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Abstract: The area of lake surface water is shrinking rapidly in Central Asia. We explore 

anthropogenic and climate factors driving this trend in Shalkar Lake, located in the Aral Sea 

region in Kazakhstan, Central Asia. We employ the Landsat satellite archive to map 

interannual changes in surface water between 1986 and 2021. The high temporal resolution 

of our dataset allows us to analyze the water surface data to investigate the time series of 

surface water change, economic and agricultural activities, and climate drivers like 

precipitation, evaporation, and air temperature. Toward this end, we utilize dynamic linear 

models (DLM). Our findings suggest that the shrinking of Shalkar Lake does not exhibit a 

systemic trend that could be associated with climate factors. Our empirical analysis, adopted 

to address local conditions, reveals that water reduction in the area is related to human 

interventions, particularly agricultural activities during the research period. On the other 

hand, the retrospectively fitted values indicate a semi-regular periodicity despite 

anthropogenic factors. Our results demonstrate that climate factors still play an essential role 

and should not be disregarded. Additionally, considering long-term climate projections in 

environmental impact assessment is crucial. The projected increase in temperatures and the 

corresponding decline in lake size highlights the need for proactive measures in managing 

water resources under changing climatic conditions. 
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1. Introduction 

Lakes are essential to the survival and growth of human settlements as well as 

for the stability of local ecology, especially in arid regions with fragile environments 

(Burchi and Mechlem, 2005; Klein et al., 2014; Micklin, 2007; Smith and Pavelsky, 

2009; Wang et al., 2020). Across the Central Asia, many regions are undergoing 

rapid changes in the distribution and abundance of surface water (Chen et al., 2016a, 

2016b, 2018; Conrad et al., 2016; Indoitu et al., 2015; Kozhoridze et al., 2012). 

Additionally, subarctic and arctic lakes are experiencing significant changes, 

impacting local hydrology and ecosystems (Bring et al., 2016; Prowse et al., 2011; 

Smith et al., 2005; Vincent et al., 2013). Previous studies show that the magnitude 

and direction of change vary according to anthropologic and climate factors 

(Berdimbetov et al., 2020; Jin et al., 2017). 

Shalkar Lake is a terminal lake with no outlet located in the desert ecological 

catastrophe zone in the Aral Sea region of Central Asia. Shalkar Lake basin is 

located on the western borders of Shalkar town in Kazakhstan. The lake was split in 
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half in 1937 with the help of a hydraulic structure. It is mainly fed by the Kaulzhyr 

River, which originated in the Mugodzhar mountains on the southeastern slope of 

Mount Airyuk and flows southeast for 142 km. The north-eastern freshwater half of 

the lake and the southwest saltwater half are thus separated. Water is released into 

the salty side of the lake through the outflow at the dam site during high water years. 

The Shalkar surface water area has shrunk from 25.5 km2 in 1937 to 4.1 km2 in 2021. 

The lake nearly dried up between 2013 and 2015, with water just remaining at the 

lowest point.  

A combination of climate change and human activity is to account for the 

Central Asian lake’s shrinkage (Chen et al., 2017; Micklin, 2010). Researchers 

predict that increasing temperatures will worsen the temporal and spatial distribution 

of water supplies and increase the frequency of extreme hydrological events (Chen et 

al., 2016a, 2016b; Hagg et al., 2013; Li et al., 2019; Zhang et al., 2016a, 2016b). 

According to White et al. (2014), a high-emission scenario that predicted rises in 

summer temperatures of up to 5 ℃ in the Amu Darya Basin by 2070–2099 would 

increase agricultural water consumption by 10.6% to 16%. Based on regional climate 

model simulations, Ozturk et al. (2017) revealed the future climate conditions of 

Central Asia. They found that the region’s ecosystems and social systems will be 

more vulnerable due to an increase in surface air temperatures of between 3 ℃ and 

7 ℃ and a decrease in precipitation. In the meantime, human activities have also 

been the primary causes of the Aral Sea’s decrease, particularly the vast water 

withdrawal from transboundary rivers (Micklin, 2007). According to Chen et al. 

(2018), the imbalanced spatial distribution of land and water resources and excessive 

human activity are the main causes of the water resources crisis in the Aral Sea 

Basin. 

Many academics have used remote sensing images in recent years as a result of 

the advancement and widespread use of remote sensing technology to study the 

driving forces behind both natural and human factors and to learn more about how 

lakes are changing dynamically (Hanrahan et al., 2009; Jin et al., 2017; Jing et al., 

2018; Tan et al., 2017; Yang and Lu, 2014; Zhang et al., 2018). Remote sensing 

offers a robust tool for monitoring lake water quality, providing critical data on 

various parameters such as chlorophyll concentration, turbidity, and suspended 

sediment. 

In the broader context of Central Asian lakes, satellite data has been 

instrumental in monitoring the environmental status of major water bodies. For 

instance, the Caspian Sea, the world’s largest inland body of water, has been 

extensively studied using remote sensing techniques. Researchers have successfully 

applied satellite imagery to monitor changes in the Caspian Sea’s water levels, 

pollution levels, and algal blooms. Mikhailov et al. (2018) and Lagutin et al. (2019) 

have demonstrated the utility of satellite data in tracking environmental changes and 

addressing water quality issues. 

Similarly, the Aral Sea, another significant water body in Central Asia, has been 

the focus of numerous remote sensing studies. Satellite images have provided 

valuable insights into the dramatic shrinkage of the sea, the resulting ecological 

impacts, and the effectiveness of various restoration efforts. Pereira et al. (2015) and 
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Micklin (2016) have highlighted the potential of remote sensing in managing and 

mitigating the environmental challenges facing the Aral Sea. 

Moreover, advancements in satellite technology, such as the launch of the 

Sentinel-2 and Landsat-8 satellites, have significantly enhanced the resolution and 

accuracy of water quality monitoring. These platforms offer higher temporal and 

spatial resolution, enabling more detailed and frequent observations of lake 

dynamics. Studies by Novoa et al. (2017) and Kuhn et al. (2019) utilizing data from 

these satellites have demonstrated their effectiveness in detecting and quantifying 

water quality parameters, further validating the importance of remote sensing in 

environmental monitoring. 

The successful application of satellite data in monitoring water quality issues in 

lakes across Central Asia, including the Caspian and Aral Sea, provides a compelling 

precedent for its use in other lakes within the region. Integrating remote sensing 

technology into lake management practices offers a powerful approach to 

understanding and addressing the complex interplay of natural and anthropogenic 

factors affecting lake ecosystems. Furthermore, using the water balance approach, 

Lei et al. (2014) examined the dynamics of inland lakes in the Tibetan Plateau to 

investigate the impact of climate change on lake dynamics, suggesting that the 

significant increase in regional precipitation is the primary cause of lake growth. Li 

et al. (2017) used the grey relational analysis to assess the dynamic of Dalinor lakes 

based on Landsat imagery and looked at its interaction with climate variables and 

vegetation changes. Using the Least Squares Methods, Liu et al. (2019) studied the 

interannual and seasonal variations of the lakes in Central Asia from 2001 to 2016 

and their driving factors. They discovered that the Plains lakes are primarily 

impacted by climate change, whereas the Alpine lakes are mainly impacted by 

human activities. Although many approaches are available to analyze time series 

data, researchers commonly use linear regression models to estimate time trends. 

However, time series data often deviate from the assumptions that justify using 

linear regression, in which case the obtained results may be biased and misleading. 

Furthermore, considering the usage of Google Earth Engine Satellite pictures 

available from 1986, the regression model might suffer from a relatively short time 

series. Alternatively, we analyze Shalkar’s average water surface employing a 

dynamic state-space model (DLM) (Pole et al., 1994). Though conceptually 

comparable to linear regression, DLMs allow the modeling parameters to change 

over time systematically, thereby capturing the nonlinearity in the series (Zhang and 

Arhonditsis, 2008). 

The current research on Shalkar Lake mainly focuses on the lake’s water 

resource crisis, but the fact that the shrinking rate has slowed down in recent years is 

equally noteworthy. Thus, in our study, to explore the causes of changes in Shalkar 

and Kaulzhyr water surface change, we investigate surface water area data available 

from 1986 to 2021 (Model 1) and then the relationship between the water surface 

and potential climatic explanatory variables (Model 2). Considering up to a 3-year 

lag of explanatory variables, the model spans over 1988–2021. Model 1 provides the 

base to differentiate random from progressive patterns. In contrast, Model 2 explores 

whether the relationship with climatic and economic drivers may better explain the 

variability in the Shalkar water surface than simple trends evaluated by Model 1. 
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Additionally, to facilitate discussion, we analyze trends in the climatic variable over 

the period this data is available, applying the same approach used by Model 1. Our 

findings contribute to a decision-making process for managing and protecting 

Shalkar Lake and formulating water resources policies. It is also significant in 

improving water resource utilization efficiency and reforming the basin’s crop 

planting structure. 

2. Literature review 

Our paper contributes to the following literature stream: the role of lakes in 

sustaining human settlements and maintaining ecological stability, particularly in 

arid and fragile environments. Prior research has highlighted the essential functions 

of lakes in providing water for drinking, agriculture, industry, and recreational 

activities, as well as supporting biodiversity (Burchi and Mechlem, 2005; Klein et 

al., 2014; Micklin, 2007; Smith and Pavelsky, 2009; Wang et al., 2020). 

The literature documents significant changes in the distribution and volume of 

surface water across Central Asia, driven by both natural and anthropogenic factors. 

These studies emphasize the drastic reduction in lake sizes due to extensive water 

extraction for agriculture and the impacts of climate change (Chen et al., 2016a, 

2016b, 2018; Conrad et al., 2016; Indoitu et al., 2015; Kozhoridze et al., 2012). 

Climate change and human activities have markedly contributed to the 

shrinkage of Central Asian lakes. Rising temperatures and shifting precipitation 

patterns exacerbate water scarcity, while intensive agricultural water use further 

depletes lake volumes. Studies predict that increasing temperatures will intensify 

water distribution issues and the frequency of extreme hydrological events (Chen et 

al., 2017; Chen et al., 2016a, 2016b; Hagg et al., 2013; Li et al., 2019; Micklin, 

2010; Zhang et al., 2016a, 2016b). 

Our study aligns with existing research that underscores the utility of remote 

sensing technology in monitoring environmental changes in significant water bodies. 

Previous studies have successfully used satellite imagery to analyze changes in water 

levels, pollution, and algal blooms, demonstrating the effectiveness of remote 

sensing in environmental monitoring (Lagutin et al., 2019; Micklin, 2016; Mikhailov 

et al., 2018; Pereira et al., 2015). Advancements in satellite technology, such as 

Sentinel-2 and Landsat-8, have enhanced the precision and frequency of water 

quality monitoring (Novoa et al., 2017; Kuhn et al., 2019). 

Like Central Asian lakes, subarctic and arctic lakes are undergoing significant 

transformations due to climate change, affecting local hydrology and ecosystems. 

This body of research highlights the necessity for comprehensive studies in these 

regions (Bring et al., 2016; Prowse et al., 2011; Smith et al., 2005; Vincent et al., 

2013). 

Our research on Shalkar Lake contributes to this literature by employing 

dynamic state-space models (DLMs) to capture non-linear trends and provide a 

detailed analysis of the factors driving the lake’s shrinkage from 1986 to 2021. This 

approach allows for a nuanced understanding of how different factors interact over 

time, differentiating random fluctuations from progressive patterns in water surface 

changes. 
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The study supports findings emphasizing the significant role of human 

activities, mainly agricultural water extraction, in the shrinkage of lakes in Central 

Asia. It demonstrates the utility of remote sensing technology in providing high-

resolution data crucial for environmental monitoring and management (Chen et al., 

2017; Micklin, 2010). 

Our study deviates from existing literature by utilizing dynamic modeling 

approaches that offer a more comprehensive analysis of the interactions between 

climatic and economic variables. By incorporating climatic and economic factors 

with up to three-year lags, this research presents deeper insights into the complex 

dynamics influencing Shalkar Lake. 

In summary, our study enhances the understanding of Central Asia’s 

multifaceted dynamics affecting lake ecosystems. It underscores the importance of 

integrated management strategies that consider human and environmental factors to 

ensure the sustainability of vital water resources. By employing advanced modeling 

techniques and high-resolution satellite data, this research provides valuable insights 

for developing effective conservation and management policies for lakes in arid 

regions. 

3. Data and background 

3.1. Study area 

The water regime of the river Kauylzhyr and Shalkar Lake has yet to be 

extensively studied. Only in the period 1960–1963 the State Hydrological Institute 

(Gidrometeoizdat, Leningrad-GGI) of the USSR State Hydrometeorological Service 

opened a temporary gauging station on the Kauylzhyr River near the Kauylzhyr 

railway station. The GGI monograph (State Hydrological Institute, 1966) is one of 

the official documents on hydrology of the USSR State Hydrometeorological Service 

used in determining the calculated hydrological characteristics. It was carried out 

without hydrometric data for the Kauylzhyr River based on the calculations of the 

neighboring areas. 

On the rivers of the southeastern part of the region, which includes the river 

Kauylzhyr, most of the annual runoff (80%–90%), and often its entire volume 

(temporary streams) occurs in the spring. In summer, the runoff stops due to the 

drying up of shallow rifts; its renewal occurs only in the next year’s flood. On huge 

rivers (catchment areas above 5000 km2), the flood lasts 40–55 days; on smaller 

rivers (catchment areas between 1000 and 3000 km2), it lasts 15–30 days. The GGI 

expedition’s observation station reveals how the Kauylzhyr River’s discharge varied 

by season, with most passing in the spring (April to May). 

The Kauylzhyr River, originating in the Mugodzhar Mountains, replenishes 

Lake Shalkar. Although the river’s flow is primarily seasonal, the 1800 square 

kilometers that make up its basin are more than adequate for Shalkar to have an 

average amount of water. However, the riverbed was far narrower and covered in 

reeds compared to former times. Additionally, there has been a discernible decline in 

the river’s water input during the past few years, and the most recent time Shalkar 
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received a sizable inflow of water from Kauylzhyr occurred in the spring of 2015. 

Additionally, many springs became blocked, feeding the lake and river. 

The lake, an open reservoir that receives annual replenishment from the 

Kauylzhyr River’s flow, serves as a local recreation area and a source of domestic 

water for the city of Shalkar. It also serves as a watering hole for domestic animals, 

amateur fishing, a source of water for gardens and orchards, and a place for domestic 

animals to drink. The lands around Lake Shalkar are used by peasant farms, private 

entrepreneurs, and gardening groups (see Figure 1). However, their activities 

currently do not allow them to fully provide the city of Shalkar with agricultural 

products. At present, the population of the city of Shalkar is 28.6 thousand people. 

Currently, due to the lack of its flow (internal reservoir), Lake Shalkar is gradually 

degrading due to shallowing, deterioration of water quality, overgrowing of surface 

(reeds, sedge), and underwater (various algae) vegetation. 

 

Figure 1. (a) Lake Superior precipitation (mm/year) = constant trend (δT = 0.9) 

fitted values (bold, black); (b) Lake Superior Evaporation (mm/year) = constant 

trend (δT = 0.9) fitted values (bold, black); (c) Lake Superior Temperature (℃) = 

constant trend (δT = 0.9) fitted values (bold, black). Dotted lines are 90% credible 

intervals for fitted values (solid, bold lines). 
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Lake Shalkar is ice-covered during the cold seasons. The lake’s maximum 

depth is approximately 7 m, with a mean depth of about 3 m. It has a cold 

monomictic mixing regime. The lake’s surface area is around 10 square km, with a 

volume of roughly 30 million cubic meters. 

The city of Shalkar is situated on an elevated plain that gently descends from 

the northwest to the southeast and is bordered by the Chagray plateau’s ledges in the 

southwest and the southern spurs of Mugalzhar in the west. The terrain is relatively 

calm, hilly-ridged, and has relative altitudes between 1m and 5m. Lake basins indent 

the terrain significantly. The eastern portion of the region, where the Bolshiye 

Barsuki sands are created, is the most fractured and shows how blowout basins and 

sandy mounds alternate there. The city of Shalkar is close to the Lake Shalkar basin, 

which borders it from the west (Figure 2). The area has a continental climate. The 

yearly temperature amplitude is 40.4 ℃. The typical annual air temperature is 5.5 ℃, 

whereas the average July high is 25 ℃, and the usual January low is 15.4 ℃. The 

average annual relative humidity is 62%. In summer it is 42%. In the daytime (13 

hours) it drops to 28%–29%. According to the amount of precipitation, the region is 

classified as slightly wet −171 mm per year. The number of days with snow cover is 

108, and the depth of snow cover, according to long-term data, is 16 cm. 

 

Figure 2. (a) Fitted values (solid, bold black line) and 90% credible intervals for the 

Superior DLM with the linear trend and δ = 0.80 (default value); (b) The 

retrospective growth parameter represents the rate of change in the water surface 

series in Table 1. 
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Table 1. Results of model 1 search—1986–2021 (no explanatory variables). 

 MSE MAD Log10Lik AIC BIC 

C (def) 89.691 7.453 100.580 205.160 208.327 

C (0.85) 21.328 2.079 52.474 108.947 112.114 

C (0.80) 17.517 1.264 25.705 55.411 58.578 

Linear (def) 52.649 0.697 108.358 220.716 223.883 

Linear (0.85) 7.575 -0.480 60.787 125.574 128.741 

Linear (0.80) 7.780 -0.498 64.857 133.715 136.882 

Source: Authors’ calculations. MSE = mean squared error, MAD = median absolute deviation, 

Log10lik = log base 10 of the likelihood, AIC = Akaike information criterion, BIC = Bayesian 

information criterion. 

The disappearance of water in Shalkar Lake and the Kualinger River concerns 

the local population. It is also an impetus for the migration of the local population to 

big cities. In the opinion of the population and environmental activists, one of the 

factors determining the current state of the lake is the activity of crushed stone 

factories. Dust rising from crushed stone plants leads to the degradation of the soil 

cover, getting into the water in large quantities and clogging the natural paths for 

streams. Thus, due to the development of crushed stone in the Mugodzhar 

mountains, the source of the Kauylzhyr River does not receive enough water, 

negatively affecting Lake Shalkar. 

3.2. Ecological and human impact of shrinking lake in Central Asia 

Lake Shalkar, like many lakes in Central Asia, is vital for maintaining the 

ecological balance of its region. It serves as a natural reservoir, supporting diverse 

flora and fauna and providing critical habitats for migratory birds and endemic 

species. Over 200 species of birds, including pelicans, herons, and ducks, rely on 

Lake Shalkar for nesting and feeding, making it crucial for biodiversity conservation. 

Additionally, the lake influences local climate patterns by regulating temperature and 

humidity levels, essential for sustaining the delicate ecosystems of the surrounding 

areas. 

Beyond its ecological significance, Shalkar Lake is vital for human activities in 

the Aktobe region. It is a primary water source for domestic, agricultural, and 

industrial use. Shalkar City, home to 28,600 people, depends on the lake for drinking 

water and household use. The agricultural sector, including peasant farms and 

gardening groups, relies on the lake for irrigation to cultivate crops such as wheat, 

barley, and vegetables. Livestock farming, which is significant in the region, 

depends on the lake for water for cattle and sheep. Fishing activities employ around 

200 families and rely on the lake, providing species such as carp, perch, and pike. 

Moreover, Lake Shalkar is a popular recreational area, attracting tourists who 

want to swim, boat, and birdwatch. Local businesses, including guesthouses, 

restaurants, and tour operators, benefit from tourism, contributing to the region’s 

socio-economic development. The lake’s aesthetic and recreational value make it 

essential for promoting local tourism and fostering economic growth. 

However, the shrinking of Lake Shalkar poses significant threats to local 

communities and ecosystems. Reduced water levels have led to a 30% decrease in 
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the lake’s surface area over the past decade, impacting water quality with increased 

salinity and pollution levels. This decline threatens the health of both human 

populations and aquatic life. Reduced water availability affects agricultural 

productivity, leading to lower crop yields and threatening food security in the 

Aktobe region. Livestock dependent on the lake for water may suffer from 

dehydration and malnutrition, exacerbating economic challenges faced by rural 

communities. 

The loss of recreational areas and reduced aesthetic value can diminish tourism, 

leading to a decline in income for businesses dependent on this sector. Tourism 

revenue, contributing approximately $500,000 annually to the local economy, could 

significantly decrease, impacting livelihoods. Ecologically, Lake Shalkar’s shrinking 

disrupts various species’ habitats, leading to a decline in biodiversity. The reduction 

in water volume affects the breeding and feeding grounds of fish and other aquatic 

organisms, impacting the entire food web. Migratory birds that rely on the lake for 

resting and feeding during their long journeys may need more resources, leading to 

population declines. Additionally, the encroachment of vegetation, such as reeds and 

algae, in shallower areas can alter the ecological balance, promoting invasive species 

and reducing the ecosystem’s overall health. 

Lake Shalkar’s importance to the ecosystems and human activities of the 

Aktobe region in Kazakhstan cannot be overstated. The potential impacts of its 

shrinking on local communities and ecosystems are profound, affecting biodiversity, 

water quality, agricultural productivity, and economic stability. Understanding these 

dynamics is essential for developing effective conservation and management 

strategies to protect this vital water body and ensure the sustainability of the region it 

supports. Addressing the causes of the lake’s shrinkage, such as improving water 

management practices and mitigating climate change effects, is crucial for the long-

term preservation of Lake Shalkar and the well-being of the communities that 

depend on it. 

3.3. Data 

Since 1972, the joint U.S. Geological Survey/NASA Landsat series of Earth 

Observation satellites have continuously acquired images of the Earth’s land surface, 

providing uninterrupted data to help land managers and policymakers make informed 

decisions about natural resources and the environment. Landsat is a part of the USGS 

National Land Imaging (NLI) Program. We use this rich data source, particularly 

from Landsat Collection 1, which includes Landsat-5, Landsat-7, and Landsat-8, to 

quantify trends in surface water from 1986 to 2021 (Dwyer, 2019). For further 

details on the dataset, see the USGS Landsat Missions webpage.  

Landsat Collection Tiers are the inventory structure for Level-1 data 

productions and are based on data quality and level of processing. We used Tier 1 

Top-of-Atmosphere (TOA) scenes (n = 35), which are geometrically and 

radiometrically calibrated for use in time-series analysis (Dwyer, 2019). Scenes 

impacted by the Landsat-7 scan line corrector failure beginning in 1995 were also 

excluded from our analysis. To ensure snow-free conditions and consistency in 

seasonal water surface and atmospheric constituents across the time series, we 
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filtered data to include only scenes from May and August. We preferentially selected 

scenes within a two-month window representing summer conditions between June 

15 and August 15, and 40% of scenes fell within this period. We masked pixels 

impacted by clouds and cloud shadows in each image using the Quality Assessment 

Band. After removing clouds and cloud shadows, each scene was visually inspected 

and discarded if smoke or clouds remained in the study area. All Landsat image pre-

processing steps were performed in Google Earth Engine. We applied a method 

developed by Olthof et al. (2015) to map surface water using data from the Landsat 

satellite image archive. Olthof et al. (2015) show that this method outperforms 

binary classifications of land and water and linear un-mixing techniques. To apply 

this method, we defined pure land and water thresholds using mean threshold values 

from a random subset of 12 scenes used in this analysis. We also checked for linear 

trends in threshold values over time and detected no significant trend. We applied a 

pure water threshold of 0.023 and a pure land threshold of 0.25 to all images in the 

study area. This method quantifies the proportion of a pixel covered by water (sub-

pixel water fraction) by interpolating between thresholds in the shortwave infrared 

reflectance band (SWIR1), representing pixels containing pure land and pure water. 

Average annual precipitation, evaporation, and temperature (1986–2021) were 

obtained from the meteorological stations for the Shalkar basin. 

4. Methodology 

Dynamic Linear Models (DLMs) were chosen for their ability to address the 

retrospective analysis of time series data, offering insights into the historical states 

and changes in the process under study. The flexibility and adaptability of DLMs in 

handling time-varying parameters make them suitable for capturing the dynamics of 

complex processes, such as surface water levels influenced by climatic and economic 

factors. Retrospective analyses utilizing DLMs, also known as smoothing or 

filtering, help address the question, “Where has the process under study been?” or 

“What occurred?” (Pole et al., 1994; West and Harrison, 1989). 

DLMs have a notable advantage over ARIMA models in handling non-

stationary processes through time-varying parameters, eliminating the need for 

differencing to achieve stationarity (Box and Jenkins, 1970). This makes DLMs 

more straightforward and interpretable. They also excel in modeling structural 

changes and regime shifts, which ARIMA models struggle with due to increased 

complexity (Hyndman and Athanasopoulos, 2018; West and Harrison, 1997). 

Moreover, DLMs use Bayesian updating for parameter estimation, allowing for 

sequential updates and real-time adaptability (Petris et al., 2009). In contrast, 

ARIMA models often require re-estimation with new data, which can be 

computationally intensive (Brockwell and Davis, 2002). 

DLMs offer superior interpretability to machine learning models, providing 

insights into underlying components and their contributions (Pole et al., 1994). 

Machine learning models, though powerful, often lack transparency (Molnar, 2020). 

DLMs also perform well with smaller datasets by incorporating prior 

information, which is beneficial in data-scarce environments (Shumway and Stoffer, 
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2017). Conversely, machine learning models generally need large datasets to be 

effective (Goodfellow et al., 2016). 

Lastly, DLMs reduce the risk of overfitting through parameter regularization 

via prior distributions, leading to more robust models (Gelman et al., 2013). Machine 

learning models are more prone to overfitting, especially with complex data 

structures and limited data (Hastieet al., 2009). 

4.1. Bayesian framework in DLMs 

At any given time, t, the posterior distribution of model parameters (θ) is 

updated using Bayes’ theorem by combining prior information with the likelihood of 

current observations. This approach allows for continuously updating and refining 

the model as new data becomes available, effectively handling non-stationary time 

series data. 

𝜌(𝜃𝑡|𝐷𝑡−1, 𝑦𝑡) =
𝜌(𝑌𝑡 = 𝑦𝑡|𝜃𝑡)𝜌(𝜃𝑡|𝐷𝑡−𝑘)

𝜌(𝑌𝑡 = 𝑦𝑡)
 (1) 

where 𝜃𝑡  is the state (parameter) vector, 𝐷𝑡+𝑘  is the state of knowledge after 𝑡 

informs our knowledge on 𝜃𝑡 , where 𝑘  is some positive constant. The posterior 

distribution 𝜌(𝜃𝑡|𝐷𝑡−1, 𝑦𝑡) combines the observation likelihood 𝜌(𝑌𝑡 = 𝑦𝑡|𝜃𝑡)with 

the prior distribution 𝜌(𝜃𝑡|𝐷𝑡−𝑘) reflecting the updated state of knowledge. 

Quantitative model evaluation criteria, such as the Akaike Information Criteria 

(AIC) and the Bayesian Information Criteria (BIC), are needed to determine how 

well various models capture data dynamics. Several criteria are available for model 

comparison and selection; many have a similar basis, with the key difference being 

the severity of the penalty for model complexity. We compute the Akaike 

Information Criterion (AIC,1973; Akaike, 1973) and the Bayesian Information 

Criterion (BIC,1978; Schwarz, 1978) to choose between competing models and 

discount factors for a given model structure. Models with lower values fit better than 

those with higher values because AIC and BIC are deviance-based metrics (a 

generalization of the variance or sum of squares). 

Model 1 

For each time series under consideration, we looked at the constant and linear 

trend component parameters. The pattern with time is similar to a random walk in 

the constant trend model, which has one trend parameter at a time t that is a 

discounted version of the trend parameter at the preceding time period (t–1). Note 

that a parameter referred to as a “constant” can fluctuate over time and is comparable 

to a constant (or intercept) in a linear regression. A constant and an annual rate of 

change, discounted versions of the constant and rate at time t–1, are the two 

parameters at time t in the linear trend model. It is known as a linear trend model 

because, given a fixed time increment, the annual rate of change may be understood 

as a linear slope between succeeding time periods. However, this linear component is 

subject to vary over time. AIC or BIC differences between the linear trend and 

constant trend DLM indicate whether there has been a systematic change as opposed 

to a random progression through time. 
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Although surface water is the main subject of our analysis, we also utilized 

DLMs to compare whether a constant or linear trend model effectively captured the 

economic and climatic drivers. For each economic and climatic driver, we give 

retrospective analysis for the model that best fits the data. 

Model 2 

For the surface water analysis, we estimated economic and environmental 

factors with up to three annual lags in addition to two specifications of the trend 

component. For environmental factors, we considered yearly precipitation, 

evaporation, and temperature, while for economic factors, agricultural land in square 

kilometers directly connected to the lake and crash stone mining in tonnes of 

millions. 

Precipitation is the major water source for Shalkar surface water bodies. More 

precipitation leads to more water bodies and a larger water body area. The volume of 

surface waters can be reduced by global increases in air temperature and the 

corresponding increases in water temperature. In addition to other effects like faster 

wind speed, lower air vapor concentration, lower air pressure, wider surface area, 

etc., higher temperature promotes evaporation. The need for more water in 

agriculture may also rise with rising temperatures. Therefore, a higher temperature 

may result in fewer and smaller bodies of water. Data on precipitation, temperature, 

and evaporation of Shalkar Lake and the area were obtained from the National 

Hydrometeorological Services “Kazhydromet”. Surface subsidence and/or fractures 

brought on by crash stone production in the lake area result in surface water leakage. 

Mine drainage pollutes the lake water. The average distance between 14 crash stone 

firms and the lake, according to spatial analysis of the distribution of lakes about 

crash stone production zones, was just 15.72 km. The amount of crushed stone 

production has increased steadily since 1994 from 17 million tons to 1.2 billion in 

2021, according to internal statistical bulletins that were requested for the purpose of 

this research from the mayor’s office of Shalkar City (Akimat of the Shalkar City). 

The hydraulic relationship between surface water and groundwater is not close. 

The Lake Shalkar is an open reservoir that receives yearly resupply from the river’s 

flow. The river Kauylzhyr is utilized as a recreational area for the locals and a source 

of household water for the city of Shalkar. It is also used to water livestock, water 

gardens and orchards, and for amateur fishing. Peasant farms, independent business 

owners, and gardening clubs use the areas near Lake Shalkar to cultivate fruits and 

berries, potatoes, melons, and other crops. According to the internal statistical 

bulletins of the mayor’s office of Shalkar City, the agricultural land in square 

kilometers directly connected to the lake has been relatively stable since the 90s. 

The assumption that the size of the water surface integrates antecedent 

conditions across time justifies the examination of the lagged candidate variable. 

Using up to three annual lags is entirely empirical and based on exploratory analysis. 

To make it easier to depict the data, all potential explanatory factors were changed 

by focusing on their mean values. 

In addition to forecasts for the Model 1 and Model 2 specifications that best fit 

the data, we depict the retrospectively fitted values. Models are chosen based on 

their performance; for each model we evaluated, we computed the cumulative log-

likelihood, median absolute deviation, and mean squared error. We calculated DLMs 
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using truncated environmental data (1988–2021) and economic data (1991–2021), 

providing up to three annual lags for each potential explanatory variable, such that 

model comparison using log-likelihoods would be based on the same amount of data 

for Model 2. 

4.2. Evaluating the long-term impact of climate change on lake size 

Furthermore, we conducted an additional assessment of the long-term impact of 

climate change, specifically focusing on temperature increases, using the following 

methodology. This robust approach analyzes the potential effects of climate change 

on lake size by leveraging historical data, standardization, dynamic regression 

modeling, and time series forecasting. We obtained meaningful and interpretable 

model coefficients by centering the year variables and standardizing the data. 

Additionally, the interaction term effectively captures the dynamic relationship 

between temperature and lake size over time, providing a comprehensive 

understanding of the long-term effects of rising temperatures. 

An Exponential Smoothing model was employed to analyze the historical trend 

of standardized maximum temperatures and forecast future temperatures over the 

next decade. 

�̂�𝑡=1 = 𝛼𝑌𝑡 + (1 − 𝛼)�̂�𝑡,, 

where �̂�𝑡+1is the forecasted temperature, 𝑌𝑡 is the observed temperature at time 𝑡, 

and 𝑎 is the smoothing parameter. 

Hypothetical scenarios based on the projected temperature increases were 

created to assess potential future impacts on the lake’s size. 

A regression model was fitted to both historical and forecasted data, 

incorporating an interaction term between time and temperature to capture dynamic 

effects. The regression model used was: 

𝑦𝑡 = 𝛽0 + 𝛽1𝑥𝑡 + 𝛽2𝑡𝑖𝑚𝑒𝑡 + 𝛽3(𝑥𝑡 𝑡𝑖𝑚𝑒𝑡) + 𝜀𝑡 

where 𝑦𝑡  is the standardized size of the lake at time t, and 𝑥𝑡  is the standardized 

maximum temperature, 𝑡𝑖𝑚𝑒𝑡 , represents the centered year variable, and 𝜀𝑡  is the 

error term. 

4.3. Comparative analysis of climatic and anthropogenic factors on lake 

surface area 

To evaluate the contributions of climatic and anthropogenic factors to changes 

in the surface area of Shalkar Lake, we standardized the dataset to ensure 

comparability across variables and facilitate the interpretation of model coefficients. 

Lagged variables were created to capture the potential delayed effects of both 

climatic and anthropogenic factors. 

Three regression models were constructed: the Climate Model, which includes 

climatic factors (evaporation, temperature, and precipitation); the Anthropogenic 

Model, which includes the anthropogenic factor (agricultural activities); and the 

Combined Model, which includes both climatic and anthropogenic factors. These 

models were evaluated using the Akaike Information Criterion (AIC) and the 
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Bayesian Information Criterion (BIC), which penalize models for complexity while 

rewarding them for goodness-of-fit. Lower values of AIC and BIC indicate better-

fitting models. 

5. Results 

5.1. Physical meaning of model parameters 

The model parameters, particularly the constant trend component and its 

discount factor (δ), provide insights into the dynamics of lake surface water changes. 

The constant trend component, included in the best-fitting model for the 1986–2021 

period, indicates that the series’ movement over time has been more random than 

systemic (Table 1). This suggests that lake surface water changes do not follow a 

consistent upward or downward trend but exhibit fluctuations that various external 

factors may influence. 

The discount factor (δ), with a value of 0.80, reflects the rate at which past 

observations influence current estimates. A low discount factor indicates that recent 

observations are given more weight, allowing the model to adapt quickly to changes. 

This adaption is crucial for capturing the impact of sudden events, such as human 

interventions, on the lake surface area. The relatively low discount factor suggests 

that human activities, which can cause rapid and significant changes in the lake area, 

dominate the observed fluctuations. 

Including the constant trend component with a low discount factor indicates that 

lake changes are more influenced by irregular, possibly human-induced activities 

rather than long-term climatic trends. This aligns with observations of periodic but 

irregular cycles in the data. The retrospectively fitted values showing semi-regular 

periodicity highlight the influence of human activities, such as water extraction for 

agriculture, urban development, or infrastructure projects. These activities can lead 

to abrupt changes in water levels, which are captured by the model’s ability to adapt 

quickly to local conditions. Although climatic factors like precipitation, evaporation, 

and temperature are modeled, their impacts appear more gradual and less dominant 

than anthropogenic ones. Climatic changes typically lead to slower, more systemic 

trends in lake levels, which the model does not identify as the primary drivers within 

the observed period. The general decline in the time series is particularly visible in 

2009 when the mean of the constant trend turned negative for the most period. 

5.2. Differentiating and quantifying anthropogenic and climate change 

impacts 

The study indicates that anthropogenic activities have a more significant impact 

on lake area than climate change. The analysis incorporated explanatory variables 

related to human and climatic factors to differentiate and quantify their contributions. 

The results showed a stronger fit for models that included anthropogenic factors, 

particularly agriculture, over those with only climatic trends. 
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Table 2. Results of model 2 search—1985–2021 using explanatory variables. 

 MSE MAD Log10Lik AIC BIC 

C + stevap 1 1.054 0.830 33.113 70.227 73.394 

C + stevap 1, 2 1.073 0.834 33.460 70.920 74.087 

C + stevap 1, 2, 3 1.094 0.839 33.663 71.325 74.492 

C + stprec 1 0.999 0.821 33.383 70.765 73.932 

C + stprec 1, 2 0.999 0.821 33.383 70.765 73.932 

C + stprec 1, 2 0.976 0.800 33.932 71.864 75.031 

C + sttemp 1 1.971 0.965 33.184 70.369 73.535 

C + sttemp 1,2 1.976 0.966 33.531 71.062 74.229 

C + sttemp 1, 2, 3 1.978 0.966 33.734 71.467 74.634 

C + mining (log) 1 1.1079 0.8631 29.502 63.004 65.807 

C + mining (log) 1, 2 1.106 0.811 36.974 77.948 80.750 

C + mining (log) 1, 2, 3 1.276 0.903 43.605 91.209 94.012 

C + starg, 1 1.2735 0.7025 22.3250 48.6500 51.7607 

C + starg, 1, 2 1.2715 0.7020 22.6716 49.3431 52.4538 

C + starg, 1, 2, 3 1.2695 0.7014 22.8743 49.7486 52.8593 

C (0.85) + stagr, 1 0.402 0.300 −11.676 −19.352 −16.241 

C (0.85) + stagr, 1, 2 0.401 0.300 −11.329 −18.659 −15.548 

C (0.85) + stagr, 1, 2, 3 0.405 0.301 −11.127 −18.253 −15.143 

C (0.80) + stagr,1 0.376 0.275 −14.838 −25.677 −22.566 

     Model 1 

C (0.80) + stagr, 1, 2 0.375 0.274 −14.492 −24.984 −21.873 

C (0.80) + stagr, 1, 2, 3 0.374 0.274 −14.289 −24.578 −21.468 

Anthropogenic activities, particularly agriculture, highlight the role of water 

extraction for irrigation, which can drastically reduce lake levels. Increased water 

usage for domestic and industrial purposes can also contribute to fluctuations in lake 

area, as can infrastructure projects such as dams, reservoirs, and water diversion 

projects that directly impact water availability and distribution. Climatic factors like 

changes in rainfall affect lake water’s inflow and outflow. However, the gradual 

nature of these changes makes them less pronounced in the short-term analysis. 

Rising temperatures increase evaporation rates, potentially reducing lake levels over 

time, though this effect is gradual and may be overshadowed by more immediate 

human activities. Long-term trends in temperature can influence evaporation rates 

and precipitation patterns, indirectly affecting lake levels. 

The comparison of model fits (Table 2) shows that models incorporating 

anthropogenic factors, particularly agriculture, provide a better explanation of lake 

changes than those including only climatic predictors. This suggests that human 

activities have a more significant and immediate impact on lake areas than climate 

change within the study period. Models with agricultural predictors had lower MSE 

and AIC values, indicating a better fit and higher explanatory power. While still 

relevant, Climatic models showed higher MSE and AIC values, reflecting their lesser 

immediate impact compared to human activities. The strong performance of 
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anthropogenic models suggests that human activities are the primary drivers of lake 

area changes in the short to medium term. Climate change impacts, while present, 

contribute more to long-term trends and may require longer observation periods to 

become the dominant factor. 

Overall, the model parameters provide valuable insights into lake surface water 

changes’ dynamics, emphasizing anthropogenic activities’ dominant role over 

climatic factors in the observed period. Differentiating and quantifying these impacts 

highlights the need for integrated water management strategies that consider human 

and environmental influences. 

5.3. Climatic trends 

Trend analysis of environmental data is crucial for understanding long-term 

changes and making informed decisions. To evaluate the performance of different 

trend models for the variable’s precipitation, evaporation, and temperature with 

specified trend parameters (tau = 0.90, tau = 0.85, tau = 0.80), we compared constant 

trend models, linear trend models, and quadratic trend models using AIC and BIC 

(Table 3). 

Table 3. The model performance comparison. 

Model Variable AIC (0.90) BIC (0.90) AIC (0.85) BIC (0.85) AIC (0.80) BIC (0.80) 

Constant Evaporation 20.81 23.98 10.43 13.59 0.92 4.09 

Linear Evaporation −53.50 −48.75 −61.67 −56.92 −61.25 −56.50 

Quadratic Evaporation −51.78 −45.44 −59.70 −53.37 −60.12 −53.78 

Constant Temperature 12.19 15.36 10.60 13.77 14.39 17.56 

Linear Temperature −69.41 −64.66 −60.28 −55.53 −63.15 −58.40 

Quadratic Temperature −67.44 −61.11 −58.87 −52.54 −61.64 −55.31 

Constant Precipitation 21.03 24.20 12.70 15.86 16.30 19.47 

Linear Precipitation −76.46 −71.71 −52.64 −47.89 −51.93 −47.18 

Quadratic Precipitation −76.22 −69.88 −51.06 −44.72 −53.73 −47.39 

For evaporation, the linear trend model shows the lowest AIC and BIC values 

across all tau values, indicating it provides the best fit for evaporation data. 

Similarly, the linear trend model for temperature consistently has the lowest AIC and 

BIC values, making it the best model for temperature data across all tau values. For 

precipitation, the linear trend model is the best fit for tau = 0.90 and tau = 0.85. For 

tau = 0.80, the quadratic model shows the lowest AIC value, but the linear model 

remains competitive. The results suggest that the linear trend model is the most 

appropriate for evaluating trends in the environmental variables studied. The linear 

trend model with tau = 0.90 shows superior performance. 

The Mann-Kendall trend test results indicate a significant positive trend in 

standardized evaporation and temperature, with Kendall’s tau values of 0.508 and 

0.371, respectively. The corresponding p-values of 0.000014 and 0.001505 suggest 

these trends are statistically significant. Sen’s slope estimator confirms these 

findings, indicating positive slopes of 0.060180 for evaporation and 0.052195 for 

temperature, with confidence intervals not encompassing zero. Conversely, 



Journal of Infrastructure, Policy and Development 2024, 8(15), 7229.  

17 

precipitation shows weak negative trends with Kendall’s tau values of −0.166 and 

identical p-values of 0.16045, which are not statistically significant. Sen’s slope 

estimates further corroborate the absence of significant trends in these variables 

(Table 4). 

Table 4. Kendall’s tau and sen’s slope analysis. 

 Kendall’s Tau P-value (Mann-Kendall) Sen’s slope P-value (Sen’s Slope) 95% confidence interval (Sen’s Slope) 

Precipitation (0.90) −0.1660 0.1605 −0.0065 0.1604 [−0.01597, 0.00417] 

Evaporation (0.90) 0.5080 0.0000 0.0602 0.0000 [0.03899, 0.08019] 

Temperature (0.90) 0.3710 0.0015 0.0522 0.0015 [0.02381, 0.07935] 

Based on the analysis, we found that linear trend models perform the best for 

the evaporation and air temperature series (1986–2021) (Figure 1). The fitted values 

are a smoothed, retrospective estimate of the mean as it drifts through time, and the 

inference is that evaporation and air temperature cannot be inferred from a random 

walk. 

In 2014, we noticed a significant change in the random walk for evaporation, 

marking a transition from a relatively stable period to a phase where the mean began 

to decrease. This shift aligns with a long-term trend of rising air temperatures, 

although precipitation has only recently started trending downward. Despite these 

changes, linking these environmental variations directly to changes in lake surface 

water size is challenging. The period when the lake’s surface water began declining 

at an increasing rate started in 2009, complicating the connection (Figure 2). 

Given these observations, it is prudent to explore the potential long-term impact 

of rising temperatures on the lake’s size for several reasons. The sustained upward 

trend in temperature suggests significant long-term changes that could affect the lake 

size. The increase in evaporation, often correlated with higher temperatures, 

indicates a potential mechanism through which temperature can affect lake size by 

increasing water loss. Understanding the impact of rising temperatures on natural 

water bodies is crucial in the context of climate change, as it informs water resource 

management and conservation strategies. 

 

Figure 3. Observed and forecasted standardized maximum temperature with 

confidence intervals. 
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The Exponential Smoothing model projected a consistent upward trend in 

standardized maximum temperatures over the next ten years. The forecasted 

temperatures for the period 2022–2031 indicated a significant increase, which was 

used as the basis for further analysis (Figure 3). 

The dynamic regression model included the historical relationship between the 

lake size and temperature, with an interaction term for time. The model’s coefficients 

were then applied to the forecasted temperature data to predict future lake sizes. 

The fitted regression model on historical data yielded the following results: 

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑙𝑎𝑘𝑒𝑡 = 0.0106 + 0.1629 𝑡𝑒𝑚𝑝𝑟𝑒𝑡𝑢𝑟𝑒𝑡 − 0.0603 𝑡𝑖𝑚𝑒𝑡 − 0.0087(𝑡𝑒𝑝𝑟𝑒𝑡𝑢𝑟𝑒𝑡 𝑡𝑖𝑚𝑒𝑡) + 𝜖𝑡 

The fitted regression model on historical data yielded the following results: 

𝑅2 = 0.325 

𝜌(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) = 0.3652  

𝜌(𝑡𝑖𝑚𝑒) = 0.0010 

𝜌(𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛) = 0.5089 

Using the projected temperatures, the model predicted a declining trend in the 

standardized size of the lake (Figure 4). 

 

Figure 4. Historical and forecasted standardized size of lake with confidence 

intervals. 

The results indicate a potential long-term impact of rising temperatures on the 

lake size, even though the direct relationship was not statistically significant in the 

historical data. The significant time trend suggests other underlying lake sizes over 

the observed period. The predicted decline in lake size aligns with the hypothesis 

that climate change, manifested through increasing temperatures, could adversely 

affect natural water bodies over time. 

All in all, our results demonstrate the importance of considering long-term 

climate projections in environmental impact assessments. The projected increase in 

temperatures and the corresponding predicted decline in lake size highlight the need 
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for proactive measures in managing water resources under changing climatic 

conditions. 

Table 5. Comparative analysis of climatic and anthropogenic factors. 

Model df AIC BIC 

Climate Model 5 105.153 112.929 

Anthropogenic Model 3 71.561 76.227 

Combined Model 6 74.435 83.767 

Note: The Climate Model includes climatic factors such as evaporation, temperature, and precipitation, 

aiming to capture their impact on the lake’s surface area. The Anthropogenic Model focuses solely on 

the impact of agricultural activities on the lake’s surface area. The Combined Model incorporates both 

climatic and anthropogenic factors to analyze their combined impact comprehensively. All models were 

calibrated using standardized data for comparability. 

Furthermore, our comparative analysis of climatic and anthropogenic factors on 

the Lake Surface Area was conducted to determine the relative contributions of 

climatic and anthropogenic factors to changes in the surface area of Shalkar Lake 

(Table 5). The analysis highlights the dominant role of anthropogenic activities in 

influencing the surface area of Shalkar Lake. The superior performance of the 

Anthropogenic Model in terms of AIC and BIC values underscores the significant 

and immediate effects of human activities on the lake’s size. The relatively good 

performance of the Combined Model suggests that climatic factors should not be 

completely disregarded; however, their impact appears to be secondary to that of 

anthropogenic factors within the study period. This finding is consistent with 

existing literature that emphasizes the substantial influence of human activities on 

water bodies in Central Asia. 

6. Discussion and conclusion 

The shrinkage of the Central Asian lakes has attracted the attention of numerous 

scholars who have analyzed the changes in them from various perspectives, and most 

of them concluded that the lakes in Central Asia had shrunk dramatically (Jin et al., 

2017; Stanev et al., 2004; Shi et al., 2014). In the current study, we calculated 

Shalkar Lake’s abrupt retreat and attempted to identify its reasons. 

Our results indicate strong evidence favoring the presence of a random walk-

over of the systemic trend in the gradual shrinking of Shalkar Lake that can be 

observed over recent decades. We found that the better fitting models are those that 

adapt more readily to local conditions, perhaps reflecting human interventions 

occurring over the investigated period. We concluded that the impact of human 

activities on the lake is more significant than climate change, even though the annual 

air temperature and annual evaporation have increased in the region over time. On 

the other hand, although there are anthropogenic influences, the retrospectively fitted 

values suggest a semi-regular periodicity. We present evidence that the water surface 

in Shalkar and Kaulzhyr has generally been dropping. 

Our study highlights the importance of considering long-term climate 

projections in environmental impact assessments. The projected increase in 

temperatures and the corresponding predicted decline in lake size underscores the 

need for proactive measures in managing water resources under changing climatic 
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conditions. In this context, the study’s results indicate a potential long-term impact 

of rising temperatures on lake size, even though the direct relationship was not 

statistically significant in the historical data. The significant time trend observed 

suggests that other underlying factors influence lake size over the observed period. 

The predicted decline in lake size aligns with the hypothesis that climate change, 

manifested through increasing temperatures, could adversely affect natural water 

bodies over time. 

Furthermore, our comparative analysis confirms that anthropogenic factors are 

the primary drivers of changes in the surface area of Shalkar Lake. While climatic 

factors are relevant, they are less significant during the observed period. These 

insights highlight the need for integrated water management strategies that prioritize 

controlling and mitigating human impacts while considering long-term climatic 

trends. 

Our findings are consistent with previous research on lakes in Central Asia that 

suggests a minimal influence of climate change (Michlin, 2007; Wang et.al, 2020). 

While this is happening, human actions have also been the primary causes of the 

decline, such as the large water withdrawal from transboundary rivers in places like 

the Aral Sea (Micklin, 2007). According to Chen et al. (2018), the imbalanced 

spatial distribution of land and water resources and excessive human activity are the 

main causes of the water resources crisis in the Aral Sea Basin. Like the findings of 

Yang et al (2020) and Michlin (2014) on the Aral Sea, we found that irrigated water 

withdrawal is the dominant factor influencing the long-term variations of Shalkar 

Lake. Alleviating the water and ecological crisis of Shalkar Lake is not only a duty 

but also an obligation for the region and country in the basin. 

The present study has certain limitations that need to be acknowledged. One 

primary limitation is the reliance on a relatively short-term dataset (1986–2021) for 

analyzing Shalkar Lake’s surface water changes. While this timeframe provides 

valuable insights, extending the dataset further back in time would offer a more 

comprehensive view of historical trends and variability, thus enhancing the 

robustness of the findings. Additionally, the study focused on a limited set of 

climatic and economic variables. Although significant, other environmental variables 

such as soil moisture, groundwater levels, and land use changes also play crucial 

roles in lake dynamics and were not included in the current models. 

Our analysis employed dynamic state-space models (DLMs) to capture non-

linear trends. While effective, these models could be expanded to include more 

complex hydrologic models that account for additional physical processes governing 

lake hydrology. For example, incorporating models considering groundwater-surface 

water interactions or using high-resolution climate projections could provide a more 

detailed understanding of the lake’s hydrologic processes. 

Utilizing high-resolution climate projections from advanced climate models, 

such as those from the Coupled Model Intercomparison Project (CMIP6), would 

provide more detailed future climate scenarios. This would help in assessing the 

potential impacts of climate change on lake hydrology with greater precision (Eyring 

et al., 2016). Including a broader range of environmental variables, such as soil 

moisture, groundwater levels, and vegetation cover, would offer a more holistic 

understanding of the factors influencing lake dynamics. Remote sensing technologies 



Journal of Infrastructure, Policy and Development 2024, 8(15), 7229.  

21 

and field observations could be used to gather this data (Rodell et al., 2004). By 

addressing these areas, future research can provide a more comprehensive 

understanding of the complex dynamics affecting lake ecosystems in Central Asia 

and inform the development of effective conservation and management policies. 

Future research should extend the dataset further back in time and incorporate 

additional environmental variables to enhance the robustness of the findings. This 

extension could involve utilizing paleoclimatic data or historical records. 

Incorporating more complex hydrologic models that account for additional physical 

processes, such as groundwater-surface water interactions, soil moisture dynamics, 

and detailed land use changes, would improve the accuracy of predictions. Using 

more complex models that account for interactions between climatic and 

anthropogenic factors could provide deeper insights into the dynamics affecting lake 

ecosystems in Central Asia. 

On the other hand, Magnuson (1990) noted that it can be difficult to identify 

cause-and-effect interactions in ecosystems. The ongoing gathering of long-term 

surface water and meteorological data, although a challenging process, is an 

investment that offers stakeholders in the small Western regions of Kazakhstan a 

platform for identifying and comprehending phenomena that are very important to 

them. 
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