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Abstract: Accurate prediction of US Treasury bond yields is crucial for investment strategies 

and economic policymaking. This paper explores the application of advanced machine learning 

techniques, specifically Recurrent Neural Networks (RNN) and Long Short-Term Memory 

(LSTM) models, in forecasting these yields. By integrating key economic indicators and policy 

changes, our approach seeks to enhance the precision of yield predictions. Our study 

demonstrates the superiority of LSTM models over traditional RNNs in capturing the temporal 

dependencies and complexities inherent in financial data. The inclusion of macroeconomic and 

policy variables significantly improves the models’ predictive accuracy. This research 

underscores a pioneering movement for the legacy banking industry to adopt artificial 

intelligence (AI) in financial market prediction. In addition to considering the conventional 

economic indicator that drives the fluctuation of the bond market, this paper also optimizes the 

LSTM to handle situations when rate hike expectations have already been priced-in by market 

sentiment. 
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1. Introduction 

In the dynamic landscape of financial markets, US Treasury bonds hold a pivotal 

role as benchmarks for interest rates, influencing a wide range of economic activities 

and financial instruments. Predicting Treasury bond yields accurately is essential for 

investors, policymakers, and financial analysts, as these predictions inform critical 

decisions in both investment strategies and economic policymaking. US Treasury 

bonds, including Treausry bills, notes, and bonds serve as key instruments for the 

federal government to finance its operations. Their yields are sensitive to multiple 

factors such as GDP growth rates, inflation, employment data, and monetary policy 

actions by the Federal Reserve (Ang and Bekaert, 2006; Engle and Granger, 1987; 

Fama, 1984). These variables introduce significant volatility, make the prediction of 

yields a complex and nuanced problem. Traditional prediction methods often fall short 

in capturing the intricate temporal dependencies inherent in financial data, 

highlighting the need for more sophisticated approaches. 

Recent advancements in machine learning offer promising solutions to these 

challenges. Specifically, Recurrent Neural Networks (RNN) and Long Short-Term 

Memory (LSTM) models have shown exceptional capabilities in handling sequential 

data and time series prediction (Bagastio et al., 2023; Graves et al., 2009; Hochreiter 

and Schmidhuber, 1997; Xu et al., 2024). These models are particularly adept at 
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capturing temporal dependencies, which are crucial in understanding the fluctuations 

in Treasury bond yields. RNNs process data in sequences, maintaining a hidden state 

that evolves over time, while LSTM networks enhance this by including memory cells 

that can preserve information over extended periods, addressing the limitations of 

standard RNNs. However, all previous efforts failed to improve the solution from 

those intrinsic business factors that influence the market. None of them explicitly 

addressed the correlation between the performance and the choice of economic 

indicators. 

This paper explores the application of these advanced machine learning 

techniques in forecasting US Treasury bond yields. By integrating economic indicators 

and policy variables into the RNN and LSTM models, we aim to improve the accuracy 

and reliability of yield predictions. Our approach represents a significant step forward 

in the application of artificial intelligence (AI) in financial market analysis. This 

research contributes to the AI transformative trend by demonstrating the efficacy of 

RNN and LSTM models in predicting bond yields, thereby highlighting the benefits 

of integrating sophisticated AI models into financial forecasting. In the year 2022/2023, 

US Fed introduced a few larger than expected rate hike that drag the yield from 2% to 

more than 5%, this has not been seen since the 1970s. We are going to introduce our 

approaches to address this unexpected yield hike that puzzles traditional yield 

predictors. 

In summary, this paper addresses the complex challenge of predicting US 

Treasury bond yields by leveraging the power of RNN and LSTM models. We 

incorporate key economic and policy variables into our analysis, demonstrating how 

these factors can significantly enhance predictive accuracy. Our findings underscore 

the transformative potential of AI in the financial sector, advocating for its broader 

adoption in legacy banking to drive efficiency and innovation. 

2. Review of literature 

US Treasury bonds, including Treasury bills, notes, and bonds, play a crucial role 

in financial markets as benchmarks for interest rates and indicators of economic 

sentiment. These instruments are pivotal in determining borrowing costs across 

various sectors of the economy, influencing investment decisions and monetary policy 

formulations (Campbell and Shiller, 1991; Fama, 1984). There are three types of US 

treasuries: bills, notes and bonds. Treasury bills, which also known as T-bill have the 

shortest maturity terms from four weeks to a year. Treasury notes (T-notes) mature 

between two and ten years. Bonds typically mature in 20–30 years from issuance. 

The yields of Treasury bonds are influenced by a complex interplay of economic 

indicators, monetary policy and fiscal policy. Economic indicators are factors such as 

GDP growth rates, inflation, and unemployment figures affect investor expectations 

and market sentiment (Stock and Watson, 2001, 2003). Monetary policy is decisions 

by central banks, particularly the Federal Reserve in the US, regarding interest rates 

and quantitative easing policies, have direct impacts on bond yields (Bernanke and 

Kuttner, 2005; Hamilton, 1983). Fiscal policy are government spending and tax 

policies also influence bond yields by affecting the supply and demand dynamics in 

the bond market (Elmendorf and Mankiw, 1999; Ramey, 2011). 
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Recent advancements in machine learning techniques have revolutionized 

financial market predictions, offered new insights and enhanced predictive accuracy. 

Cao et al. (2024), Yu et al. (2024) and Zheng et al. (2024) discussed various techniques 

in applying AI techniques in detecting time-series correlations. Recurrent Neural 

Networks (RNNs) have been successfully applied to time series forecasting, including 

stock prices and exchange rates, by capturing sequential dependencies (Graves et al., 

2009; Hochreiter and Schmidhuber, 1997). It also has many applications outside of 

the financial arena (Jin et al., 2024; Liu et al., 2024; Mo et al., 2024; Zhu et al., 2024). 

Long Short-Term Memory (LSTM) Network introduced by Hochreiter and 

Schmidhuber (1997), is an extension of RNNs, improve upon traditional models by 

better capturing long-term dependencies and mitigating issues such as vanishing 

gradients (Cho et al., 2014; Gers et al., 2000). It is designed to overcome the limitations 

of traditional RNNs. LSTMs are particularly adept at learning long-term dependencies, 

making them suitable for tasks where context and sequence are important. Unlike 

standard RNNs, which struggle with the vanishing gradient problem, LSTMs can 

retain information over extended periods, thanks to their unique cell state and gating 

mechanisms. 

In capital markets, RNN and LSTM has been showing effective in predicting 

stock market (Bagastio et al., 2023; Ding and Qin, 2019; Lopez de Prado, 2018; Tsai 

et al., 2017; Wang et al., 2024). While RNN and LSTM have shown promising results 

in stock market, there remains a gap in the literature regarding the comprehensive 

integration of economic and policy variables into predictive models for Treasury bond 

yields. None of those studies have explored the combined effects of macroeconomic 

indicators and policy decisions on yield predictions using advanced machine learning 

techniques. 

All the previous attempt on stock and bond yield prediction focuses on improving 

the performance by tweaking the learning rate, batch size, number of layers and units, 

dropout rate, sequence length etc., none of them explored the problem from the 

business perspective. None of the researchers attempted to address the performance 

from its business nature and improve training from the economic factors that influence 

the bond market. We notice that the two LSTM-based bond yield prediction 

applications (Shu et al., 2019; Ying et al., 2019) conducted in years where interest rate 

does not have big volatility, and with zero expectation of interest rate hike/decrease 

soon. Without factoring in potential rate hike/drop expectation, the prediction will 

meet issues in years like 2022/2023 when unexpected strong CPI number will bring 

much larger than expected rate hikes. We will try to address this unexpected market 

trend in 2022 and 2023 with our approaches. 

3. Methodology 

3.1. Factors and assumptions 

The dataset used in this study includes historical data on US Treasury bond yields 

and key economic indicators sourced from reliable financial databases such as the 

Federal Reserve Economic Data (FRED) and other authoritative sources. Unlike US 

short term bills, the focus of our study 5-year treasury notes is usually quoted on its 

yield (Chen, 2023), i.e., bid yield and ask yield. We use the average of bid yield and 
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ask yield to get mid yield as the prediction output. Daily or monthly observations of 

bond yields across various maturities, with a specific focus on the 5-year Treasury 

bond yield, are collected. Economic indicators considered include: (1) Consumer Price 

Index (CPI), (2) Producer Price Index (PPI), (3) Employment Situation Report, (4) 

Gross Domestic Product (GDP), (5) Retail Sales, and (6) Federal Reserve FOMC 

Meetings. 

We are occasionally faced with missing data. Forward filling or interpolation are 

used to address missing values, as they are two most common ways to fill missing 

financial data (Brockwell, 2016; Jones, 1987). Forward filing assumes that the last 

observed value is a reasonable approximation of the missing value, which can be 

particularly useful in financial time series where values tend to be relatively stable 

over short periods. Interpolation provides smoother and more continuous estimates for 

missing values, reducing the likelihood of abrupt changes in the data. As a prerequisite 

step: all variables are normalized to a standardized scale to facilitate model training. 

We also use feature engineering in which lagged versions of economic indicators are 

created to capture historical trends and potential lead-lag relationships with bond 

yields, crucial for modeling temporal dependencies. 

The assumption that we take during our study is that bond yields can only be 

influenced by economic indicators, monetary policy and fiscal policy. There are more 

factors like geopolitical tension, foreign investment policy, and global epidemic (Liu 

et al., 2022). For the consistency of our study, we would not take those into account. 

Model’s performance will be evaluated using Mean Square Error (MSE), Root Mean 

Square Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage 

Error (MAPE). MSE measures the average squared difference between observed and 

predicted values, sensitive to large errors. RMSE is the square root of MSE. MAE 

measures average absolute errors, less sensitive to outliers compared to MSE, RMSE. 

MAPE provides a percentage error, making it useful for comparing across different 

datasets. 

3.2. Recurrent Neural Network (RNN) 

 

Figure 1. RNN network. 

RNNs are designed to capture sequential dependencies in time-series data. The 

basic architecture of an RNN is shown in Figure 1. The network consists of a sequence 

of hidden layers, each of which has an output and a feedback connection to the 
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previous layer. The feedback connection allows the network to remember information 

from previous time steps, which is essential for processing sequential data. The output 

of the final hidden layers is used to make a prediction about the current step. The 

network is trained by adjusting the weights of the connections between the layers so 

that the system makes favorite predictions. 

In the context of bond yield prediction, RNNs sequentially process each input 

while maintaining an internal state or memory. The model equation can be expressed 

as in Equation (1): 

𝑦𝑡 = 𝛽0 + 𝛽1𝑥𝑡−1 + 𝛽2𝑥𝑡−2 +⋯+ 𝜖𝑡 (1) 

where symbols are defined as: 

• 𝑦𝑡: predicted bond yield at time t 

• 𝛽0 is the intercept term, which represents the baseline yield when all predictor 

values are zero. 

• 𝛽1 , 𝛽2 , 𝛽3 , …: Coefficients for the lagged economic indicators at time 𝑥𝑡−1 , 

𝑥𝑡−2, …, 𝑥𝑡−𝑛. These coefficients measure the impact of past values of economic 

indicators on the current bond yield. 

• 𝑥𝑡−𝑖: Lagged values of economic indicators at the time 𝑡 − 𝑖. For example, 𝑥𝑡−1, 

𝑥𝑡−2 can represent the lagged values of the economic indicators such as CPI and 

GDP. 

• 𝜖𝑡: Error term at time t, capturing the unexplained variation in bond yields. 

Let’s take an illustrative example of 5-year treasury bond yields using lagged 

values of CPI and GDP coefficient. Suppose the RNN model parameters are: 

𝛽0 = 4.5 as the current expected yield as baseline yield 

𝛽1 = 0.4: coefficient for CPI from the previous period (xt−1 = 0.02). 

𝛽2 = 0.3: coefficient for CPI from the previous period (xt−1 = 0.03). 

Using these values, the predicted bond yield 𝑦𝑡 is: 

𝑦𝑡 = 4.5 + (0.4 × 0.02) + (0.3 × 0.03) = 4.5 + 0.008 + 0.009 = 4.517 

If the actual observed bond yield at time t is 4.53, then the error term 𝜖𝑡 is: 

𝜖𝑡 = 𝑦𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 4.53 − 4.517 = 0.013 

This error term 𝜖𝑡 = 0.013 represents the portion of the bond yield not explained 

by our model. This could be due to market volatility, or factors not captured in the 

model. 

Without making the problem too complicated, we fix the number of training 

examples per batch, the length of the input sequence and the number of features in 

each input vector. 

3.3. LSTM 

It is worth emphasizing that neural networks frequently encounter the challenges 

of vanishing gradients and exploding gradients during the training process. The Long 

Short-Term Memory Network (LSTM) is a recurrent neural network trained using 

backpropagation through time that addressed the vanishing gradient issue. Compared 

to RNN, LSTM networks have memory blocks connected through layers. 
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3.3.1. LSTM architecture 

As shown in Figure 2, an LSTM unit receives three vectors (three lists of 

numbers) as input. Two vectors come from the LSTM itself and are generated by the 

LSTM at the previous instant (instant 𝑡 − 1). These are the cell state (C) and the hidden 

state (H). The third vector comes from outside. This is the vector X (called input) 

submitted to the LSTM at instant 𝑡. 

 

Figure 2. LSTM architecture. 

Given the three input vectors (C, H, X), the LSTM regulates, through the gates, 

the internal flow of information and transforms the values of the cell state and hidden 

state vectors. Vectors that will be part of the LSTM input set in the next instant (instant 

𝑡 + 1). Information flow control is done so that the cell state acts as a long-term 

memory, while the hidden state acts as a short-term memory. 

In practice, the LSTM unit uses recent past information (the short-term memory, 

H) and new information coming from the outside (the input vector, X) to update the 

long-term memory (cell state, C). Finally, it uses the long-term memory (the cell state, 

C) to update the short-term memory (the hidden state, H). The hidden state determined 

in instant t is also the output of the LSTM unit in instant t. It is what the LSTM provides 

to the outside for the performance of a specific task. In other words, it is the behavior 

on which the performance of the LSTM is assessed. 

There are three types of gates within a unit. Each gate within a block unit uses 

the sigmoid activation units to control whether it is being triggered or not, making the 

change of state and addition of information flowing through the block conditional 

(Brownlee, 2022). The forget gate conditionally decides what information to throw 

away from the block. The input gate decides which values from the input to update the 

memory state. The output gate decides what to output based on input and the memory 

of the block. 

3.3.2. Hyperparameter tuning 

The LSTM approach we used here was similar to that of Van Houdt et al. (2020). 

But we added some Bayesian optimization in LSTM hyperparameter tuning as we 

found the straightforward approach defined in the study of Van Houdt et al. (2020) 

needs some calibration for parameters. We made the following improvements as 

shown in Table 1. 



Journal of Infrastructure, Policy and Development 2024, 8(9), 7671. 
 

7 

Most literature on using LSTM to explore financial instrument pricing (Weng 

and Wu, 2024a, 2024b) has the issue of finding suitable parameter values. BO is 

efficient in exploring the hyperparameter space, often requiring fewer evaluations than 

random or grid search. By modeling the objective function’s uncertainty, BO can make 

informed decisions about where to sample next. The use of acquisition functions helps 

in focusing the search on areas that are likely to yield better performance.  

Table 1. Bayesian optimization in LSTM hyperparameter tuning. 

1. Preprocessing Data 

• Normalize or scale the input features. 

• Split the data into training and testing sets. 

2. Define Hyperparameter Space. Specify the range and types of hyperparameters 

to optimize (e.g., number of units in LSTM layers, dropout rate, learning rate). 

3. Initialize Bayesian Optimization. Create a surrogate model (e.g., Gaussian 

Process) to approximate the objective function (validation loss of the model), 

followed by choose an acquisition function to decide which hyperparameters to 

try next. 

4. Iterate Over Hyperparameter Selection. Repeat the following steps for a specified 

number of iterations or until convergence: 

• Select Hyperparameters: Use the acquisition function to choose the next set of 

hyperparameters to evaluate. 

• Train the LSTM Model: Train the LSTM model using the selected 

hyperparameters. Evaluate the model on validation data to obtain the validation 

loss. 

• Update the Surrogate Model: Update the surrogate model with the new 

validation loss obtained from the current hyperparameters. 

5. Select best Hyperparameters.Identify the set of hyperparameters that yielded the 

lowest validation loss during the optimization process. 

6. Retrain final model. Train the final LSTM model using the best hyperparameters 

on the full training dataset. Evaluate the final model on the test set to estimate its 

performance. 

3.3.3. Key LSTM input features: Economic indicator events 

Several key economic indicators and announcements can significantly influence 

US Treasury bond yields. These indicators are closely watched by investors and 

analysts for insights into the health of the economy and potential shifts in monetary 

policy. We use the following major ones as key input features: 

• Consumer Price Index (CPI): This data is typically released around the 10th to 

the 15th of each month for the previous month’s data. CPI measures the average 

change over time in the prices paid by urban consumers for a basket of consumer 

goods and services. Both core CPI (excluding food and energy) and headline CPI 

(including all items) are important for understanding inflation trends. 

• Producer Price Index (PPI): This data is usually released around the 10th to the 

15th of each month for the previous month’s data. PPI measures the average 

change over time in the selling prices received by domestic producers for their 
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output. It provides insights into inflationary pressures at the wholesale level. It is 

a leading economic indicator. 

• Employment Situation Report (including Nonfarm Payrolls): Non-farm Payroll 

released on the first Friday of each month for the previous month’s data. This 

report includes the unemployment rate, the number of new jobs created (nonfarm 

payrolls), and other labor market indicators. 

• Gross Domestic Product (GDP): GDP data is released quarterly, with an advance 

estimate released about a month after the end of the quarter, followed by revised 

estimates in the subsequent months. GDP measures the total value of goods and 

services produced in the economy. It provides a broad overview of economic 

performance and can impact bond yields by influencing expectations for growth 

and inflation. 

• Federal Reserve FOMC Meetings (Policy Decisions and Statements): FOMC 

meetings occur eight times a year, with scheduled announcements followed by 

press conferences by the Fed Chair. The Federal Open Market Committee 

(FOMC) sets monetary policy, including decisions on interest rates. Statements 

and forecasts made during these meetings can significantly affect bond yields as 

they signal the Fed’s outlook on the economy and inflation. This event may not 

always bring a significant impact, as members of FOMC may imply meeting’s 

sentiment ahead of the meeting or during interviews between the meeting. 

Meeting minutes will be released one month after the meeting. 

• Retail Sales: This is usually released around the 12th to the 15th of each month 

for the previous month’s data. Retail sales measure the total receipts at stores that 

sell merchandise and related services to final consumers. Strong retail sales 

indicates economic growth and potential inflationary pressures. As this data is 

usually released around the same time as CPI, it may not bring large impact unless 

revealing opposite trend as CPI. 

Among these six economic drivers, FOMC meetings are the wild card that don’t 

occur on a monthly basis and its impact varies with a proceeding/trailing a stronger 

than expected CPI report. We will show how LSTM handles better than RNN in this 

kind of scenario in the next session. In addition, we have deliberately trained LSTM 

to reject yield skyrocketing scenario where a better-than-expected CPI followed by a 

higher PPI in 𝑡 − 1, as yield is likely to have priced in the higher CPI after a high PPI 

in previous period. 

4. Discussion 

4.1. Data and running statistics for the model 

Before running our model, we first prepare training data by downloading daily 

open, high, low, close for US Treausry 5-Year yield from Yahoo Finance (Yahoo, 

2024). All the four categories’ data are the mid yield (average of bid and ask yield). 

We use open mid yield (8:00 am Eastern Standard Time daily) to compare with our 

prediction. The open yield reflects analyst’s predicted sentiment of the market as most 

economic data release is announced at 8:30am. We also predicted the close yield data 

which was compared with the actual close mid yield at 3 pm (US Eastern Standard 
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Time). Data for US public holidays and weekends are not available. Outliers can 

significantly skew results, leading to inaccurate predictions and poor model 

performance. We use z-score to inspect the data from (Yahoo, 2024) and we do not 

find data with Z-score greater than 3 or less than −3 that needs to flag as outliers. On 

each day, two dataframes are supplied to the learning process, in which each dataframe 

consists of date stamp, open/close flag, yield values. Scheduled indicator events 

discussed in section 3.3.3 are also created as event dataframe and supplied to the model. 

Now, we need to decide the input size which refers to the number of previous 

time steps used as input features to predict the future values. This is often referred to 

as the “look-back” period or “window size”. According to Hochreiter and 

Schmidhuber (1997), the input size should cover at least one full cycle of the 

seasonality. We are going to try different “look-back” sizes in our LSTM model 

empirical analysis. The prediction horizon is the number of future times steps the 

model aims to forecast. It depends on the forecasting goal and the data characteristics. 

We are going to use prediction size 1 and 30 in our analysis. 

Bias in data can arise from various sources, including sampling bias, 

measurement errors, and temporal biases. We address the temporal bias by ensuring 

the training datasets include a balanced representation of different economic cycles, 

where 2022 data shows consensus economic growth, while 2023/2024 data indicates 

some signs of recessions. We adopt stratified sample by ensuring that each economic 

indicator’s different strata (e.g., low, medium, high CPI periods) are adequately 

represented. 

Past machine learning practices suggest periodic Bayesian Optimization for 

hyperparameters. Since bond yield volatility occurs only after major economic events, 

we run Bayesian optimization after significant economic events (Federal Reserve 

announcement and when CPI release surprised consensus). For both RNN and LSTM 

models, the following hyperparameters are considered for optimization: The number 

of units per layer range from 32 to 256, while the number of layers ranges from 1 to 3. 

The sequence length has three options 30, 60, 250. Our experiment shows that 20-time 

steps is a good choice for our case. Learning rate which is the step size for updating 

the model weights during training ranges from 0.001 to 0.01. A smaller learning rate 

allows for more fine-grained updates, while a larger one speeds up training. We found 

that when using 250 days history to train, 0.01 would be a good learning rate to ensure 

all learning can be completed within 1 h and 21 min. If we adjust the learning rate to 

0.001, all processes can be completed within 250 min. Batch size ranges from 32 to 

128. We use dropout rate between 0.1 to 0.5, this represents the fraction of the input 

units to drop for regularization. For activation function for hidden layers, we only used 

tanh. The loss function employed is Mean Squared Error (MSE), which is standard for 

regression problems, as it measures the average squared difference between predicted 

and actual values. This configuration ensures that the models are well-equipped to 

learn from the data and make accurate yield predictions. 

The RNN for our work is implemented in TensorFlow using the Python Kera 

module. Our LSTM mechanism and subsequent improvement are implemented using 

Python TensorFlow library. The running hardware is NVIDIA GeForce GTX 1080 

and AMD Ryzen 7 CPU with 16GB of memory. For 5 epochs, time per epoch is 

approximately 10–25 min on a single GPU (including I/O and lead time to retrieve 
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input events through API), so the total training time varies from 50 to 125 min. Due 

to business requirement to finishing training run within 2 h, we can only set to max 5 

epochs for our test. 

4.2. Running RNN model 

We first run the RNN model described in section 3.2. with input size 30 days, 60 

days and 250 days for comparison and the results are shown in Table 2. The prediction 

horizon we use is 1. 

Table 2. Comparison of prediction error with RNN with different number of input 

days. 

DAYS MSE RMSE MAE MAPE 

30 0.1243 0.3526 0.3076 7.47% 

60 0.0839 0.2897 0.2478 6.00% 

250 0.0518 0.2276 0.1946 4.74% 

As noted in many other literatures, RNNs suffer from the problem of vanishing 

gradients. Even if we added the training days to 250, the performance did not improve 

from 60 days of training. We turned our hope to LSTM. 

4.3. Result from LSTM model 

The following are the running result from the LSTM methodology we employed 

in section 3.3. With three variations of input size (30-day, 60-day and 250-day 

training), we conduct daily open yield and close yield production from January 2023 

to June 2024. We got promising results especially with 250-days input. The Mean 

Absolute Percentage (MAPE) is consistently around 2% for both daily open yield 

prediction and close yield prediction (see Tables 3 and 4). Our LSTM model usually 

produces better results in open yield prediction than close yield prediction, as 

economic announcement introduces uncertainty to the market. 

Table 3. Comparison of prediction error on 5-year open yield using LTSM with 

different number of input days. 

DAYS MSE RMSE MAE MAPE 

30 0.0572 0.2392 0.2081 5.08 

60 0.0146 0.1208 0.1031 2.51 

250 0.0092 0.0959 0.082 2.00 

Table 4. Comparison of prediction error on 5-year close yield using LTSM with 

different number of input days. 

DAYS MSE RMSE MAE MAPE 

30 0.0502 0.2241 0.1948 4.74 

60 0.0191 0.1382 0.1205 2.95 

250 0.0127 0.1127 0.0955 2.34 
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Despite promising results, we find that the errors on Close Yield are partially due 

to yield fluctuation in the period after economic data release get affected by market 

sentiment at period t. Market sentiment can be influenced by many external factors, 

notably speech from FOMC members, economic data in other countries. We will 

discuss our solutions in the next section. 

4.4. Adjustment to LSTM to incorporate market sentiment price-in effect 

Past literature like that of Bagastio et al. (2023) and Xu et al. (2024) did not 

discuss scenarios when market sentiment already priced-in a rate hike, how would 

LSTM cells handle other economic indicators in the input vector. We cannot ignore 

this market sentiment effect, as conventional LSTM implementation is likely to give 

prediction output of yield move in same the direction of CPI announcement pointing 

to, which is contrary with what market moved in many cases in 2023. For example, 

when stronger than expected non-farm payroll and PPI data is posted a few days before 

CPI data release, this will bring the market sentiment for rate hike, hence alleviating 

the treasury yield. The strong CPI result may not bring much fluctuation anymore. In 

some trading days, market sentiment plays a stronger role than economic indicators 

(Mo et al., 2024; Piñeiro-Chousa et al., 2021). We need to improve our learning 

mechanism as suggested in other works (Jin et al., 2024; Wang et al., 2024; Zhong et 

at., 2024). Market sentiment also affects bond yield spreads, it introduces complicacy, 

and we don’t take the yield spreads as input feature consideration here. 

We introduce a feature that captures the market’s consensus or expectations about 

interest rate changes. The consensus can be downloaded from CME FedsWatch Tool 

(CME, 2024) or other financial information sources. Another preparation step is, we 

encode a CPI sensitivity matrix by adjusting how CPI changes impact the model based 

on the context provided by the market sentiment feature. Adjust the input data to 

reflect the fact that a CPI increase won’t lead to an additional rate hike if the market 

has already priced in a 25-basis point hike. We also implemented an attention 

mechanism that can help the LSTM model learn to focus on relevant factors, such as 

ignoring CPI changes when the market has already priced in a rate hike. 

In the input gate, we adjust to minimize the flow of CPI information into the cell 

state under these conditions. Adjust the forget gate to remember more of the past cell 

state when the market sentiment indicates a priced-in hike. In the meantime, we adjust 

the output gate to modulate the contribution of the current cell state to the output based 

on market sentiment. 

The following result are plot from the prediction after we incorporate market 

sentiment effect for 250-day input size on the next day open and close yield daily. 

Compared to result in Tables 3 and 4, the result improved a lot for close yield 

prediction with all other parameters holding the same. For open yield prediction, 

incorporating market sentiment has reduced the MSE from 0.0092 (Table 3) to 0.0071 

(Table 5); while for the case of close yield prediction improves from 0.0127 (Table 

4) to 0.0072 (Table 6). 
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Table 5. Prediction error on 5-year open yield with market sentiment. 

DAYS MSE RMSE MAE MAPE 

30 0.0482 0.2195 0.1879 4.60 

60 0.0162 0.1273 0.1091 2.65 

250 0.0071 0.0843 0.0718 1.75 

Table 6. Prediction error on 5-year close yield with market sentiment. 

DAYS MSE RMSE MAE MAPE 

30 0.0491 0.2216 0.1887 4.56 

60 0.0141 0.1187 0.1008 2.47 

250 0.0072 0.0849 0.0713 1.73 

4.5. Refinement from taking annual CPI and PPI into consideration 

During LSTM learning 2022 and 2023 data, we found that as 2022 first half have 

dramatic CPI increases for consecutive months, a 0.4% month-to-month increase in 

February 2023 does not really bring much spike on 5-year yield as compared to any 

other 0.4% month-to-month increase, as February 2023 had a 0.9% month-to-month 

increase. A 0.4% actually brings down the annual CPI increase, so it may act as a cool-

down or stabilizing input feature. Please refer to Table 7 for more information 

obtained from Trading Economics (2023). 

Table 7. Monthly and annual inflation rate in 2022 and 2023 obtained from trading economics. 

Month 

(2023) 
CPI 

2022 Monthly 

Inflation Rate (%) 

Annual Inflation 

Rate (%) 

Month 

(2022) 
CPI2 

2022 Monthly 

Inflation Rate (%)2 

2022 Annual 

Inflation Rate (%) 

January 299.17 0.5 6.4 January 281.148 0.6 7.5 

February 300.84 0.4 6 February 283.716 0.9 7.9 

March 301.836 0.3 5.1 March 287.504 1.3 8.5 

April 303.363 0.4 4.9 April 289.109 0.6 8.3 

May 304.127 0.3 4 May 292.296 1.1 8.6 

June 305.109 0.2 3 June 296.311 1.4 9.1 

July 305.691 0.2 3.2 July 296.276 0 8.5 

August 307.026 0.4 3.7 August 296.171 −0.03 8.3 

September 307.789 0.2 3.7 September 296.808 0.2 8.2 

October 307.671 0 3.2 October 298.012 0.4 7.7 

November 307.051 −0.2 3.1 November 297.711 −0.1 7.1 

December 306.746 −0.1 3.4 December 296.797 −0.3 6.5 

Source: Trading Economics (2023). 

We developed an input feature called CPI Anomaly Indicator which indicates 

whether the current month’s CPI change is above or below the long-term average, 

adjusted for historical volatility. In the hyperparameter adjustments as described in 

section 3.3.2., we increased the look-back period to ensure the model captures longer-

term trends, and the added some additional weight to address the correlation between 
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the monthly and annual CPI changes. In addition, we use L2 regularization to prevent 

overfitting. We have improved the output gate and forget gate by taking annual CPI 

and PPI into consideration. This has helped to further improve our prediction for 

certain economic announcement dates (as shown in Tables 8 and 9), but the effect on 

non-economic announcement date is rather limited. 

Table 8. Prediction error on 5-year open yield with consideration of annual rate. 

DAYS MSE RMSE MAE MAPE 

30 0.0528 0.2298 0.1991 4.8511 

60 0.0142 0.1192 0.1016 2.4775 

250 0.007 0.0837 0.0706 1.7177 

Table 9. Prediction error on 5-year close yield with consideration of annual rate. 

DAYS MSE RMSE MAE MAPE 

30 0.0547 0.2399 0.2037 4.9704 

60 0.0149 0.1221 0.1042 2.5443 

250 0.0069 0.0831 0.0699 1.7116 

We have plotted our prediction on both open and close yield versus the actual 

ones in Figures 3 and 4. 

 

Figure 3. Actual open yield vs predicted yield for 5-year US treasury. 

 

Figure 4. Actual close yield vs predicted yield for 5-year US treasury. 
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4.6. Comparison with existing method 

In order to compare with a close study conducted by Shu et al. (2021) (denoted 

as SHU) that has available result for 10-Year US Treasury Yield, we are going to run 

our model which incorporates methodology in section 4.4 and 4.5 (CANOAK), as well 

as conventional RNN (RNN) and conventional LSTM (LSTM). We are going to test 

with the year 2019 (when SHU computed their data), when no rate hike/shrink 

occurred. We are also going to compare the performance of the year 2000 (when 

multiple rate decrease occurred) and 2022 (when multiple rate increases occurred), 

when bond yield volatility occurred. We have also used the learning rate 0.005 so that 

we can have the same available result. Hyperparameter adjustment is not applied there 

as we try to mimic the same environment as in the study of Shu et al. (2021). Please 

take note that 10-year treasury yield reflects longer term economic outlook, its value 

is less volatile to 5-year, and prediction accuracy is much higher. MSE is used for 

comparison as that’s the only error metrics available in the study of Shu et al. (2021). 

Since data was repeatedly trained 15 times by Shu et al. (2021), we also set out epoch 

number as 15. 

The loss (MSE) for our approach is much better in the year 2020 and 2022, when 

there is an unexpected rate drop and increase respectively (Table 10). The training on 

market sentiment and a weighted average input factor processing for annual and 

monthly figure are the main source of these improvements. In 2019, there is no 

significant market sentiment on rates policy, and annual/monthly CPI expectation does 

not deviate much from each other, therefore our model performs just in par with SHU. 

Table 10. Comparison between SHU vs RNN vs CANOAK. 

 MSE (Learning Rate 0.01) MSE (Learning Rate 0.001) 

 2019 2020 2022 2019 2020 2022 

SHU 0.0104 0.0298 0.0445 0.0126 0.0298 0.0445 

RNN 0.0245 0.0369 0.0537 0.311 0.0516 0.0393 

CANOAK 0.0109 0.0118 0.0123 0.0124 0.0193 0.0083 

 

Figure 5. Comparison between RNN vs DEEPBOUND vs CANOAK. 

As displayed in Figure 5, we compare with the existing DeepBond algorithm 

introduced by Ying et al. (2019) for predicting yield for the coming 10 trading days in 

2019–2023. We take the average MSE and MAE as the original literature also used 
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these two measures. We use input size equal 60 to match the literature. Our 

performance excels DeepBond from 4th day to 10th day in terms of MSE for the yield 

prediction of year 2019–2023. 

4.7. ANOVA test analysis 

We have conducted an ANOVA test in Table 11. The F-statistic for all years is 

very low. This suggests that the variance between the group means (predicted yields 

for different input values) is much smaller compared to the variance within the groups. 

Table 11. ANOVA test for input size 30, 60 and 250. 

Year F-statistic P-value 

2019 0.1042 0.901 

2020 0.3845 0.681 

2021 0.0997 0.9052 

2022 0.1836 0.8323 

2023 0.0006 0.9994 

The F-statistic close to 0 indicates that the differences in means between groups 

are negligible. The p-values for all years are much higher than 0.05. This indicates that 

there is no statistically significant difference between the group means for any of these 

years. High p-values (much greater than 0.05) suggest that the observed differences in 

predicted yields across different input values could easily have occurred by chance. 

For each year from 2019 to 2023, the ANOVA results suggest that the different 

input values (30, 60, 250) for predicting yields do not produce significantly different 

results. This means that the choice of input value does not significantly affect the 

predicted yields for these years. The lack of significant differences implies that any of 

the input values could be used for predictions without worrying about large deviations 

in results. 

The ANOVA test results indicate that the predicted yields for the input values of 

30, 60, and 250 days are not significantly different for the years 2019 to 2023. 

Therefore, you can use any of these input values for yield predictions in these years 

without expecting substantial variations in the results. 

4.8. Direction for future improvement 

We noticed that the result of the prediction may result in a larger gap with the 

actual yield when there is a new issuance of 5-year treasury note. As the schedule of 

5-year treasury note new-issue and re-issue always coincide with the issuance of 2-

year bill and 7-year notes, fluctuation in yield for 2-year and 7-year placed a greater 

role than 3-year, 10-year, 30-year. Moreover, as US treasuries are issued in an auction 

manner (Sigaux, 2024), issuing quantity and US debt ceiling may also affect the new-

issue yield, we did not take those factors into account when constructing the hyper-

parameter tuning, therefore, more variation arise. 

We have also tried to apply our LTSM techniques to corporate bond yield 

prediction. However, due to liquidity of the corporate bond market, the spread between 

bid yield and ask yield is not as consistent like treasury bond. Moreover, corporate 
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bond depends on more factors compared to those 6 major economic events that we 

listed in section 3.3.3. Stock price and corporate debt level have added more 

complexities to input of an LSTM model. We would leave this as a possible future 

research direction. 

There are various kinds of market sentiments used by investors and arbitragers, 

The CME FedWatch we used in section 4.4 is only one of many interest-rates market 

consensus. Theoretically, most technical indicators can be used to measure market 

sentiment for liquid financial instruments like stocks and US treasuries. These market 

sentiments indicators need to be incorporated in LSTM based learning in a similar 

fashion as we discussed in section 4. 4, even a contrary indicator (Simon and Wiggins, 

2001) can be added with adequate weight in the hyperparameter function. The tuning 

of weight for each of these market sentiment indicators can be discussed and compared 

in future research. For less liquid market instruments like corporate bonds, swaps, 

another school of indicators that measure market liquidity would be more suitable as 

discussed by Baker and Stein (2004). Unlike regular investors that benefit from market 

movements, liquidity plays an important role for market makers. The mechanism for 

hyperparameter tuning and market sentiment incorporations needs to be further 

investigated in two separate scenarios, e.g., when the liquidity increases vs decreases. 

Treasury yield may also be affected by other disruptive events like major fraud 

in the market like the Archegos Capital’s failure (Bouveret and Haferkorn, 2023) or 

sudden sale of US treasuries due to US Sovereign credit rating changes. For example, 

on 3 August 2023, Fitch Ratings downgraded US Sovereign credit rating, followed by 

another downgrade from Moody. Future research can try to incorporate this factor into 

the RNN or LTSM model. You can find various credit rating changes for US treasuries 

in the past ten years on the website of the three major credit rating agencies. Graph 

Neural Network (GNN) would be a good future approach (Peng et al., 2024; Wang et 

al., 2024). 

Bayesian Optimization is a powerful method for hyperparameter tuning, 

providing a balance between exploration and exploitation and efficiently handling the 

expensive evaluations often required in deep learning model training. Future authors 

can explore to use traditional operations research techniques to improve this part like 

Elhedhli et al. (2017). 

5. Conclusion 

In this paper, we explored the application of advanced machine learning 

techniques, specifically Recurrent Neural Networks (RNNs) and Long Short-Term 

Memory (LSTM) networks, in predicting US Treasury bond yields. This investigation 

highlights theuse of economic indicators, market sentiment and flexible use between 

annual and monthly economic data can improve US treasury yield prediction. 

Our analysis incorporated key economic indicators such as the Consumer Price 

Index (CPI), Producer Price Index (PPI), Employment Situation Reports, Gross 

Domestic Product (GDP), Retail Sales, and Federal Reserve FOMC Meeting decisions. 

We observed that the nuanced relationships between these variables and bond yields 

can be effectively captured using LSTM networks due to their ability to maintain and 

utilize historical information over extended periods, thereby overcoming the 
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limitations of traditional RNNs which often struggle with long-term dependencies. 

Mean Average Error for 30 days learning period is below 5%, 60 days and 250 days 

learning period are consistently below 3%. 

The LSTM based model (CANOAK) proved superior in accounting for the 

complex, non-linear relationships inherent in the economic data, particularly in 

scenarios where short-term fluctuations in indicators like CPI do not directly translate 

into proportional changes in bond yields. For instance, in the early part of 2022, the 

US economy experienced significant CPI increases, leading to higher expectations for 

bond yields. Yet, as demonstrated by the LSTM model, smaller increases in CPI in 

early 2023 did not lead to similar spikes in bond yields due to the stabilizing effect of 

previous higher increases. This insight underscores the importance of considering the 

broader temporal context in economic forecasting. We have addressed this observation 

by further controlling the Mean Average Error within 2% for 250 days of learning 

period. 
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