs) that enhance the reliability, efficiency, and adaptability of urban 

mobility systems, particularly in the context of autonomous transportation in smart 

cities, such as self-driving cars and advanced air mobility. However, the deployment 

of ICPSs raises concerns regarding safety, cybersecurity, communication reliability, 

and data management, necessitating specialized platforms to handle their complexity. 

Conrad et al. introduce a comprehensive CPS designed to explore, develop, and test 

ICPSs and related algorithms. This customizable embedded system utilizes a field 

programmable gate array connected to a supervisory computer for networked 

operations and supports advanced multi-agent algorithms. 

Komminos et al. (2022) discuss the emergence of smart cities as a new urban 

paradigm characterized by data-driven efficiency and innovation in city operations. 

However, Komminos et al. (2022) identify two main weaknesses: the 

compartmentalization of solutions across various sectors (energy, transport, 

governance) leading to limited interoperability, and a generally low impact on 

efficiency and sustainability. The authors address these challenges by proposing the 

concept of “Connected Intelligence Spaces” within smart city ecosystems, which 

encompass physical, social, and digital dimensions. These spaces facilitate innovation 

and synergies among human, machine, and collective intelligence, focusing on 

improving efficiency through innovation rather than mere optimization. The authors 

hypothesize a universal architecture for impactful smart city projects, supported by 

connected intelligence spaces and cyber-physical-social systems of innovation. This 

hypothesis is evaluated through empirical case studies related to safety transportation, 

and positive energy districts. The authors highlight operational elements that 

contribute to high efficiency and identifies commonalities and innovation functions 

across sectors, ultimately defining a cohesive architecture for promoting innovation 

and performance in smart city ecosystems. 

Zhang et al. (2016) proposed a CPS with heterogeneous model integration, based 

on extremely-large multi-source infrastructures in the Chinese city of Shenzhen. 

Zhang et al. formulated a mathematical optimization problem on the process of 

optimal integration of heterogeneous data models, namely model heterogeneity, input 

data sparsity or unknown ground truth. The authors have developed a real-world 

application called Speedometer, which infer real-time traffic speeds in urban areas. 

In fact, the studies carried out by the various authors are very interesting, but they 

do not address the optimization of complex interactions in the development cycle of 

CPUMS, which is also a very complicated task. In reality, these complex engineering 

systems integrate a multitude of heterogeneous components or systems in permanent 

interaction and a complexity of transversal aspects of CPS, as well as local contexts 

of cities to be taken into account. 
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2.2. Design and requirement engineering approach for complex system 

modeling 

The study of requirements engineering approaches has been a very active 

research topic over the past few decades (Aji et al., 2021). The requirements 

engineering approach provides a structured and methodical way of modeling complex 

systems such as CPUMS. It ensures that the resulting system meets the needs of its 

stakeholders and can effectively address the challenges of the system. Many studies 

have demonstrated the importance of the systems engineering approach to the design 

of complex systems (Bennett et al., 2023). The commonly used engineering tools are 

Unified Modeling Language (UML), System Modeling Language (SysML), Model-

Based Systems Engineering (MBSE), and DSM tools (Akundi and Lopez, 2021). 

These tools have their own strengths and weaknesses, and the choice among them 

depends on the specific needs of the project (Madni and Sievers, 2018). For example, 

• UML is a software modeling language (Savary et al., 2023); 

• The SysML approach provides a formalized approach to system design (Shaofan 

et al., 2019); 

• The MBSE approach provides a more formalized approach to system design (De 

Saqui-Sannes et al., 2022); 

• The DSM tool is very useful for managing complexity in large-scale systems 

(Moran et al., 2021). 

Each of these approaches has its own unique characteristics and can be used to 

address different aspects of system design. Ultimately, the choice between these 

approaches will depend on factors such as the size and complexity of the system to be 

designed, the level of formality required in the design process, and the specific needs 

of the project. 

So, in particular, the DSM tool plays a crucial role in integrating components or 

subsystems and understanding complex dependencies or interactions between these 

system components (Zheng et al., 2019). However, DSM is an engineering method 

that enables innovative and systematic design of complex systems by identifying 

system interactions with the aim of simplifying understanding and reducing project 

risks (Guan et al., 2021). Several important critical issues have been identified as 

fundamental aspects of CPS, including integration, modularity, flexibility, 

sustainability (Kaur and Chatterjee, 2022). Efforts are underway to develop integrated, 

flexible and sustainable systems that take into account the local aspects of countries 

(Samalna et al., 2023a). 

Recent research has also highlighted the importance of simplifying the 

interactions between system components in order to manage the complexity of multi-

parameter system design and to enable easy understanding of the design loads on the 

system. By simplifying the interactions between the components of a system, 

engineers can better manage and avoid complexity. When working on complex 

engineering systems, it is important to address and resolve complexity. However, these 

systems can become so complex that their development becomes risky and may even 

be abandoned. This will reduce delays and improve the smooth running of the project. 

For example, Yassine et al. (Yassine and Braha, 2003) propose a unified modeling 

approach based on the DSM method to represent complex task relationships for better 
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planning and managing project managers’ initiatives. Other studies have measured the 

strength of interaction between teams and grouped organizational units to reduce 

coordination complexity (Yang et al., 2013). 

Several other works have explored the use of DSM in urban transport systems, 

including ours (Farid et al., 2021), which proposed to study the impact of integrating 

electric vehicles in Abu Dhabi on the intelligent transportation system through a multi-

domain matrix. This resulted in the need to coordinate traffic and energy management 

functions for an intelligent transport-energy system. Other studies have constructed 

the DSM from a conceptual model of urban well-being in relation to health (Hoffmann 

et al., 2020). The authors concluded that the DSM tool is powerful in supporting the 

development of integrated models for urban systems. For the same reason, the DSM 

is being used in other multidisciplinary and complex domains. Buzuku et al. (2016) 

conducted a case study using DSM on the formulation and analysis of policies related 

to a large industrial wastewater treatment plant in Brazil. Buzuku et al. concluded that 

DSM can drive the entire structure of the organizational’s management system 

towards sustainability by improving the performance and efficiency of policies. 

Overall, the use of the DSM with advanced techniques in the design and 

optimization of a CPUMS for developing countries can provide a systematic and 

comprehensive approach to addressing the challenges and specificities of these 

contexts. It allows scientists and engineers to identify the critical dependencies and 

bottlenecks, and to propose optimization strategies to improve the efficiency, 

sustainability, and responsiveness of the system. 

2.3. Necessity of CPUMS in developing countries 

Meeting the mobility needs of populations in urban environments in developing 

countries is becoming increasingly complex over time due to factors such as rapid 

population growth and delayed initiatives to alleviate mobility problems. This has led 

many researchers and urban planners to consider urgent and scientific measures to 

address issues such as congestion, road accidents, last-mile problems, air pollution, 

transport costs, and accessibility to different modes of transport (Olugu, 2017). Indeed, 

developing countries face significant developmental disparities and often encounter 

various socio-economic crises. Nevertheless, some African countries, such as Nigeria, 

Senegal, Côte d’Ivoire, South Africa, Morocco, Kenya, Ethiopia, Cameroon, and more 

are investing in the renewal of urban roads and new initiatives in sustainable mobility 

(Mboup, 2019). 

The implementation of CPUMS in developing countries faces numerous legal, 

political, and regulatory challenges that can hinder their successful deployment. This 

paper provides exhaustive policy recommendations to address these barriers and 

facilitate the effective integration of CPUMS in urban settings. 

a) Data Privacy and Security Laws: Clear guidelines for data collection, storage and 

sharing are essential to ensure user confidentiality and prevent misuse of sensitive 

information. Data protection laws in line with international standards must also 

be put in place to increase user and stakeholder confidence. 

b) Intellectual Property Rights: Regulations need to be put in place to clarify the 

ownership and use of intellectual property in CPUMS technologies to encourage 
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innovation and investment. In addition, licensing and technology transfer 

mechanisms need to be established to facilitate the uptake of CPUMS solutions. 

c) Interagency Coordination: Encourage the creation of a centralized authority or 

task force to coordinate CPUMS initiatives across different government 

departments in order to simplify decision-making processes. Encourage 

cooperation between local, regional and national authorities to ensure a consistent 

approach to urban mobility planning. 

d) Policy Alignment: Ensure that CPUMS policies are aligned with broader urban 

development objectives, environmental concerns and social equity to maximize 

the positive impact of the system on urban communities. Decision-makers must 

also engage in dialogue with industry experts and researchers to keep abreast of 

emerging trends and best practices in CPUMS implementation. 

e) Standardization: It recommends facilitating public-private cooperation by 

offering regulatory support and risk-sharing mechanisms to attract private sector 

participation in CPUMS deployment. 

f) Funding and Investment: It aims to facilitate public-private cooperation by 

offering regulatory support and risk-sharing mechanisms to attract private sector 

participation in the deployment of CPUMS. 

However, transforming mobility is becoming a necessity to align with the digital 

convergence and sustainable development policies advocated by the United Nations 

for the well-being of all cities worldwide. Moreover, there are compelling reasons to 

adopt cyber-physical technologies in urban mobility (Pundir et al., 2022): 

a) Optimization of transport infrastructure: CPS can help optimize the use of 

existing transport infrastructure by monitoring and efficiently managing traffic, 

traffic lights, public transport, etc. This can help reduce congestion and improve 

traffic flow. 

b) Improvement of road safety: CPS systems can be used to monitor road conditions 

in real-time, detect accidents and potential incidents, and warn drivers, to 

improve road safety. 

c) Smart parking management: CPS can be used to manage parking land use more 

effectively by monitoring parking spaces, directing drivers to available spaces, 

and facilitating electronic payment. 

d) Optimization of public transportation: CPS systems can be used to improve the 

planning and management of public transport networks, leading to improved 

accessibility in peripheral areas, reduced waiting times, and optimized routes. 

e) Reduction of pollution and emissions: By optimizing traffic flow and 

encouraging the use of more sustainable modes, CPS can help reduce air pollution 

and greenhouse gas emissions associated with urban mobility. 

f) Integration of alternative modes of transportation: CPS can facilitate the 

integration of alternative modes of transport such as bicycles, animals, canoes, 

etc., thus providing citizens in developing countries with more diverse and 

sustainable travel options. 

The design of the CPUMS architecture is a significant challenge in systems 

engineering (Fritzsch et al., 2023). It requires a deep understanding of the complex 

interactions between the physical and digital components of the overall system. 
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3. CPUMS architecture design for developing countries 

This section presents the multi-level analysis of the system, the analysis of 

relationships and dependencies between system components, and the presentation of 

component-oriented architecture. 

3.1. Multi-level analysis of the CPUMS system 

The CPUMS system involves a significant number of relationships, 

dependencies, and complex interactions between physical and cyber components. A 

multi-level analysis at macro, meso, and micro levels is required to identify the various 

components. Figure 1 illustrates macro, meso and micro analysis of the CPUMS. 

 
Figure 1. Proposed methodology. 

The macro-level analysis of CPUMS includes household travel surveys, traffic 

counts, and transport modeling. It involves the study of large-scale travel patterns 

within the urban area. It clarifies transport and urban planning policies, and, most 

importantly, understands the key trends, structures, and dynamics that influence the 

system as a whole on, a broader and more strategic scale. The meso-level analysis of 

CPUMS is an intermediate level between macro analysis (which examines the system 

as a whole) and microscopic analysis (which focuses on individual components of the 

system). This analytical approach focuses on travel flows and public policies, and in 

particular on understanding the structures, dynamics, and interactions at a scale larger 

than that of individuals or isolated components, but smaller than that of the whole 

system. The micro-level analysis of CPUMS focuses on individual travel behaviors 

and decisions. It examines the factors that influence transport choices, such as cost, 

time, convenience, and personal preferences. It also focuses on specific individual 

components and interactions that shape the functioning of this system at a very detailed 

level. 

In terms of scope, research and data collection, by focusing interviews and 

surveys on elements of multi-level analysis of urban space, we were able to capture 

the complex dynamics and interactions in urban mobility systems in developing 

countries. We generated an extensive dataset of CPUMS components and/or 
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subsystems. Data cleansing allowed us to select a sample of 90 physical and cyber 

components for this study. 

3.2. CPUMS components 

The multi-level analysis in Section 3.1 has facilitated the identification of 90 key 

components for the design of the CPUMS architecture in the context of developing 

countries. Figure 2 shows the list of components according to the levels of analysis. 

 
Figure 2. The set of 90 components in CPUMS design. 

3.3. Component-oriented architecture representation of CPUMS 

The CPUMS consists of several components that collect urban data and 

automatically analyze it to make decisions in case of accidents or incidents. Most of 

the components are able to communicate with each other, and others perform 

computations. Figure 3 provides an overview of the CPUMS component diagram. 

 
Figure 3. CPUMS architecture based π-ADL description. 
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Figure 3 primarily illustrates the interactions between the system components. 

Components interact with each other through connectors. A connector connects the 

component to other components and to the component’s environment. This graphical 

representation provides an overview of the system components and their interactions. 

• The components Walking, Restaurants (with the back-turning), Waste, Walking, 

Animals, Mototaxis, Mosques (and even the Groves), Churches, Cemeteries, 

Trees, Vehicles, Gas stations are sources of urban mobility Big Data. These data 

can pass through the IntRoute connector to be used by the Traffic lights and even 

the Roadside unit. 

• The Sensor components collect physical data from the River, Stream components 

via the L1 connector and transit it to the Base station via the L2 connector. 

• The urban environment is represented by connectors L1, L2, L3, L4, IntGateway, 

IntRoute, 802.11p/3G, IntController, and IntSignaling. L1, L3, L4, and IntRoute 

bring new metrics to the system. L2 facilitates the exchanges between the Sensor 

component and the Base station component. Similarly, IntGateway facilitates the 

transmission of alerts from the Control center to components such as Waste 

management unit, Hospitals, Customs, Firefighters, Police, and Gendarmerie 

regarding emergency situations on the urban road network. The 802.11p/3G 

connection acts as an interface between the Roadside unit and the Base station. 

Finally, IntController acts as an interface between the Base station and the 

Control center. 

• IntSignaling links the Traffic lights component with the Roadside unit component 

to enable in-depth traffic analysis by the Control center component. This link 

enables optimal decision-making with regard to road signaling. 

• The City Hall and Administration components receive data related to urban 

mobility for use via the L4 connector, provided by the Control center. The 

Mototaxis components operating in the urban environment fall under the 

jurisdiction of the Town hall component and are required to pay municipal taxes 

in a timely manner. In addition, the Administration component requires 

exploratory analyses of urban mobility in order to make decisions aimed at 

improving public policies in the field of urban transport. Here, the Administration 

refers to the senior divisional officer or Governor. 

4. CPUMS-based DSM and K-Means clustering 

4.1. Clustering and dependency modeling methods 

This section introduces clustering and dependency modeling in the context of the 

CPUMS architecture, and also introduces mathematical concepts of K-Means and 

DSM. 

4.1.1 Clustering algorithms 

In the context of the CPUMS architecture, clustering is an essential method for 

grouping urban mobility components into meaningful subsets. The aim is to 

understand the relationships between components, which will enable a better 

understanding of mobility flows, interactions between different system components, 

and user needs. 
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Clustering is a fundamental technique in data analysis and machine learning used 

to group similar objects or data points into clusters. Clustering algorithms such as K-

Means, K-Medoids, DBSCAN (Density-Based Spatial Clustering of Applications with 

Noise), OPTICS (Ordering Points To Identify the Clustering Structure), hierarchical 

clustering, and fuzzy C-Means are common examples of methods used to group data 

into meaningful clusters (Ahmed et al., 2020). These techniques are used in various 

domains such as marketing, social networks analysis, medicine, and engineering to 

extract useful information from complex datasets. There are various clustering 

algorithms available, each with its own strengths, weaknesses, and applications. The 

Table 1 shows comparison between the popular clustering algorithms in the literature. 

Table 1. Summary of clustering algorithms related works. 

Algorithm Authors Simple 
Assume spherical 

clusters 

Robust to noise and 

outliers 
Time complexity 

K-Means (Kansal et al., 2018) Yes Yes No O (k. n. d) 

K-Medoids (Wang et al., 2019) No No Yes O (k.(n-k)2) 

DBSCAN (Liu et al., 2020) No No Yes O (n log n) 

OPTICS (Agrawal., 2016) No No No O (n log n) 

Hierarchical Clustering (Murtagh and Contreras, 2017) No No No O (n2 log n) 

Fuzzy C-Means (Kolen and Hutcheson, 2002) No No Yes O (c. m. n) 

Mean-Shift (Tehreem et al., 2019) No No Yes O (n2) 

Agglomerative Clustering (Karthikeyan et al., 2020) No No No O (n3) 

Thus, clustering techniques such as K-Means are simple and can facilitate 

intuitive analysis to efficiently group CPUMS components into clusters, enabling 

trend detection, resource planning, and informed decision-making to optimize the 

overall system. However, the K-Means algorithm requires a priori determination of 

the optimal number of clusters, 𝐾 , to achieve an optimal partition. Consequently, 

several techniques can be used for this purpose. Table 2 presents these techniques, 

which are widely used in partition evaluation. Cluster evaluation plays a crucial role 

in clustering analysis by helping to evaluate the quality of the clustering results’ 

quality. There are a variety of evaluation methods, each with its own set of advantages 

and disadvantages. This table shows the common usage status of each method. 

Table 2. Summary of clustering evaluation methods. 

 Evaluation method Measures Authors 

1 Silhouette Score Compactness and separation (Hartama and Anjelita, 2022) 

2 Davies-Bouldin Index 
The average similarity between each cluster and its most 

similar cluster 
(Bagirov et al., 2023) 

3 Calinski-Harabsz Index 
The ratio of between-cluster dispersion to within-cluster 

dispersion 
(Ashari et al., 2023) 

4 Dunn Index The compactness and separation of clusters (Misuraca et al., 2019) 

5 Rand Index, Fowlkes-Mallows The similarity between two clusters (Campello, 2007) 

6 Jaccard Index The similarity between two sets (Tang et al., 2021) 

7 Purity score The purity of clusters (Kim et al., 2016) 
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Table 2. (Continued). 

 Evaluation method Measures Authors 

8 Entropy The uncertainty or randomness of clusters (Xu et al., 2018) 

9 
Homogeneity, Completeness, V-

Measure 
The homogeneity, completeness, and harmonic mean of both (Aljarah et al., 2021) 

10 Elbow method 
A suitable number of clusters that balances the trade-off 

between model complexity and clustering quality 
(Shi et al., 2021) 

The Calinski-Harabasz Index, also known as the Variance Ratio Criterion, is 

often used to evaluate clustering results, especially in scenarios where the ground truth 

labels are not available. It measures the ratio of the inter-cluster variance to the intra-

cluster variance, which essentially assesses the compactness and separation of the 

clusters. For 𝐾 clustering in CPUMS, the choice of the Calinski-Harabasz Index can 

be advantageous for several reasons: 

1) Interpretability: The index provides an intuitive measure of clustering quality by 

quantifying the compactness and separation of clusters. In the context of urban 

mobility systems, where understanding the spatial distribution and separation of 

different mobility patterns is critical, this interpretability can be valuable. 

2) Scalability: The Calinski-Harabasz Index is relatively computationally efficient 

and can handle large datasets, which is essential for analyzing mobility data in 

urban environments where the volume of data can be substantial. 

3) Robustness: The index is robust to noise and outliers, which is beneficial in real-

world scenarios where mobility data may contain irregularities or anomalies. 

4) Automation: Since the Calinski-Harabasz Index does not require ground truth 

labels, it can be applied in an unsupervised manner, making it suitable for 

situations where manual labeling of data is impractical or unavailable. 

5) Comparison: The index allows for the comparison of different clustering 

solutions by providing a numerical measure of their quality. This is particularly 

useful when exploring different clustering algorithms or parameter settings to 

identify the most appropriate clustering approach for urban mobility systems. 

Overall, the Calinski-Harabasz Index provides a comprehensive and practical 

means of evaluating clustering solutions for K-clustering in CPUMS, making it a 

suitable choice to guide decision-making and system optimization in such contexts. 

4.1.2 Dependency modeling methods 

In the context of the CPUMS architecture, dependency modeling aims to 

represent the relationships and interactions between the various components of the 

CPUMS, such as mototaxis, infrastructure, users, and services. This modeling enables 

the visualization and analysis of functional dependencies, information flows, and 

interconnections among the constituent components of the CPUMS. 

DSM is an engineering tools that systematically maps dependencies between 

components, facilitating the understanding of interactions and information flows 

within the CPUMS. This approach helps identify critical dependencies, prioritize 

elements based on their impact, and optimize the design and organization of the 

CPUMS architecture. Thus, dependency modeling of the CPUMS architecture 

provides a structural framework for analyzing and visualizing interdependent 
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relationships among components, which is essential for effective design, optimization, 

and validation of the architecture in the context of urban mobility. 

4.2. Theoretical foundation of the mathematical concepts 

4.2.1. Dependency Structure Matrix 

Mathematically, a Dependency Structure Matrix (DSM) is a matrix 

representation of the interactions and dependencies between components in CPUMS. 

It provides a systematic representation of the dependency relationships, information 

flows, and interconnections among the components of CPUMS. By denoting 𝑋 as a 

matrix, which is an 𝑛 × 𝑛 matrix, where 𝑛 represents the number of components in the 

system (Browning, 2015). Equation (1) is the mathematical representation of the 

square matrix 𝑋: 

𝑋 = (

𝑥11 ⋯ 𝑥1𝑛

⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑛

) (1) 

where 𝑥𝑖𝑗 represents the value of the cell located in row 𝑖 and column 𝑗 of matrix 𝑋. 

This value can be based on various criteria such as the frequency of interaction 

between elements, the importance of the relationship, the dependency between 

elements, etc. This value can also be numerical, symbolic, or qualitative depending on 

the context of the design structure matrix. The relevance of DSM to this study lies in 

its ability to provide an overview of the interdependencies between different 

components of the urban mobility architecture. By identifying functional 

dependencies, critical interactions, and information flows within the system, the DSM 

allows us to prioritize components or subsystems, optimize the architecture design, 

and gain a better understanding of the impact of interconnections on overall system 

performance. 

4.2.2. K-Means clustering method 

The K-Means algorithm its ability to efficiently cluster CPUMS components into 

meaningful clusters. It’s based on the principle of minimizing intra-cluster variance, 

denoted by the objective function 𝐽 which attempts to minimize the sum of squared 

distances between each data point 𝑥𝑖 and the centroid 𝑥𝑗 of its assigned cluster (Kansal 

et al., 2018): 

𝐽 = ∑ ∑‖𝑥𝑖 −𝑐𝑗‖
2

𝑘

𝑗=1

𝑛

𝑖=1

 (2) 

where 𝑛 is the total number of data points, 𝑘 is the number of clusters, 𝑥𝑖 is the 𝑖-th 

data point, 𝑐𝑗 is the centroid of the 𝑗-th cluster, and ‖. ‖ is the Euclidean distance. 

The K-Means algorithm iterates through two main steps (Kansal et al., 2018): 

Step 1: Assignment: Each data point is assigned to the cluster with the nearest 

centroid based on Euclidean distance. 

Step 2: Update: Cluster centroids are updated by calculating the average of all 

data points assigned to each cluster. 

This iterative process continues until convergence, where the centroids and data 

point assignments stabilize. The K-Means algorithm will allow us to uncover 
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behavioral patterns, segment mobility flows based on relevant criteria, and identify 

homogeneous groups of entities related to urban mobility. This approach, rooted in 

mathematical optimization principles, will help us better understand mobility 

dynamics, optimize the design of our architecture, and make informed decisions to 

improve the system as a whole. 

4.2.3. Integration of PCA for DSM dimensionality reduction 

This section presents the integration of PCA with DSM for the purpose of 

CPUMS component dimensionality reduction and relevant feature extraction. 

Dimensionality reduction and relevant Features in CPUMS DSM 

PCA is used to transform the CPUMS DSM, which consists of 𝑛 observations 

(components), into a set of fewer variables called principal components. This 

dimensionality reduction allows the high-dimensional DSM of the CPUMS to be 

transformed into a lower-dimensional space while preserving as much information as 

possible. By retaining the principal components that explain the most of the variance 

in the data, we can effectively reduce the dimensionality of the DSM and extract the 

most relevant features for further analysis. 

PCA is based on computing the eigenvectors and eigenvalues of the covariance 

matrix of the data. Let 𝑋 be the data matrix, where each row represents a component 

and each column represents an observation. The first step in PCA is to center the data 

by subtracting the mean of each variable. Then, the covariance matrix ∑ is computed 

as follows (Helwig et al., 2017): 

∑ =
1

𝑛 − 1
(𝑋 − �̅�) (𝑋 − �̅�)𝑇 (3) 

where �̅�  is the mean vector of the columns of 𝑋 , and 𝑛  is the total number of 

observations. 

Next, the eigenvectors 𝑣1, 𝑣2, … , 𝑣𝑝 and the corresponding eigenvalues 

𝜆1, 𝜆2, … , 𝜆𝑝 of the covariance matrix are computed. The principal components are 

obtained by projecting the original data onto the eigenvectors, thus providing a new 

representation of the data in a lower-dimensional space. The projection of the original 

data onto the eigenvectors is given by (Deegalla et al., 2006): 

𝑃𝐶𝑖 = 𝑋 × 𝑣𝑖 (4) 

where 𝑃𝐶𝑖 represents the 𝑖-th principal component, and 𝑣𝑖 is the 𝑖-th eigenvector. 

In general, the principal components are ordered by decreasing amount of 

variance explained, so that the first components capture the largest amount of variance 

in the data. This transformation reduces the dimensionality while retaining as much 

information as possible, making data analysis and visualization easier. 

Optimization of DSM CPUMS architecture based PCA 

By extracting the most relevant features from the data, PCA allowed us to gain a 

deeper understanding of the underlying structures and relationships between the 

variables in the system. This deep understanding has helped us optimize the 

architecture design by focusing on the most informative and discriminative features. 

PCA identifies the principal components that capture the maximum variance in the 

data. 
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Let 𝑋 be the data matrix representing the DSM of the CPUMS, where each row 

corresponds to a component and each column corresponds to a variable. The PCA 

process can be as follows: 

Step 1. Standardization of the data: Each variable 𝑥𝑖 is standardized �̃�𝑖 to have a 

mean of 0 and a standard deviation of 1 to ensure that all variables contribute equally 

to the analysis (Milligan et al., 1988). 

�̃�𝑖 =
𝑥𝑖 − �̅�𝑖

𝜎𝑖
 (5) 

where 

�̃�𝑖 =
1

𝑛
∑ 𝑥𝑘𝑖

𝑛
𝑘=1 , for 𝑖 ranging from 1 to 𝑛 (6) 

𝜎𝑖 = √
1

𝑛
∑ (𝑥𝑗𝑖 − �̅�𝑖)2𝑛

𝑗=1 , for 𝑖 ranging from 1 to 𝑛 (7) 

𝑥𝑖 a vector of size 𝑝 containing the values of 𝑝 variables for observations 𝑖, 𝑥𝑘𝑖 

the value of variable 𝑥𝑖 in the 𝑘-th observation, 𝑥𝑗𝑖 the value of variable 𝑥𝑖 in the 𝑗-th 

observation. 

Step 2. Calculation of the covariance matrix: The covariance matrix of the 

standardized data is computed, where the (𝑖, 𝑗)-th element represents the covariance 

between variables 𝑖 and 𝑗. 

𝐶 = 𝑐𝑜𝑣(�̃�𝑖, �̃�𝑗) =
1

𝑛 − 1
∑(�̃�𝑘𝑖 − �̅�𝑖) × (�̃�𝑘𝑗 − �̅�𝑗)

𝑛

𝑘=1

 (8) 

where 𝑛 represents the number of observations in the dataset 𝑋, the variable 𝑘 in the 

sum indicates that we iterate through the observations, calculating the covariance 

between the standardized variables �̃�𝑖 and �̃�𝑗 for each pair of variables 𝑖 and 𝑗, where 

�̅�𝑖 and �̅�𝑗 denote the means of the values of the variable 𝑥𝑖 and 𝑥𝑗 respectively, �̃�𝑘𝑖 and 

�̃�𝑘𝑗 represent the standardized values of the respective variables 𝑥𝑖 and 𝑥𝑗 for the 𝑘-th 

sample. 

Step 3. Eigen decomposition of the covariance matrix: The covariance matrix ∑ 

is then decomposed into its eigenvectors 𝑣1, 𝑣2, … , 𝑣𝑝 and eigenvalues 𝜆1, 𝜆2, … , 𝜆𝑝. 

The eigenvectors represent the directions of maximum variance in the data, and the 

eigenvalues indicate the amount of variance explained by each eigenvector (Abdi, 

2007). 

𝑍𝑘 = ∑ 𝑣𝑘𝑖 × �̃�𝑖
𝑛
𝑖=1 , for 𝑘 = 1 to 𝑝 (9) 

where 𝑛 is the total number of observations in the dataset 𝑋. �̃�𝑖 is the standardized 

value of the variable 𝑥𝑖  for the 𝑖 -th observation. 𝑣𝑘𝑖  is the 𝑖 -th component of the 

eigenvector 𝑣 associated with the 𝑘-th principal component. 𝑝 is the total number of 

principal components. 

Step 4. Selection of principal components: The principal components are selected 

based on their corresponding eigenvalues. Components with higher eigenvalues 

capture more variance in the data and are retained for further analysis (Boutsidis et al., 

2008). 
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Step 5. Projection of data onto principal components: The original data matrix 𝑋 

is projected onto the selected principal components to obtain the transformed data 

matrix 𝑋′, where each column represents a principal component (Salem, 2021). 

𝑍 = 𝑋 × 𝑉𝑘 (10) 

where 𝑍  is the projected data matrix of size 𝑛 x 𝑘 , 𝑉𝑘  is a matrix of size 𝑝 x 𝑘 

containing the first 𝑘 eigenvectors (principal components) of the covariance matrix or 

correlation matrix of the data. 

By optimizing the DSM CPUMS architecture based on PCA, we focus on 

retaining the principal components that capture the most significant variability in the 

data. This allows us to simplify the representation of the CPUMS architecture while 

preserving essential information about its underlying structure and relationships 

among variables. The optimized architecture design enhances the interpretability and 

effectiveness of the CPUMS, resulting in improved decision-making and system 

performance. 

5. Results and discussions 

5.1. Representation of the CPUMS DSM 

The CPUMS DSM represents the interdependencies and relationships between 

the various components of the system, revealing its structural complexity. Figure 4 

shows the CPUMS DSM. 

 
Figure 4. CPUMS DSM representation. 

The CPUMS DSM is derived from the set of 90 components identified in Figure 

2. We then identified the relationships between these different components based on 

information collected from stakeholders, experts, observations, and a literature review. 
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These relationships were coded in the form of a binary matrix, where a “1” entry 

indicates an interaction between two components, and a “0” entry indicates the 

absence of an interaction. The resulting CPUMS DSM provides a clear visualization 

of the interdependencies within the CPUMS. 

5.2. CPUMS DSM dimensionality reduction using PCA 

Figure 5 shows the new matrix representation of the CPUMS, obtained by the 

applying PCA. 

 
Figure 5. CPUMS DSM-based PCA. 

PCA enabled the capture of the most significant dependency patterns between the 

different components of the CPUMS. By reducing the dimensionality of the matrix 

representation while preserving the essential information, this new representation 

facilitates the interpretation of the complex interactions within the system. The two 

principal components resulting from the PCA thus summarize the main sources of 

variance in the interactions between the CPUMS components. 

5.3. PCA DSM optimized clustering-based Calinski-Harabsz index 

Figure 6a allows us to identify the number of clusters on the plot where the 

Calinski-Harabasz index reaches its maximum value. Thus, the integer value of four 

corresponds to the maximum number of clusters, and provides an indication of the 

number of distinct groups present in the data. 

Figure 6b shows on a two-dimensional plane the four clusters identified from the 

reduced PCA CPUMS DSM matrix. The centroids of each cluster are represented by 

numbered red points from 0 to 3. The data points belonging to each group are 

respectively represented by black, blue, yellow, and green, respectively. Table 3 

shows the components that make up each of the four clusters identified following the 

analysis of the PCA-based matrix representation of the CPUMS. These clusters group 

together components with similar characteristics and interactions within the system. 
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(a) (b) 

Figure 6. (a) The optimal clusters number with Calinski-Harabsz Index; (b) the 2D principal component plot of 

CPUMS elements. 

Table 3. List of cluster members with their centroid. 

Cluster  Cluster members 

0 0, 24, 34, 35, 42, 43, 49, 55, 58, 59, 61, 62, 65, 68, 71, 78, 79, 81, 84, 85, 87 

1 1, 2, 4, 6, 7, 10, 26, 33, 74, 75, 76 

2 
18, 19, 21, 22, 25, 27, 28, 31, 32, 37, 38, 47, 50, 52, 53, 54, 56, 60, 64, 66, 67, 69, 82, 83, 

88, 89 

3 
3, 5, 8, 9, 11, 12, 13, 14, 15, 16, 17, 20, 23, 29, 30, 36, 39, 40, 41, 44, 45, 46, 48, 51, 57, 

77, 80, 86 

• Cluster 0 covers the basic elements of transportation infrastructure, with a focus 

on non-motorized transport modes, intelligent traffic management, traffic safety, 

flow optimization, and geospatial integration. 

• Cluster 1 primarily groups the components related to communication and 

information systems, as well as public transport services. This suggests that these 

elements of the CPUMS are highly interconnected and form a coherent subsystem 

within the overall urban mobility system. 

• Cluster 2 covers a very broad and integrated vision with a wide range of 

technologies and infrastructures related to intelligent and sustainable 

transportation systems. 

• Cluster 3 focuses on the advanced operational, technological, environmental, and 

organizational dimensions of intelligent transportation systems, thus 

complementing the more infrastructural and sustainable mobility aspects of 

Cluster 2. 

5.4. Discussion on the impact of the results 

In terms of the DSM matrix, this construction has helped to visualize the 

interdependencies between the different components of the CPUMS, to provide ways 

to optimize the process of modular design and integration of the different system 

components, and to facilitate understanding, communication, and decision support for 

managing complexity during design and implementation. However, the stakeholders 
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and engineers benefit from a powerful tool to better understand, structure, and manage 

the complexity of intelligent transportation systems, thus improving the quality of their 

decisions and the overall system performance. 

The combination of DSM analysis with PCA has brought significant benefits: 

reducing the dimensionality of the DSM by identifying the principal components that 

contain most of the variance of the system, identifying the most important and 

influential components of the CPUMS by focusing on the priority elements. Thus, 

decision-makers benefit from a tool to reduce complexity, identifies priority elements, 

understands interdependencies, and optimizes the design of the CPUMS, thereby 

improving the quality and efficiency of their decision-making process. 

The grouping of the CPUMS into 4 clusters provides a fundamental basis for 

informed decision-making, effective strategic planning, and coordinated 

implementation of intelligent transportation systems, thus contributing to more 

sustainable, efficient, and safer mobility. For example, Cluster 0 is concerned with all 

road infrastructure and non-motorized transport; Cluster 1 is concerned with 

sustainable mobility and travel management; Cluster 2 is related to intelligent and 

resilient infrastructure, and Cluster 3 is only interested in advanced ITS operations and 

services. Nevertheless, the numerical simulation has identified the following outlier 

that require special attention: Roads, Traffic management and control centers, 

Transportation data exchange platforms, Real-time scheduling and optimization for 

public transportation, Transportation network infrastructure and multimodal 

connectivity. They can provide valuable information for stakeholder decision support 

in the CPUMS. 

For example, “Traffic management and control centers” may indicate reliability, 

performance or integration issues with that subsystem. They may indicate potential 

bottlenecks in the system, such as “Transportation data exchange platforms” or “Real-

time scheduling and optimization for public transportation”. They may also reveal 

elements that offer innovative opportunities, such as “Transportation network 

infrastructure and multimodal connectivity” to deploy new mobility solutions. They 

may also indicate an imbalance between elements, such as oversized “Roads” which 

can guide investment decisions and resource allocation to rebalance the system in a 

more optimal way. 

6. Conclusion and future directions 

In conclusion, this study has demonstrated the significant potential of integrating 

Cyber-Physical Systems (CPS) into urban mobility frameworks, especially in 

developing countries. By using the Dependency Structure Matrix (DSM) in 

conjunction with advanced techniques such as Principal Component Analysis (PCA) 

and outlier analysis, we have developed a robust methodology for understanding and 

optimizing the complex interdependencies inherent in Cyber-Physical Urban Mobility 

Systems (CPUMS). Our findings underscore the effectiveness of PCA in simplifying 

the representation of CPUMS, elucidating critical subsystems and interdependencies, 

and isolating the elements that carry the most informational weight. This improved 

understanding of system complexity has informed strategic decision-making, enabling 
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more efficient resource allocation and targeted actions to address system 

vulnerabilities, bottlenecks, and opportunities for innovation. 

The findings from outlier analysis have further highlighted the utility of these 

techniques in identifying areas of fragility and imbalance within the system, thus 

guiding stakeholders towards more informed and effective interventions. By using 

these analytical tools, transportation engineering professionals can significantly 

improve the quality and efficiency of their decision-making processes, ultimately 

leading to more sustainable and intelligent transportation solutions. 

Future research should explore the integration of these methods with other 

analytical frameworks, such as scenario simulation and real-time data analysis, to 

further refine decision-making processes and enable dynamic adaptation to evolving 

urban mobility needs. In addition, extending the application of these approaches to 

other domains within engineering and complex systems management holds promise 

for uncovering new research avenues and practical applications. Overall, this study 

contributes to the advancement of digital transportation infrastructure in developing 

countries, promoting the creation of efficient, sustainable, and human-centered 

mobility solutions that can meet the demands of growing urban populations. 
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