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Abstract: This research explores the advancement of Artificial Intelligence (AI) in 

Occupational Health and Safety (OHS) across high-risk industries, highlighting its pivotal role 

in mitigating the global incidence of occupational incidents and diseases, which result in 

approximately 2.3 million fatalities annually. Traditional OHS practices often fall short in 

completely preventing workplace incidents, primarily due to limitations in human-operated 

risk assessments and management. The integration of AI technologies has been instrumental 

in automating hazardous tasks, enhancing real-time monitoring, and improving decision-

making through comprehensive data analysis. Specific AI applications discussed include 

drones and robots for risky operations, computer vision for environmental monitoring, and 

predictive analytics to pre-empt potential hazards. Additionally, AI-driven simulations are 

enhancing training protocols, significantly improving both the safety and efficiency of 

workers. Various studies supporting the effectiveness of these AI applications indicate marked 

improvements in risk management and incident prevention. By transitioning from reactive to 

proactive safety measures, the implementation of AI in OHS represents a transformative 

approach, aiming to substantially reduce the global burden of occupational injuries and 

fatalities in high-risk sectors. 

Keywords: operational health and safety; high risk industry; artificial intelligence; deep 

learning; computer vision 

1. Introduction 

Annually, the global workforce experiences 2.3 million fatalities due to 

occupational incidents and diseases, which breaks down to more than 6000 deaths 

each day (International Labour Organization, 2011). Reports indicate that around 

340 million workplace accidents occur yearly, affecting 160 million individuals with 

occupational illnesses. Notably, these diseases are a significant cause of worker 

mortality, with hazardous substance exposure accounting for approximately 651,279 

deaths annually (International Labour Organization, 2011). The construction sector, 

in particular, records a higher frequency of accidents than other fields, with over 

150,000 incidents and injuries reported each year. This sector is about 70% more 

likely to report injuries compared to others (Tyrrell, 2021). The Global Disease 

Burden reveals that diseases such as pneumoconiosis (CWP), silicosis, and 

asbestosis have been responsible for 125,000 deaths of coal workers (Lozano et al., 

2012). While the counts of pneumoconiosis has declined globally since 2015, the 

disease still affects a substantial number of individuals (James et al., 2018; Vos et al., 

2015). Moreover, the death toll from these diseases remains high, with more than 

21,000 people dying annually since 2015 (Qi et al., 2021). 
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The implementation of Occupational Health and Safety (OHS) management 

strategies is critical to protect employees from workplace hazards and illnesses 

(Uhrenholdt Madsen et al., 2020). OHS represents a structured method adopted by 

organizations to ensure employee safety, health, and welfare during work. Despite 

these efforts, complete prevention of workplace incidents is challenging, 

necessitating ongoing dedication and enhancement to better safeguard workers. 

Investments in worker safety, health, and welfare are substantial but yield significant 

benefits, including reduced compensation claims, legal expenses, and lower 

insurance costs (Tang, 2024). Moreover, these practices enhance employee relations 

and morale, as workers feel valued and cared for by their employers. This not only 

fosters a positive work environment but also enhances a company’s market standing, 

reputation, and trust (Tang, 2024). Increasingly, companies are integrating OHS 

management systems to ensure the safety and health of their workforce. Central to 

OHS management is risk management, which focuses on identifying, evaluating, and 

managing risks associated with work activities and environments (Kuok Ho et al., 

2018). Its goal is to minimize the incidence and impact of occupational injuries, 

diseases, and incidents, thereby boosting overall OHS performance (Kuok Ho et al., 

2018). Effective risk management includes defining the scope, context, and criteria 

based on organizational objectives, expectations, and challenges (Gül and Ak, 2018). 

It emphasizes stakeholder engagement through communication and consultation, 

gathering their insights, feedback, and support for managing workplace risks. The 

risk management process involves conducting risk assessments to pinpoint and 

evaluate occupational hazards using suitable methodologies and tools (Gül and Ak, 

2018). After conducting an assessment, risks are reduced or minimized based on the 

hierarchy of control methods. These methods include elimination and substitution, 

controls of engineering systems, control over administrative process, and the 

uutilization of personal protective equipment. The order of priority for implementing 

these methods is elimination and substitution first, followed by engineering controls, 

administrative controls, and finally the use of personal protective equipment. Further, 

timely monitoring and compliance checks are essential for ensuring strong risk 

reduction. This process is periodically reviewed to pinpoint improvement 

opportunities and enhance organizational learning (Gül and Ak, 2018). Nevertheless, 

traditional OHS risk management practices may struggle to capture all significant 

workplace risks, occasionally leading to non-compliance with established OHS 

standards and regulations. 

The reliance on human labor to pinpoint occupational hazards may result in the 

underestimation of risks, especially in hard-to-reach areas. Artificial intelligence (AI) 

encompasses the capabilities of computer systems or robots to execute tasks, which 

conventionally mandating human intellect. The said tasks incorporate language 

comprehension, image identification, decision-making, and problem-solving (Moore, 

2019). AI’s utility spans multiple sectors such as healthcare, education, 

entertainment, and finance, enhancing human performance and productivity. This 

enhancement is evident through the automation of monotonous or hazardous tasks, 

increased accuracy, efficiency, and the generation of innovative insights and 

solutions (Moore, 2019). AI-enabled devices, like robots or drones, are increasingly 

used for inspection, maintenance, or repair operations in perilous settings such as 
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mines, power plants, and construction sites, enhancing safety and efficiency. 

Moreover, AI supports the extensive collection and analysis of worker’s data 

concerning the physical situation, mental stability, and emotional well-being, thereby 

facilitating enhanced monitoring and performance improvement. With this data, AI 

systems can provide early warnings and interventions to help prevent conditions like 

burnout, depression, or anxiety (Moore, 2019). AI also plays a pivotal role in OHS 

training by crafting realistic, immersive simulation scenarios, particularly for 

emergency response, which significantly enhances the training experience for 

workers. Such simulations allow workers to better visualize and effectively manage 

various emergency situations at work. As AI technology advances and its application 

broadens across sectors, this review aims to: 

• systematically outline the progress in AI applications within OHS risk 

management, specially within higher risk area such as the construction, mining, 

and oil and gas industries. 

• elaborate a deeper understanding of AI’s role and efficacy in OHS risk 

management and discusses. 

• enlightens AI-driven technologies for reshaping workplace safety by preventing 

occupational diseases and enhancing safety measures. 

2. Application of AI across high-risk industries 

AI has been progressively incorporated into various applications through 

machine learning (ML), computer vision (CV), knowledge-based systems, and 

natural language processing (NLP) (Abioye et al., 2021). Figure 1 represents this 

progressive AI system. Each of these forms of AI offers distinct advantages and tools 

in handling and analyzing data for decision-making, such as 

• Computer Vision: This technology relies on capturing images through 

specialized cameras and using advanced algorithms to analyze these images for 

insightful decision-making. It plays a crucial role in environments where visual 

monitoring and precision are required (Hammoudeh et al., 2022). 

• Knowledge-Based Systems: These systems function by integrating existing 

knowledge into an inference engine, coupled with a user interface that 

facilitates interaction with the system. The system is a reservoir of expert 

knowledge and past case studies that aid in decision-making (Kuok Ho et al., 

2018). It can be segmented into various types: 

a) Expert Systems: Utilize a knowledge base of specific experts or 

experiences within an individual sector to emulate decision-making 

processes for solving complex problems of OHS (Hurtado et al., 2022). 

b) Case-Based Reasoning Systems: These systems analyze experiences or 

past cases stored in the knowledge base for critical analysis, interpretation, 

or prediction. Selection of cases relies heavily on OHS expert knowledge 

(Su et al., 2019). 

c) Intelligent Tutoring Systems: Designed to simulate human tutors, these 

systems provide tailored instructions or feedback, making them 

particularly useful for OHS training (Gonzalez et al., 2007). 
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d) Database Management Systems: Serve as the backbone for data storage, 

organization, and manipulation, supporting other systems by ensuring data 

is structured and consistently managed (Çalış and Buyukakinci, 2019). 

• Natural Language Processing (NLP): NLP develops understanding and 

manipulating power of human language into the machines, whether in text or 

spoken form. This branch of AI is utilized for various purposes, including 

speech-to-text conversion, natural language generation and understanding, and 

text summarization (Bieri et al., 2024). 

 

Figure 1. Progressing subcomponents of AI systems. 

AI’s role in OHS risk management is multifaceted. By employing AI 

technologies such as computer vision and knowledge-based systems, it is possible to 

continuously evaluate workplace environments through sensors, cameras, and 

wearable technologies. This constant surveillance aids in providing timely warnings 

to workers when they are at risk of significant hazards (Adem et al., 2020). 

Moreover, AI facilitates the automation of dangerous or physically demanding tasks 

by using robots or collaborative robots (cobots), which can significantly reduce the 

exposure of workers to hazardous conditions. This integration of AI in OHS 

practices not only enhances worker safety but also boosts efficiency and productivity 

by reducing the potential for accidents and injuries. AI significantly mitigates the 

risks that workers face by automating tasks that are hazardous or physically 

demanding. The use of AI supports the analysis of vast quantities of occupational 

data, which facilitates the identification of patterns, trends, and potential OHS risks. 

By leveraging machine learning algorithms, AI systems can continually evolve from 

and adjust to new data, thereby enhancing its ability to forecast potential hazards 

before they become imminent threats. This predictive capability not only helps in 

preempting accidents and injuries but also supports proactive measures in managing 

workplace safety. This approach marks a substantial shift from reactive OHS 

practices to a more dynamic, predictive strategy, optimizing safety protocols and 

reducing risk exposure for workers. 
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2.1. Adopted method to evaluate AI across high-risk industries 

To gather a comprehensive overview of the progression in detecting 

occupational diseases and the technological interventions in industrial environments, 

an extensive literature search was conducted. The databases utilized for this research 

included Embase, PubMed, and Google Scholar. The starting point for the search 

was set to 1974–1975, the year when digital methodologies were first employed in 

the analysis of job-related lung illnesses with the help of chest radiographs, marking 

a significant milestone in the field. The keywords selected for the search 

encompassed a range of terms related to the application of technology in 

occupational health. These terms included “Artificial Intelligence,” “Occupational 

Health and Safety,” “Health Automation,” “Safety Automation,” “Workplace safety”, 

“Workplace Monitoring,” “Occupational Disease Detection,” “Incident Prevention,” 

“Wearable Technology,” “Workplace Injuries”. These terms were used in various 

combinations to maximize the breadth and depth of the search. To refine the search 

further, additional keywords such as “Artificial Intelligence”, “Deep Learning,” 

“Computer Vision,” and “Natural Language Processing” were also employed. This 

methodical approach ensured the capture of relevant advancements and trends in the 

field over the decades, highlighting both chronological developments and 

technological innovations in occupational disease detection within industrial settings. 

3. AI for OHS in high-risk industries 

This section is divided into three subheadings. Each of the three subheadings 

provides a comprehensive application of AI for different high-risk industries. 

3.1. AI for construction industry 

The construction industry ranks as one of the most perilous fields in terms of 

OHS risks. Notable hazards in this sector include traumatic injuries from falls, 

electrical shocks, machinery, tools, and vehicles; exposure to hazardous chemicals 

such as cement, asbestos, dust, and solvents; physical dangers from noise, vibration, 

and extreme temperatures or radiation; and ergonomic risks related to poor posture, 

manual labor, or repetitive movements (Gunduz and Laitinen, 2018). These hazards 

can lead to a range of health issues for construction workers, including 

musculoskeletal disorders (Boschman et al., 2012; Reddy et al., 2016), respiratory 

conditions (Boadu et al., 2023), noise-induced hearing loss (Mazlan et al., 2018), 

dermatitis. Figure 2 depicts the flowchart of AI’s application in the construction 

sector, with an emphasis on OHS. 

AI technology has opened new pathways to mitigate these risks in the 

construction industry. Zhang et al. (2015) devised a framework that identifies fall 

hazards early in the project planning stages, utilizing algorithms that automatically 

check compliance with safety regulations. This system integrates safety measures 

into building information modeling and was evaluated using a construction project 

model, showing strong capabilities in detecting unprotected slab edges and 

suggesting the installation of guardrail systems as per safety guidelines. The tool also 

offers recommendations for the installation and removal tasks, providing options and 

procedures to enhance fall protection during the design and planning phases (Zhang 
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et al., 2015). However, this framework must be continually verified to confirm the 

effectiveness of its fall protection suggestions, especially in rapidly changing project 

environments, and it requires further refinement in detail (Zhang et al., 2015). In 

another innovative approach, a study introduced an automated, cloud-based system 

for real-time safety monitoring at construction sites (Park et al., 2016). This system 

employs Bluetooth low-energy technology for location tracking and integrates with 

an information model to facilitate hazard identification and safety communication 

via a cloud platform. It has proven effective in identifying unsafe site conditions and 

assessing risk impacts on workers based on their acute locations (Park et al., 2016). 

Unlike traditional computer vision, this system uses Bluetooth for positioning, 

allowing the algorithm to evaluate the exposure risks without generating visual data. 

Additionally, a separate initiative combined with radio-frequency identification 

integrated with building information modeling (BIM) to manage construction sites 

more effectively. This system enhances site safety management through advanced 

localization and visualization capabilities (Fang et al., 2016). Further afield, in the 

power infrastructure sector, ML techniques such as boosted trees and deep learning 

have been applied to scrutinize injury causes and forecast potential incidents 

(Oyedele et al., 2021). This predictive approach, particularly through deep feed 

forward neural networks, has demonstrated superior performance in anticipating 

safety issues, thereby enhancing risk management (Oyedele et al., 2021). 

 

Figure 2. AI for construction industry. 

Moreover, the adoption of BIM has revolutionized safety management by 

integrating it into the preliminary design and planning phases of construction 

projects. An automated feature has been crafted to simulate and visualize worker 

movements on scaffolds using building information models (Kim et al., 2016). This 

system includes algorithms designed to detect safety risks associated with scaffold 

work, aiding in the development of preventive strategies. This capability can be 

integrated into BIM software as an add-on, providing a unique benefit of identifying 

safety hazards that may be missed by project managers (Kim et al., 2016). 

Additionally, computer vision has become increasingly prominent in construction 
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safety management. Beyond the mentioned applications, Zhang introduced a 

machine vision technology aimed at enhancing safety in civil engineering projects. 

This technology combines real-time target detection, spatial analysis between 

construction environments and targets, and an early warning system (Zhang, 2021). 

It is configured to activate alerts when a predefined unsafe condition is detected, thus 

bolstering safety measures on site. Table 1 summarizes some applications of AI in 

Construction industry. 

Table 1. Some application of AI in construction industry. 

AI Technique Application Remark Reference 

ANN, Image Processing Detection of material strength 

New method for concrete strength 

testing using image processing 

techniques 

(Dogan et al., 2017) 

Big Data Analytics, Image 

processing 

Observation of workers’ behavior 

on construction sites 

Utilization of big data enhances 

safety and efficiency in 

construction through behavior 

analysis 

(Guo et al., 2016) 

Deep Learning 
Automatic recognition of water 

leakage areas 

Deep learning techniques 

effectively identify water leakage 

areas in shield tunnel linings, 

enhancing maintenance and safety 

protocols. 

(Xue et al., 2020) 

Augmented Reality, Image 

Recognition 
Hazard avoidance in construction 

Wearable AR devices improve 

safety by enabling real-time 

hazard detection 

(Kinam et al., 2017) 

Stochastic Modeling, Real-Time 

Location Systems 

Prediction of safety states on 

construction sites 

Real-time modeling provides 

dynamic predictions, increasing 

site safety 

(Li et al., 2016) 

Bayesian Network 
Intelligent building fire risk 

assessment 

The classification model enhances 

trust and accuracy in assessing fire 

risks in intelligent buildings, 

promoting safer building 

management strategies. 

(Wu and Chen, 2022) 

ST-GCN and YOLO 
Identification of interaction 

behaviors of workers 

The combination of ST-GCN and 

YOLO effectively identifies 

interaction behaviors among 

construction workers, enhancing 

workplace safety and operational 

efficiency. 

(Li et al., 2023) 

Integration of Detection and 

Tracking 

Improved localization of workers 

in video frames 

By integrating detection and 

tracking techniques, the study 

enhances the accuracy of 

localizing construction workers in 

video surveillance, improving 

safety monitoring on construction 

sites. 

(Park and Brilakis, 2015) 

3.2. AI for mining industry 

The mining industry is characterized by its high-risk nature, with frequent 

incidents involving heavy equipment, explosives, and dangerous chemicals. Such 

incidents often lead to injuries, fatalities, or permanent disabilities. Workers in this 

sector are also exposed to dust, gases, and fumes that can cause serious lung 

conditions including silicosis, coal workers’ pneumoconiosis, asbestosis, and various 

cancers. Additionally, the sector is notorious for its high noise levels, which can 
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impair hearing and result in industrial deafness (Sun and Azman, 2018). 

Consequently, managing these risks is vital, and the integration of AI could enhance 

the effectiveness of these management efforts. Figure 3 depicts the flowchart of AI’s 

application in the mining industry, with an emphasis on OHS. 

 

Figure 3. AI for mining industry. 

AI is extensively applied throughout the mining lifecycle, encompassing 

exploration, planning, operation of mobile machines, drilling, blasting, and ore 

processing (Ali and Frimpong, 2020; Hyder et al., 2019). Recent advances in AI 

have greatly enhanced automation in machinery and vehicle operations (Ali and 

Frimpong, 2020; Hyder et al., 2019). Notably, one of the most innovative uses of AI 

involves developing computer vision-based anti-collision systems. Particular 

innovation incorporate advance sensor systems, such a high resolution cameras and 

LIDAR (Shahmoradi et al., 2020), employing complex DL algorithms to monitor 

and identify the movement of both individuals and machines within mining 

environments (Imam et al., 2023; Kim and Choi, 2021; Szrek et al., 2020; Wu, et al., 

2023). This capability is crucial for enhancing safety, as it enables the provision of 

immediate warnings and alerts to both operators and workers, potentially preventing 

accidents and injuries (Szrek et al., 2020). Moreover, the mining sector is 

increasingly adopting virtual and augmented reality (VR/AR) technologies (Zhang, 

2017). Additionally, VR/AR is beneficial for simulating emergency situations, 

helping to improve workers’ response times and overall safety preparedness (Guo et 

al., 2017). 

Furthermore, these technologies facilitate remote monitoring and maintenance 

tasks, allowing for equipment checks without the physical presence of workers, 

thereby reducing accident risks. Research conducted by Yedla et al. (2020) has 

utilized ML technologies such as artificial neural network (ANN), decision trees, and 

random forests to study mining accident data. These technologies outperformed 

traditional logistic regression models in predicting the outcomes of such accidents. 

Key factors influencing the period for which workers are not available for work 

include their mining experience, shift start times, and the timing of the accident 

(Yedla et al., 2020). Similarly, in the construction industry, technologies like 
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computer vision coupled with sensor applications are being increasingly adopted. 

One notable innovation is a Bluetooth-based system designed for underground 

navigation and monitoring of mining operations, supported by an extensive 

underground Bluetooth network (Baek et al., 2017). The detection of toxic gases in 

mines represents a significant challenge, with traditional methods often falling short. 

To address this, there has been development towards an automated remote 

monitoring system that utilizes wireless sensor technology. This system employs 

principles such as Ohm’s law and mobile sensing, integrated with AI-driven 

decision-making (Osunmakinde, 2013). The system, tested in real-world scenarios, 

aims to replicate the expertise of safety engineers in detecting toxic gas exposure and 

provides early warnings to mitigate risks (Osunmakinde, 2013). This comprehensive 

framework combines computer vision and expert systems to enhance risk 

management practices in underground mining environments. Table 2 summarizes 

some applications of AI in Mining Industry. 

Table 2. Some application of AI in mining industry. 

AI Technique Application Remark Reference 

ANN 

Approximation of 

Surface Subsidence due 

to Rock Mass Drainage 

ANNs prove suitable 

for modeling surface 

subsidence, offering a 

reliable method for 

predicting geological 

changes. 

(Hejmanowski and 

Witkowski, 2015) 

ANN, Fuzzy Inference 

System 

Prediction of 

Subsidence Risk by 

FMEA 

Combining ANN and 

Fuzzy systems enhances 

the prediction accuracy 

of subsidence risks, 

improving mining 

safety. 

(Rafie and Samimi 

Namin, 2015) 

Hyperion Image 

Analysis 
Mapping of Iron Ore 

Hyperion image 

analysis effectively 

maps iron ore 

distributions, aiding in 

resource management 

and extraction 

strategies. 

(Kumari et al., 2014) 

ANN 

Prediction of Dust 

Concentration in Coal 

Mines 

ANNs effectively 

predict dust levels in 

open cast coal mines, 

aiding in environmental 

and health management. 

(Lal and Tripathy, 

2012) 

Internet of Things (IoT) 

Early-Warning Safety 

System for 

Underground Mines 

IoT-based systems 

enhance safety in 

underground coal mines 

through effective event 

reporting and early 

warnings. 

(Jo and Khan, 2017) 

Hybrid CNN-LSTM 

Coal mine hazards 

monitoring and 

prediction 

IoT-based system for 

real-time monitoring 

and prediction 

(Dey and Chaulya, et 

al., 2021) 

Deep Convolutional 

Neural Network (CNN) 

Secure wireless voice 

communication for 

underground mines 

Focus on safety and 

reliability in mine 

working communication 

(Dey and Kumar, et al., 

2021) 
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3.3. AI for oil and gas industry 

The oil and gas industry, considered a branch of the broader mining sector, 

experienced 1,021 workplace accidents in Malaysia in 2023, with 18 of these being 

fatal. The frequency of accidents was noted at 0.69, and the severity rate reached 

17.97 per million man-hours (DOSH, 2023). On a global scale, this sector’s average 

fatal accident rate is 3.0 per 100,000 workers, which is higher than the overall 

industry rate of 2.3. Predominant fatal accident types internationally include 

transportation incidents (41%), interactions with objects and equipment (25%), and 

fires and explosions (15%) (UNDRR, 2024). To reduce this numbers, AI enabled 

innovation are presented (Desikan and Devi, 2023). Figure 4 depicts the flowchart 

of AI’s application in the Oil and Gas Industry, with an emphasis on OHS.  

 

Figure 4. AI for oil and gas industry. 

Linear sensor networks, equipped with custom sensor boards and algorithms, 

have also been implemented to enhance safety in oil and gas operations. Abbas et al. 

(2021) applied wireless sensor network (WSN) for evaluating gas distribution 

network. This innovation reduces the cost of operation with high data reliability and 

reduces the likelihood of direct human contact. Rashid et al. (2015) have innovated a 

smart wireless sensor network that identifies and evaluates leaks in pipelines using 

machine learning techniques to analyze negative pressure waves detected by sensors. 

To further safeguard pipeline integrity, another initiative has combined a GPRS 

network, the Internet, and wireless sensor networks to monitor terrestrial pipeline 

cathodic protection systems. This setup ensures the timely collection and 

transmission of cathodic potential data to control centers for appropriate action (Liu 

et al., 2015). 

Additionally, Jung and Song (2014) utilized wireless sensor networks to create 

a safety monitoring system for industrial pipe racks, successfully tested in 

petrochemical facilities. This system evaluates structural stability and offers risk 

management solutions. Another sensor-based technology was developed to detect 

propane leaks, successfully identifying 91% of leaks within three days, with an 

average delay of 108 seconds (Chraim et al., 2016). These sensor-based technologies 
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are increasingly popular in the oil and gas sector because of its capability to deliver  

real-time, extensive area coverage and rapid hazard detection, which facilitates 

prompt decision-making. Additionally, an expert system has been proposed to assess 

OHS and process safety on offshore platforms, providing a risk level index based on 

various safety aspects (Tang et al., 2018). Moreover, Table 3 summarized some 

applications of AI in Oil and Gas Industry. 

Table 3. Some application of AI in oil and gas industry. 

AI Technique Application Remark Reference 

Model-Based Approach 
Fault Detection in 

Chemical Processes 

Focuses on transitions 

and steady-state 

operations 

(Bhagwat et al., 2003a)  

Multi-Linear Model 
Fault Detection during 

Process Transitions 

Uses multi-linear 

models for enhanced 

fault detection 

(Bhagwat et al., 2003b)  

Robotics Infrastructure Repair 

Robots assisting in 

maintenance and repair 

of infrastructure 

(Mitchell, 2019)  

Artificial Neural 

Network (ANN) 

Foam Drilling 

maintenance 

Predicts hole cleaning 

effectiveness 
(Rooki et al., 2014)  

Artificial Neural 

Network (ANN) 

Drilling Operations in 

Oil Fields 

Used for predicting 

stuck pipe issues in 

drilling operations 

(Shadizadeh et al., 

2010) 

Wireless Sensor 

Networks 

Monitoring of Gas 

Distribution Pipelines 

Enhances monitoring 

and safety of pipeline 

networks 

(Abbas et al., 2021) 

Wireless Sensor 

Networks 

Gas Leak Detection and 

Localization 

Focus on industrial 

safety and leak 

prevention 

(Chraim et al., 2016) 

4. Occupational disease diagnosis and prevention by AI 

Diagnosing occupational illnesses in clinical environments is notably 

challenging due to the extended latency periods associated with these conditions, 

including pneumoconiosis, silicosis, asbestosis, lung cancer, and chronic obstructive 

pulmonary disease (COPD) (Blackley et al., 2018; Vlahovich, 2020). These extended 

periods often complicate treatment and management. Historicallu, Kruger et al. 

(1974) screed and evaluated diseases in workers with the utilization of optical fourier 

transformation. This affort helped workers for maintaining their health by getting the 

required compensation. Since then, the application of AI and mathematical 

modelling has taken a novel direction for disease diagnosis. More advancements in 

similar direction included the use of multilayer perceptron (MLP), multiresolution 

support vector machine (SVM)-based algorithms, and developments in convolutional 

neural networks (CNNs) and DL algorithms for enhancing CXR image analysis 

(Litjens et al., 2017). 

Recent advancements in AI, particularly DL, have significantly enhanced the 

analysis of lung images, revolutionizing the diagnosis processes using plain 

radiographs (Çallı et al., 2021). AI algorithms excel in interpreting chest X-rays 

(CXRs), computed tomography (CT) scans, and magnetic resonance imaging (MRI) 

scans (Shah and Mishra, 2024). They effectively detect and classify anomalies, 
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pinpointing nodules, masses, or disease-specific patterns such as those found in 

mesothelioma, COPD, and silicosis. For individuals at risk of pneumoconiosis, a 

CXR is mandatory, highlighting the global health burden this condition places, 

especially on low- and middle-income countries (Li et al., 2022). Diagnosing 

conditions of such illness causes due to working conditions requires intricate 

decision-making processes, presenting substantial challenges for radiologists. AI 

models have proven to be highly effective in parsing imaging data with precision and 

accuracy (Cellina et al., 2022). 

These advanced AI tools also assist in data augmentation, reducing image noise, 

and creating synthetic data. Such capabilities produce synthetic lung images closely 

resembling those of actual patients, providing crucial insights for predicting a 

worker’s health trajectory and limiting hazardous exposures in dust-prone industries. 

Moreover, Image Processing plays an increasingly essential role in the evaluation of 

pulmonic diseases, with advancements of viable AI algorithms for chest imaging. 

These have gained recognition from regulatory authorities and are now available 

commercially in over 20 countries (Choe et al., 2022). 

4.1. Moving normalization by applying Artificial Neural Network (ANN) 

in X-ray image analysis 

Diagnosing occupational lung diseases, according to the ILO, relies on two 

critical assessment categories: the number and area density classification, and the 

size of abnormalities within the region of interest (ROI) on a postero-anterior chest 

X-ray. A primary challenge in analyzing the textures of chest radiographs is the 

complex “background” created by the overlap of normal anatomical structures. This 

complexity necessitates that the analysis be somewhat insensitive to background 

variations. Historical efforts to correct background trends have focused on removing 

minor ROIs (Katsuragawa et al., 1990). Figure 5 represents steps to evaluate an X-

ray image with ANN. 

 

Figure 5. General steps to apply ANN with moving normalization for X-ray image 

analysis. 
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Significant advancements have been made by Kondo and Kouda (2001), who 

utilized a three-layer back-propagation neural network to detect small rounded 

opacities by filtering out rib shadows and vascular markings in chest X-rays. This 

neural network approach generated an optimized bi-level ROI image. Their 

comprehensive evaluation, focused on size and shape analysis, proved that this new 

method is significantly more reliable than traditional techniques. It employs a 

‘moving normalization’ strategy to eliminate background interference. The algorithm 

assesses the number and area density of rounded opacities, comparing them against 

ILO standard X-ray images to produce a classification (Kondo et al., 2000). This 

type of precise classification carries significant implications for decisions on job 

reassignments and worker’s compensation claims related to pneumoconiosis (Jagoe, 

1979; Sishodiya, 2022). 

4.2. Deep learning embedded with ANN and CNN for non-textural 

analysis 

ANN techniques have significantly evolved beyond traditional manual texture 

analysis, also providing substantial time efficiencies. DL techniques have 

transformed non-texture chest X-ray analysis through automated capabilities. These 

improvements have greatly enhanced pneumoconiosis classification settings with 

improved accuracy and efficiency. 

Okumura et al. (2014) advanced a pneumoconiosis identification system 

combining rule-based and ANN methodologies, utilizing three enhancement 

techniques—window function, top-hat transformation, and gray-level co-occurrence 

matrix. This approach differentiated effectively between normal and pathological 

ROIs in CXRs, achieving significant classification accuracy with areas under the 

curve (AUCs) of 0.93 ± 0.02 and 0.72 ± 0.03 for severe and low-grade 

pneumoconiosis, respectively. Okumura et al. (2017) further reported diagnostic 

AUCs of 0.89 ± 0.09 and 0.84 ± 0.12 for both disease grades using a three-stage 

ANN, underscoring occasional challenges NN algorithms face in learning complex 

representations from pneumoconiosis CXRs, which can impact their accuracy and 

broader application effectiveness. 

In addition, researchers started modifying CNN architectures to fulfil the 

special requirements of CXR classification. The use of transfer learning, which 

involved the utilisation of pretrained convolutional neural network (CNN) models 

trained on large picture datasets, made significant progress. These models were then 

fine-tuned specifically for the interpretation of chest X-ray (CXR) images, 

effectively overcoming the difficulty of having little labelled medical data available 

(Bozinovski, 2020). This method, while time-consuming and costly, has proven 

beneficial. Significant strides in pneumoconiosis CXR analysis using CNNs have 

been made by researchers such as Devnath et al. (2022), Zhang et al. (2021), Wang 

et al. (2020), and Arzhaeva et al. (2019). These studies typically leverage the 

ImageNet pretrained CNN model. For pneumoconiosis diagnosis, Zheng et al. (2019) 

utilized various CNN models including LeNet, AlexNet, and GoogLeNet (Inception-

v1 and v2), achieving notable accuracy improvements with the optimized Inception-

CF model. Another deep CNN application on one of the largest datasets of 33,493 
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CXRs demonstrated a 92% accuracy with a very high sensitivity (99%), effectively 

minimizing missed diagnoses (Xiao et al., 2021). Due to its great sensitivity, this 

technique is highly recommended for pneumoconiosis screening in workplace 

wellness evaluations in China. It is capable of detecting almost all cases of the illness. 

Wang et al. (2020) utilised the Inception-V3 Convolutional Neural Network (CNN) 

structure and obtained an Area Under the Curve (AUC) value of 87.80 (95% 

Confidence Interval, 0.811–0.946), demonstrating the effectiveness of Deep 

Learning (DL) techniques in pneumoconiosis screening. Figure 6 represents steps to 

conduct non- textural analysis with CNN.  

 

Figure 6. General steps to apply ANN with moving normalization for X-ray image 

analysis. 

4.3. Deep learning for pre-clinical stage classification 

Upon diagnosing pneumoconiosis, patients are often found to be in a critical 

condition, making treatment particularly complex. Early identification of this disease 

during its preclinical stage is crucial to effectively manage and mitigate its impact. 

Early detection not only reduces the incidence but also lessens the severity of the 

condition among workers exposed to its hazards (Qi et al., 2021).  

Recent AI-driven research into early-stage detection by Wang et al. (2023) 

employed an innovative three-stage cascaded learning model. Initially, a YOLOv2 

network was used to pinpoint lung areas within digital chest radiography (DR) 

images. This was followed by the training of six different CNN models aimed at 

identifying early signs of Coal Workers’ Pneumoconiosis (CWP). In the final stage, 

a hybrid ensemble learning model was developed, employing a soft voting 

mechanism to integrate results from the six CNNs. The study utilized 1447 digital 

radiographs from various coal industry workers, including drillers and general 

laborers. The CNNs trained included models like Inception-V3, ShuffleNet, 

Xception, DenseNet, ResNet101, and MobileNet. The cascade model demonstrated 

an AUC of 93.1% and an accuracy rate of 84.7%, indicating a significant 
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advancement in the preclinical screening capabilities for coal workers (Wang et al., 

2023). 

5. Personal and workspace safety enhancement with AI enabled 

monitoring 

This section briefly describes the application of AI for the enhancement of 

personal and workspace safety. Figure 7 represents the major AI driven 

advancements in the field of personal and workplace safety. 

 

Figure 7. Personal and workplace safety enhancement with AI enabled monitoring. 

5.1. Personal safety enhancement and monitoring 

5.1.1. Exoskeletons with AI integration 

Occupational exoskeletons are designed to minimize the risk of back and 

shoulder injuries. They aim to support workers and boost safety in the workplace, 

especially where traditional ergonomic solutions fall short. Workers wearing these 

devices reported less discomfort, fewer injuries, and reduced workers’ compensation 

costs. Studies have shown that occupational exoskeletons can lessen muscle strain 

and fatigue during physical activities across various sectors, including logistics, 

construction, manufacturing, military, and healthcare. Wearable exoskeletons, 

robotic suits designed to augment limb and joint function, have become instrumental 

in enhancing productivity and safeguarding the health of workers. Research 

increasingly supports the adoption of various ANN frameworks in cutting-edge 

exoskeleton technologies (Nayak and Das, 2020). Furthermore, traditional control 

techniques are now being merged with smart or adaptive optimization strategies to 

create robust or hybrid systems (Bonato, 2005). Historically, ANNs have been 

crucial in the development of biomechatronics and intelligent systems, leading to 

advancements in intelligent medical devices such as brain-machine interfaces for 

prosthetics and sophisticated robotic exoskeletons for rehabilitation (Nayak and Das, 

2020). Exoskeletons also enable biometric evaluations and post-injury rehabilitation, 

reducing spinal stress and improving the physical condition of employees (Ajunwa 

and Greene, 2019). 
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5.1.2. Personal Protective Equipment (PPE) with AI integration 

Considering the safety of workers and the prevalence of workplace accidents, it 

is essential to update traditional tools and methods to keep pace with evolving 

technological advancements. Recent research has investigated the application of AI 

in the manufacturing industry (Li et al., 2017; Podgórski et al., 2016; Sun et al., 

2020). This integration not only connects various aspects of the industry but also 

significantly enhances the safety and security of employees. With the introduction of 

smart personal PPE and wearable technologies, collecting data about workers and 

their environment has become possible (Márquez-Sánchez et al., 2021). This 

approach is data-driven and aims to reduce the frequency of accidents and 

occupational diseases, thus significantly improving workplace conditions. The 

evolution of smart PPE has made it possible to monitor critical health indicators and 

evaluate industrial environments. Various strategies for integrating wearables into 

workplace environments have been explored, examining how networks of connected 

devices can help protect individuals. These solutions utilize diverse AI techniques 

such as neural networks (Raha et al., 2023; Vukicevic et al., 2022), fuzzy logic 

(Iannizzotto, Lo Bello and Patti, 2021; Márquez-Sánchez et al., 2021; Panja et al., 

2023), Bayesian networks (Lisi et al., 2021; Mohammadfam et al., 2017); Nguyen, 

Tran, and Chandrawinata, 2016, decision trees (Mistikoglu et al., 2015; Tetik et al., 

2021) and other hybrid inference models (Loey et al., 2021; Nath et al., 2020). 

Traditional safety systems in workplaces are designed to meet the specific needs of 

each company and react only when certain thresholds are exceeded, which is a 

primarily reactive “action-reaction” model (Shah and Mishra, 2024). This method 

offers limited adaptability and flexibility in new situations. In contrast, AI systems 

equipped with learning capabilities employ a different strategy. They operate based 

on a set of rules and knowledge gleaned from past problem-solving experiences to 

predict outcomes in new scenarios. 

Some innovation like, Smart helmets have revolutionized traditional safety gear 

by incorporating advanced technology integrated with AI. These helmets are 

equipped with a comprehensive array of sensors, including GPS, RFID (Radio 

Frequency Identification), UWB (Ultra-Wideband), and AVM (Around-View 

Monitor) (Shah and Mishra, 2024). These sensors work together to track the location 

of workers, monitor their activities, and assess both the environment and personal 

health metrics (Campero-Jurado et al., 2020; Kuhar et al., 2021). Similarly, Smart 

boots represent a proactive step in enhancing workplace safety by utilizing artificial 

intelligence to detect hazardous conditions such as slippery surfaces, identify 

obstacles, and monitor environmental factors. These innovative boots go beyond 

basic protection by showcasing how AI can transform occupational safety norms, 

underlining a commitment to employee well-being. This kind of AI enabled Smart 

PPEs include features to reduce the chances of human error such as fall detection, 

geofencing, built-in nocturnal flashlights, local data storage for on-the-spot analysis, 

a two-way alert communication system, and tactile feedback for immediate user 

notification (Lee et al., 2022; Sanchez et al., 2020). 
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5.2. Workspace safety enhancement and monitoring 

The transformative technological advancements in computer vision, virtual 

reality (VR), and drone systems revolutionized workplace safety.  Computer vision 

is increasingly critical in enhancing workplace safety through AI-driven applications 

(Akinsemoyin et al., 2023). It facilitates various functions such as monitoring 

employee behavior, identifying potential hazards, and providing real-time alerts. A 

prime example of this technology in action is the deployment of thermal cameras to 

detect heat stress among workers (Sharma et al., 2022). This allows continuous 

monitoring of body temperatures, enabling timely interventions like cooling breaks 

or the provision of suitable PPE. Additionally, computer vision plays a vital role in 

surveillance, with AI-enhanced cameras tracking employee movements and quickly 

identifying potential dangers like trip hazards or unsecured machinery (Murugesan et 

al., 2023). These systems also monitor access to restricted or hazardous areas, 

bolstering workplace safety (Aslan et al., 2023). The expansion of AI technologies 

has led to significant transformations in data management, computer vision, and ML. 

In the dynamic field of DL, numerous challenges related to computer vision such as 

classification, recognition, language processing, video analysis, gesture detection, 

and robotics are evolving (Hammoudeh et al., 2022; Morris and Joppa, 2021). Still, 

the hybridization of computing power with image processing provides very good 

results (Aslan et al., 2023; Bhana et al., 2023). Similarly, VR has become an 

essential tool for safety training, particularly in sectors where real-world training 

poses significant risks. By incorporating VR, employers are able to equip their 

workforce with the necessary skills and knowledge to navigate hazardous scenarios 

safely, significantly reducing the potential for workplace injuries and deaths by 

enhancing risk prevention education (Li et al., 2018). This approach is not only cost-

effective and targeted but also pivotal in reducing errors and boosting accident 

prevention efforts. VR has started to supplant traditional training methods such as 

PowerPoint presentations and videos by providing a more interactive and memorable 

learning experience (Gao et al., 2022). Sectors like chemical (Garcia et al., 2021; 

Kumar et al., 2021), construction (Rokooei et al., 2023; Sacks et al., 2013) and 

mining (Li et al., 2020; van and Villiers, 2009) have increasingly turned to VR 

training solutions, attracted by their ability to cut costs and decrease incidents of 

injuries and fatalities. 

Further, the continuous research and development of unmanned aerial vehicles 

(UAV) has created a new opportunity to improve the workplace environment (Zhou, 

2018). Unmanned Aerial Vehicles (UAVs) are increasingly being outfitted with high 

resolutions camera settings, multiple sensors, and advance communication tools that 

allow for the rapid transmission of real-time data pertinent to construction activities. 

These UAVs can perform functions similar to those carried out by manned vehicles, 

but with greater efficiency and at a lower cost (Zhou, 2018). Significant progress in 

UAV technology has been made in areas such as battery life, GPS accuracy, 

navigational skills, and control dependability. These advancements have led to the 

development of cost-effective and lightweight aerial systems. As a result, there has 

been a notable increase in the use of UAVs in recent years, becoming more 

widespread over the past decade (Ham et al., 2016; Peter Liu et al., 2014). The 
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advanced UAVs have potential to inspect hazardous zone with details (Kas and 

Johnson, 2020; Nooralishahi et al., 2021). This may nullify direct physical human 

contact with hazardous material and, hence, decrease the chances of injuries and 

fatalities. 

6. Advancements of AI for updating existing policies and 

regulations in OHS 

The inclusion of Artificial Intelligence (AI) in OHS protocols signifies a pivotal 

change in addressing workplace hazards, especially in sectors with higher risks. AI 

technology is poised to reshape existing OHS guidelines and regulations towards a 

more proactive and effective framework. The following are the potential impacts of 

AI on shaping modern OHS measures. And re-shaping the existing policy: 

• Advancing Risk Management and Preventing Incidents: Traditional OHS 

methods are often reactive, dealing with incidents post-occurrence 

(Kontogiannis et al., 2017). AI introduces a shift towards a forward-thinking 

methodology, utilizing predictive analytics and ongoing monitoring to detect 

and address risks beforehand. AI-enhanced tools like drones and robots can 

perform risky operations, minimizing human interaction with unsafe conditions 

(Kas and Johnson, 2020). Such technological shifts require a restructuring of 

policies to integrate AI’s anticipatory abilities, encouraging the use of these 

innovations for better risk management with OHS advancement. 

• Enhanced Real-Time Monitoring and Data Utilization: AI applications with ML 

and computer vision, enable continuous surveillance using sensors, cameras, 

and wearable tech (Adem et al., 2020). These devices gather and analyze data 

concerning the workforce’s health, environmental conditions, and imminent 

dangers continuously. This capability for instantaneous feedback and alerts 

could drastically lower accident rates at work (Márquez-Sánchez et al., 2021). 

Traditional approach in OHS regulates workers health and workplace dangers 

with periodic evaluation only. Therefore, regulations should evolve to require 

the implementation of AI-based monitoring, ensuring adherence to safety norms 

and facilitating a rapid response to new hazards. 

• Refining Training and Simulation Techniques: AI-powered simulations can 

significantly improve OHS training by providing realistic and immersive 

environments where workers can rehearse emergency protocols (Scorgie et al., 

2024). This not only bolsters safety but also operational efficiency, enabling 

personnel to face various potential dangers within a safe setting. Regulations 

related to training need to be updated to encompass AI simulation standards that 

meet defined safety and effectiveness benchmarks. 

• Developing Legal and Regulatory Support Structures: Incorporating AI within 

OHS demands comprehensive legal frameworks that support the adoption of 

such technologies (Jarota, 2023). This involves setting benchmarks for AI 

system efficacy, dependability, and safety. It is essential for regulatory bodies to 

collaborate with industry experts to formulate rules that enable the safe and 

effective application of AI, ensuring compliance with established safety 

regulations and healthcare security (Palaniappan et al., 2024). 
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The following Table 4 represents the major differences of traditional and AI- 

enhanced OHS policies. 

Table 4. Major differences of traditional and AI-enhanced OHS policies. 

Area Traditional OHS Policies AI-Powered OHS Policies 

Risk Management Reactive, incident-based 
Proactive, predictive analytics-

based 

Monitoring Periodic inspections Continuous real-time monitoring 

Data Collection Manual reporting 
Automated data collection via 

sensors, drones, and wearables 

Training 
Traditional methods (lectures, 

manuals) 

AI-driven simulations and 

immersive VR training 

Incident Response Post-incident analysis 
Preemptive measures and early 

warnings 

Regulatory Compliance Static compliance checks 
Dynamic compliance through 

real-time data analysis 

Worker Involvement 
Limited to compliance and 

reporting 

Enhanced engagement with real-

time feedback 

Data Privacy and Ethics Basic data protection measures 
Comprehensive data privacy and 

ethical guidelines for AI use 

Skill Requirements Basic safety training 
Advanced training in AI tools 

and technologies 

Legal Framework 
Established standards and 

regulations 

Evolving standards to include AI 

capabilities 

Cost Implications 
High costs due to accidents and 

non-compliance 

Initial high investment, but long-

term cost savings through 

prevention 

Decision-Making Human-based decision-making AI-assisted decision-making 

Flexibility and Adaptability Rigid and slow to adapt 
Flexible, quick to adapt to new 

data and insights 

Worker Health Monitoring Limited to physical exams 
Continuous health monitoring 

through wearable 

Incident Documentation Manual documentation 
Automated documentation and 

analysis 

Preventive Measures Basic preventive measures 
Advanced preventive measures 

using AI predictions 

Hazard Identification Human assessment 
AI-powered hazard 

identification and analysis 

7. Conclusion 

The integration of Artificial Intelligence (AI) in Occupational Health and Safety 

(OHS) across high-risk industries like construction, mining, and oil and gas has 

notably enhanced risk management strategies traditionally dependent on human 

judgment and site accessibility. Key AI technologies applied include computer 

vision for real-time monitoring of worksites, sensor networks for data collection, 

machine learning for predictive analysis, and knowledge-based systems for decision-

making. These technologies streamline the identification and management of hazards 

from the planning stage through active operations, facilitating a more proactive 

approach to safety. In the construction sector, AI is integrated with building 
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information modeling to preemptively identify risks during design and planning 

phases. Similarly, in mining and oil and gas, extensive sensor networks and 

computer vision systems offer robust frameworks for hazard detection, risk 

assessment, and sometimes, prediction of potential safety incidents. AI’s role in 

personalizing training protocols also underscores its importance in enhancing worker 

preparedness and response strategies. 

Despite these advancements, the application of AI in OHS is not without 

challenges. Key barriers include the high cost of AI implementation, which may be 

prohibitive for small and medium-sized enterprises; a lack of skilled workforce 

trained in AI technologies; and the ethical, legal, and social concerns related to data 

privacy, worker surveillance, and algorithmic bias. These issues complicate the 

integration of AI into existing OHS frameworks and may also introduce new risks 

such as cyber threats and psychosocial stress due to human-machine interactions. To 

overcome these barriers and fully harness the potential of AI in enhancing workplace 

safety, there is a pressing need for multidisciplinary research and collaboration. This 

should be aimed at developing cost-effective AI solutions, fostering an AI-savvy 

workforce, and establishing robust regulatory frameworks that address ethical and 

legal concerns while promoting OHS equity and governance. Further, exploring the 

development of digital twins and enhancing IoT infrastructure could significantly 

improve real-time data transmission and monitoring, leading to more dynamic and 

responsive OHS practices. 
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