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Abstract: This study applies machine learning methods such as Decision Tree (CART) and 

Random Forest to classify drought intensity based on meteorological data. The goal of the 

study was to evaluate the effectiveness of these methods for drought classification and their 

use in water resource management and agriculture. The methodology involved using two 

machine learning models that analyzed temperature and humidity indicators, as well as wind 

speed indicators. The models were trained and tested on real meteorological data to assess 

their accuracy and identify key factors affecting predictions. Results showed that the Random 

Forest model achieved the highest accuracy of 94.4% when analyzing temperature and 

humidity indicators, while the Decision Tree (CART) achieved an accuracy of 93.2%. When 

analyzing wind speed indicators, the models’ accuracies were 91.3% and 93.0%, 

respectively. Feature importance revealed that atmospheric pressure, temperature at 2 m, and 

wind speed are key factors influencing drought intensity. One of the study’s limitations was 

the insufficient amount of data for high drought levels (classes 4 and 5), indicating the need 

for further data collection. The innovation of this study lies in the integration of various 

meteorological parameters to build drought classification models, achieving high prediction 

accuracy. Unlike previous studies, our approach demonstrates that using a wide range of 

meteorological data can significantly improve drought classification accuracy. Significant 

findings include the necessity to expand the dataset and integrate additional climatic 

parameters to improve models and enhance their reliability. 

Keywords: sustainable growth; agricultural development; land management; soil fertility; 

agricultural innovation 

1. Introduction 

Drought is one of the most destructive natural disasters, characterized by a 

prolonged deficit of precipitation, leading to a lack of soil moisture. Its causes are 

multifaceted, encompassing natural climatic fluctuations, changes in atmospheric 

and oceanic circulation, and anthropogenic factors such as climate change (Mokhtar, 

2021; Rhee, 2017; Tufaner, 2020). Drought affects millions of people worldwide, 

causing food crises and economic losses (Richman, 2016). The consequences of 

drought are extensive and varied, ranging from reduced crop yields and agricultural 

losses to ecosystem degradation and depletion of water resources. 

Unlike sudden disasters such as earthquakes or hurricanes, drought develops 
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gradually, making its prediction and management challenging (Shamshirband, 2020). 

This gradual development necessitates long-term monitoring and early warning 

systems (Bashmur, 2022; Mosavi, 2023). With the ongoing global climate change, 

the importance of drought monitoring and forecasting has significantly increased 

(Deo, 2015). Modern monitoring methods primarily include the use of satellite data 

and meteorological measurements (Khan, 2020), each having its own set of 

advantages and limitations. 

Satellite data provide valuable information about soil and vegetation conditions 

over large areas (Kolenchukov, 2022). However, these data often suffer from 

limitations in resolution and accuracy (Dikshit, 2021). In contrast, meteorological 

measurements, such as those for precipitation and temperature, offer more precise 

data but are limited in their spatial coverage (Rahmati, 2020). 

The integration of these diverse data sources is crucial for effective drought 

forecasting, which in turn helps minimize the impacts of drought, develop adaptation 

measures, and improve water resource management (Aghelpour, 2020). Current 

research is increasingly focused on enhancing drought monitoring and forecasting 

methods through the use of advanced technologies and innovative scientific 

approaches (Deo, 2017). 

Machine learning plays a key role in data analysis and drought forecasting. This 

integration is illustrated in Figure 1. These algorithms can process large volumes of 

data, identify hidden patterns, and make accurate predictions (Dikshit, 2020; 

Rahmati, 2020). For example, deep learning models such as neural networks are 

successfully used for long-term drought forecasting, utilizing meteorological and 

climatic data (Kolachian, 2021; Raza, 2022).  

 

Figure 1. Integration of machine learning methods for drought monitoring and 

forecasting. 

The use of machine learning in drought forecasting involves developing models 

that take into account various climatic indices such as the Palmer Drought Severity 

Index (PDSI), Standardized Precipitation Index (SPI), and Soil Moisture Index 

(SMP) (Alkan, 2023; Liu, 2023). These models help predict the intensity and 
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duration of droughts, which is crucial for agricultural planning and water resource 

management (Sharma, 2021; Vrindavanam, 2022). Successful applications of 

machine learning include weather forecasting, water resource management, and 

ecological system monitoring (Dikshit, 2021). For example, a study on the improved 

SPEI drought forecasting approach using the Long Short-Term Memory (LSTM) 

model showed that the LSTM model achieved an R2 value of more than 0.99 for both 

SPEI 1 and SPEI 3, indicating very high accuracy. The model also demonstrated an 

AUC of 0.83 for SPEI 1 and 0.82 for SPEI 3 in ROC analysis, highlighting its 

effectiveness in drought category forecasting. These results show a significant 

improvement in forecasting capabilities compared to traditional machine learning 

models (Dikshit et al., 2021). Additionally, a study on the machine learning approach 

to flood severity classification developed a model with a 91% accuracy rate in 

classifying flood severity levels. The model successfully reduced false alarms by 

25%, significantly enhancing the reliability of flood alerts, underscoring the potential 

of machine learning models in improving flood management and response systems. 

These methods demonstrate high accuracy and reliability, making them promising 

for use in various fields of science and technology (Sharma, 2021). 

A study evaluating various machine learning techniques for hydrological 

drought forecasting in the Wadi Ouahrane basin in Algeria found that the Support 

Vector Machine (SVM) model outperformed other models such as Artificial Neural 

Networks (ANN) and Decision Trees (DT). The SVM model achieved an RMSE of 

0.28, MAE of 0.19, NSE of 0.86, and an R2 of 0.90, demonstrating high accuracy in 

predicting hydrological drought (Achite, 2022). Another study focused on drought 

prediction in the Yazd province of Iran using the Standardized Precipitation Index 

(SPI) and the Standardized Water-Level Index (SWI). This research highlighted the 

effectiveness of Random Forest (RF) and Gaussian Process Regression (GPR) 

models, with the RF model achieving a high R2 of 0.85, indicating robust predictive 

capability for meteorological droughts (Elbeltagi, 2023). A novel deep learning 

model combining Convolutional Neural Networks (CNN) and Long Short-Term 

Memory (LSTM) networks for meteorological drought forecasting showed 

promising results. The model was validated with a high degree of accuracy in 

predicting drought events, emphasizing the advantage of integrating spatial and 

temporal features in the forecasting process (Dehghani, 2014). 

Research and implementation of machine learning methods for classifying and 

forecasting drought intensity is a relevant and important task that helps mitigate the 

consequences of this natural disaster and improve resource management (Zhao, 

2022). Despite successful examples of using machine learning in drought 

forecasting, further research is needed to improve model accuracy and adapt them to 

different climatic conditions (Yelemessov, 2023). For example, current models may 

not account for all important variables or their combinations, which can reduce 

forecast accuracy (Liu, 2023; Vrindavanam, 2022). Additionally, most studies focus 

on one- or a few-time scales, which may limit their applicability in other conditions 

(Sharma, 2021). 

The implementation of new approaches, such as Decision Tree and Random 

Forest methods, is a promising topic in scientific research (Borodulin, 2024; 

Degtyareva, 2023). These methods demonstrate high accuracy and reliability in 
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drought classification (Kolachian, 2021; Raza, 2022). Decision Tree and Random 

Forest methods have advantages in data interpretation and visualization, making 

them convenient for use in real applications (Bosikov, 2023; Martyushev, 2023). 

They also show high resistance to overfitting and can effectively work with large 

datasets (Alkan, 2023; Dikshit, 2021; Gohel, 2020). 

Classifying droughts considering wind conditions will help improve the 

planning of infrastructure projects, such as the construction of reservoirs and 

irrigation systems, and the development of measures to protect ecosystems from 

degradation due to dry conditions (Aghelpour, 2020; Malozyomov, 2023). 

Additionally, the use of temperature and humidity data will allow for more accurate 

drought classification, which is important for planning agricultural activities, 

monitoring soil and vegetation conditions, and taking measures to mitigate the 

effects of climate change (Almikaeel, 2022). Wind speed indicators also play a 

significant role in the development of droughts and can be used to build effective 

classification models (Tynchenko, 2024). 

The goal of this study is to develop models for classifying drought intensity 

based on machine learning methods such as Random Forest and Decision Tree 

(CART). Various groups of meteorological parameters, including temperature and 

humidity indicators, as well as wind speed indicators, were considered for this 

purpose. The study aims to develop effective models capable of predicting drought 

intensity, which can be useful for water resource management, agriculture, and 

infrastructure planning. 

Hypotheses of the study: 

1) Modeling based on meteorological parameters: 

⚫ Models built on a wide range of meteorological parameters will be able to 

accurately classify drought intensity. 

2) Modeling based on temperature and humidity indicators: 

⚫ Temperature and humidity indicators are key factors influencing drought 

intensity, and their use in machine learning models will lead to high 

classification accuracy. 

3) Modeling based on wind speed indicators: 

⚫ Wind speed indicators significantly impact drought development, and their 

inclusion in machine learning models will improve the accuracy of drought 

intensity classification. 

2. Materials and methods 

Meteorological conditions and drought intensity data were obtained from the 

open dataset: US Drought Meteorological Data. This dataset was created based on 

information provided by drought experts in the United States and includes data on 

drought conditions and meteorological indicators for the years 2017 and 2018. 

Although the United States already has a drought dataset created by drought 

experts, our study remains necessary for several key reasons. Traditional methods of 

drought classification, which rely heavily on expert assessments and drought indices, 

often fail to fully account for the complex interactions between various 

meteorological parameters. These conventional approaches primarily focus on 
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straightforward metrics like precipitation and temperature, but they lack the 

integration of multiple interrelated factors that influence drought conditions. For 

example, they might not adequately consider the synergistic effects of soil moisture, 

evapotranspiration, and groundwater levels, which are crucial for a comprehensive 

understanding of drought dynamics (Durand, 2008; Murali, 2023). In contrast to 

these methods, we use modern machine learning algorithms that can analyze large 

volumes of data and identify hidden patterns, significantly improving the accuracy of 

drought forecasting and classification. 

Moreover, the integration of various meteorological parameters, such as 

temperature, humidity, wind speed, and atmospheric pressure, into our models 

allows us to consider a broader range of factors affecting drought development. This 

contributes to the creation of more comprehensive and accurate models, which in 

turn helps improve water resource management and agricultural planning. 

Thus, despite the existence of existing datasets and methods, our study provides 

new tools and approaches for more accurate and reliable drought forecasting, which 

is an important step in improving adaptation to changing climatic conditions and 

managing the impacts of drought. 

The research presented in this article focuses on meteorological drought. 

Meteorological drought is defined as a period significantly below the average 

precipitation level, which leads to a shortage of moisture in the atmosphere and soil, 

and is the main cause of other types of droughts, such as hydrological and 

agricultural (Achite, 2022; Chu, 2018). Using meteorological data such as 

temperature, humidity, and wind speed, it is possible to create models for accurate 

forecasting and classification of meteorological droughts. 

 

Figure 2. U.S. drought monitoring map for 21 May 2024. 

Drought monitoring in the United States involves measurements of drought 

created manually by experts using a wide range of data. The goal of this dataset is to 

explore the possibility of predicting and classifying droughts using only 
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meteorological data, which could potentially lead to the generalization of drought 

forecasts from the US to other regions of the world (Figure 2). 

This dataset classifies data into six levels of drought: no drought (None) and 

five levels of drought, as shown below in Table 1. 

Table 1. Drought categories and possible consequences. 

Category Description Possible Impacts 

D0 Abnormally Dry 

Going into drought: 

⚫ short-term dryness slowing planting, growth of 

crops or pastures 

Coming out of drought: 

⚫ some lingering water deficits 

⚫ pastures or crops not fully recovered 

D1 Moderate Drought 

⚫ Some damage to crops. pastures 

⚫ Streams, reservoirs, or wells low. some 

water shortages developing or imminent 

⚫ voluntary water-use restrictions requested 

D2 Severe Drought 

⚫ Crop or pasture losses likely water shortages 

common 

⚫ water restrictions imposed 

D3 Extreme Drought 
⚫ Major crop/pasture losses 

⚫ Widespread water shortages or restrictions 

D4 Exceptional Drought 

⚫ Exceptional and widespread crop/pasture losses 

⚫ Shortages of water in reservoirs, streams. and 

wells creating water emergencies 

Each entry in the dataset (a total of 543,357 records) represents a drought level 

at a specific moment in time in a specific US county, accompanied by data on 18 

meteorological indicators over the past 90 days: 

⚫ WS10M_MIN: Minimum wind speed at 10 m (m/s) 

⚫ QV2M: Specific humidity at 2 m (g/kg) 

⚫ T2M_RANGE: Temperature range at 2 m (℃) 

⚫ WS10M: Wind speed at 10 m (m/s) 

⚫ T2M: Temperature at 2 m (℃) 

⚫ WS50M_MIN: Minimum wind speed at 50 m (m/s) 

⚫ T2M_MAX: Maximum temperature at 2 m (℃) 

⚫ WS50M: Wind speed at 50 m (m/s) 

⚫ TS: Earth skin temperature (℃) 

⚫ WS50M_RANGE: Wind speed range at 50 m (m/s) 

⚫ WS50M_MAX: Maximum wind speed at 50 m (m/s) 

⚫ WS10M_MAX: Maximum wind speed at 10 m (m/s) 

⚫ WS10M_RANGE: Wind speed range at 10 m (m/s) 

⚫ PS: Surface pressure (kPa) 

⚫ T2MDEW: Dew/Frost point at 2 m (℃) 

⚫ T2M_MIN: Minimum temperature at 2 m (℃) 

⚫ T2MWET: Wet bulb temperature at 2 m (℃) 

⚫ Output Parameter: Drought intensity classes (D0-D4) 

Data preprocessing: 

⚫ Removal of missing values: missing values were removed from the dataset to 
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avoid distorting the machine learning models. 

⚫ Data normalization: all numerical data were normalized to ensure comparability 

between different parameters. 

⚫ Categorical variable transformation: categorical variables, such as drought 

levels, were transformed into numerical format using one-hot encoding. 

Some of the parameters used in the study are collected from ground-based 

meteorological stations, namely those that do not have the number “50” in their 

name. These parameters include temperature at an altitude of 2 m, humidity, and 

wind speed at an altitude of 10 m. The parameters, which contain the number “50” in 

the name, are collected from aerosols and balloons, which allows you to cover higher 

layers of the atmosphere. Data is also collected by county, which allows detailed 

analysis of the state of drought in various regions. On the U.S. website. Drought 

Monitor indicates that drought monitoring data is collected from a variety of stations 

operated by various agencies, including NOAA and the National Drought Mitigation 

Center (NDMC).  

The following machine learning algorithms were used for drought intensity 

classification: 

⚫ Random Forest: An ensemble learning method that builds multiple decision 

trees and combines their results to improve classification accuracy. 

⚫ Decision Tree (CART): A classical decision tree algorithm that uses recursive 

partitioning to create a classification model. 

⚫ The models were trained on a dataset split into training and testing sets in an 

80/20 ratio. The main hyperparameters for each model were optimized using the 

Random Search method. 

The following metrics were used to evaluate the quality of the models: 

⚫ Accuracy: The proportion of correctly classified examples. 

⚫ Recall: The proportion of correctly classified positive examples among all 

positive examples. 

⚫ F1-score: The harmonic mean between precision and recall. 

In traditional methods, drought is classified based on the range of some drought 

indices, such as the Standardized Precipitation Index (SPI) and Standardized Runoff 

Index (SRI). The advantages of the drought categorization method proposed in the 

article are the integration of a variety of meteorological parameters such as 

temperature, humidity, wind speed and atmospheric pressure, which allows us to 

take into account a wider range of factors affecting the development of drought and 

provide more accurate forecasts. The use of modern machine learning algorithms 

such as Random Forest and Decision Tree (CART) allows you to process large 

amounts of data and identify hidden patterns, providing higher accuracy in drought 

classification compared to traditional methods that often rely on linear dependencies. 

3. Results 

As part of the study, a correlation analysis was conducted to identify possible 

linear dependencies (Kozlova, 2023) between the input meteorological data and the 

output parameter—drought intensity. Correlation analysis allows determining the 

degree of interrelation between various meteorological indicators and drought 
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intensity, measured through D0-D4 classes. This helps to understand if there are any 

strong correlation links that might indicate a direct dependence. Figure 3 presents a 

correlation matrix showing Pearson correlation coefficients between all 

meteorological indicators and the output parameter (drought intensity). 

 

Figure 3. Correlation matrix of meteorological indicators and drought intensity. 

The presented correlation matrix shows Pearson correlation coefficients 

between various meteorological indicators and drought intensity. The coefficients 

range from −1 to 1, where values close to 1 or −1 indicate strong positive or negative 

correlations, respectively, and values close to 0 indicate weak or no correlation. 

The matrix reveals that indicators such as temperature at 2 m (T2M), minimum 

(T2M_MIN) and maximum (T2M_MAX) temperatures, and surface temperature 

(TS) have high positive correlations with each other, which is expected due to their 

physical relationships. However, the correlation between these parameters and 

drought intensity is relatively weak, with coefficients around 0.2 and below, 

indicating the necessity of using complex nonlinear models, such as machine 

learning algorithms, for more accurate drought classification. 

Parameters for wind speed at 10 m (WS10M) and 50 m (WS50M) also show 

positive correlations with each other, but their relationship with drought intensity is 

similarly weak. This underscores the importance of integrating multiple 

meteorological indicators into machine learning models to improve forecast 

accuracy. 

Thus, the presented data confirm the absence of strong linear dependencies 

between individual meteorological indicators and drought intensity, justifying the 
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use of machine learning methods for more accurate drought classification and 

prediction. The source of the data is the entire dataset, providing the most 

comprehensive and accurate picture for analysis. 

The next step towards achieving the goal was to build classification models on 

the entire dataset. The first algorithm used was the Decision Tree “CART”. The 

feature importance of the model and the classification matrix with metrics are 

presented in Figures 4–6. 

 

Figure 4. The importance of CART model features based on the entire dataset. 

 

Figure 5. The error matrix of the CART model based on the entire dataset. 
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Figure 6. CART model classification report based on the entire dataset. 

The classification matrix showed the distribution of true and predicted drought 

intensity classes. Values on the diagonal of the matrix represent the number of 

correctly classified examples for each class, while values off the diagonal indicate 

the number of classification errors. Based on the classification matrix, it was evident 

that the model achieved high classification accuracy for most classes. 

Feature importance was visualized, allowing the identification of key 

meteorological parameters influencing the model’s predictions. The most important 

features in the model were surface pressure (PS), temperature range at 2 m 

(T2M_RANGE), and earth skin temperature (TS). This helps to better understand 

which factors contribute most to predicting drought intensity. 

A classification report was also presented, showing the precision, recall, and 

F1-score metrics for each class, as well as the number of examples (support) in each 

class. These metrics help evaluate the model’s performance across different levels of 

drought intensity. The Decision Tree model achieved an overall accuracy of 93.2%, 

indicating high efficiency in classifying drought intensity based on meteorological 

data. 

However, it is important to note the limitations related to the amount of data for 

classes 4 and 5. These classes are represented by fewer examples compared to other 

drought levels, which can affect the model’s prediction accuracy for these classes. 

The small amount of data in these classes makes it difficult to train the model and 

may lead to reduced classification accuracy for severe drought levels. 

Another method used for model building was “Random Forest”. The entire 

dataset was used for training and testing the model. The feature importance of the 

model and the classification matrix are presented in Figures 7 and 8. 
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Figure 7. The importance of features of the Random Forest model based on the 

entire dataset. 

 

Figure 8. The error matrix of the Random Forest model based on the entire dataset. 

The Random Forest model for classifying drought intensity based on 

meteorological data achieved an overall accuracy of 94.4%, demonstrating high 

efficiency. The classification matrix showed that the model successfully 

distinguishes most drought classes, however, there are difficulties in classifying 

classes 4 and 5 due to the limited amount of data for these levels. The importance of 

the features revealed key meteorological parameters such as atmospheric pressure, a 

temperature range at an altitude of 2 m and the temperature of the earth’s surface, 

which have a significant impact on the predictions of the model. The limited amount 

of data for high levels of drought highlights the need to collect additional data to 
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improve model accuracy for these classes. 

Conducting experiments on building models on a group of meteorological 

parameters 

The models were divided based on the aim and hypotheses of the study. The 

primary goal of our research was to develop models for classifying drought intensity 

using various groups of meteorological parameters, including temperature and 

humidity indicators, as well as wind speed metrics. In the introduction of the article 

(see the Introduction section), the research hypotheses are described, according to 

which models built on different groups of parameters should provide high accuracy 

in drought classification. This division allows for a detailed study of the influence of 

each group of parameters on classification accuracy and helps to identify which 

factors are most significant. 

To conduct the experiment on building models based on various classification 

methods, the following groups of factors were selected: 

1) Temperature and Humidity Indicators: 

⚫ T2M: Temperature at 2 m (℃)—the main indicator of air temperature near 

the ground surface. 

⚫ QV2M: Specific Humidity at 2 m (g/kg)—the amount of water vapor in 

the air at a height of 2 m. 

⚫ T2M_MAX: Maximum temperature at 2 m (℃)—the highest temperature 

recorded over a specific period. 

⚫ T2M_MIN: Minimum temperature at 2 m (℃)—the lowest temperature 

recorded over a specific period. 

⚫ T2M_RANGE: Temperature range at 2 m (℃)—the difference between 

the maximum and minimum temperatures. 

⚫ T2MDEW: Dew point at 2 m (℃)—the temperature at which the air at a 

height of 2 m becomes saturated and condensation begins. 

⚫ T2MWET: Wet Bulb temperature at 2 m (℃)—the temperature measured 

using a wet bulb thermometer, indicating cooling due to evaporation. 

2) Wind Speed Indicators: 

⚫ WS10M_RANGE: Wind speed range at 10 m (m/s)—the difference 

between the maximum and minimum wind speeds at a height of 10 m. 

⚫ WS50M_RANGE: Wind speed range at 50 m (m/s)—the difference 

between the maximum and minimum wind speeds at a height of 50 m. 

⚫ WS10M_MAX: Maximum wind speed at 10 m (m/s)—the highest wind 

speed recorded at a height of 10 m. 

⚫ WS50M_MAX: Maximum wind speed at 50 m (m/s)—the highest wind 

speed recorded at a height of 50 m. 

Each of the above parameters was selected to analyze their influence on drought 

intensity. Temperature and humidity indicators provide data on the temperature and 

humidity conditions that can affect drought development. Wind speed indicators help 

understand the impact of wind conditions on regional dryness. Atmospheric pressure 

and specific humidity play important roles in shaping weather conditions that 

influence drought levels. 
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Figures 9 and 10 show the correlation matrices for the two classification 

methods, allowing a visual assessment of the relationships between the selected 

parameters and drought intensity. 

 

Figure 9. Error matrix of the CART model of the first experiment. 

 

Figure 10. The error matrix of the Random Forest model of the first experiment. 

During the experiment, drought intensity classification models were built using 

two methods: Decision Tree (CART) and Random Forest. The first model (CART) 

achieved an accuracy of 92.2%, while the second model (Random Forest) reached 

93.4%. 

The classification matrices for both methods are presented in the figures above. 

These matrices show that both models successfully distinguish most drought classes; 
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however, there are difficulties in classifying classes 4 and 5 due to the limited 

amount of data for these levels. 

The feature importance and classification report for the models were also 

visualized, showing the key parameters influencing the models’ predictions, as well 

as the precision, recall, and F1-score metrics for each class. The visualizations of 

feature importance and classification reports are presented in Figures 11 and 12. 

 

Figure 11. The importance of the features of both models of the first experiment. 

 

Figure 12. CART model classification report of the first experiment. 

Overall, the results show that the Decision Tree (CART) and Random Forest 

models effectively classify drought intensity, with Random Forest demonstrating 

slightly better performance. 

We move on to the second experiment, which used wind speed indicators. In 

this experiment, the following factors were considered: wind speed range at 10 m 



Journal of Infrastructure, Policy and Development 2024, 8(10), 6807.  

15 

(WS10M_RANGE), wind speed range at 50 m (WS50M_RANGE), maximum wind 

speed at 10 m (WS10M_MAX), and maximum wind speed at 50 m 

(WS50M_MAX). Figures 13 and 14 present the classification matrices for the 

Decision Tree (CART) and Random Forest models. Figures 15 and 16 show the 

feature importance for the second experiment and the classification report. 

 

Figure 13. The error matrix of the CART model of the second experiment. 

 

Figure 14. The error matrix of the Random Forest model of the second experiment. 
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Figure 15. The importance of the features of both models of the second experiment. 

 

Figure 16. CART model classification report of the second experiment. 

The Decision Tree (CART) model showed an accuracy of 91.3%. The 

classification matrix for this model shows that it distinguishes most drought classes 

well, but has some classification errors, especially for classes 4 and 5. Feature 

importance revealed that the wind speed range and maximum wind speed at heights 

of 10 and 50 m have the greatest influence on the model’s predictions. 

The Random Forest model demonstrated higher accuracy—93%. The 

classification matrix for this model shows higher prediction accuracy compared to 

the Decision Tree. The visualization of feature importance also confirms the 

significance of the wind speed range and maximum wind speed at various heights. 

4. Discussion 

Hybrid ARIMA-ANN models have shown superior accuracy in drought 
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forecasting compared to individual models. In the Kansabati River basin, these 

hybrids were effective in providing accurate predictions. Hybrid models like ANFIS 

also enhance performance by combining linear and non-linear approaches, 

addressing the limitations of individual models (Fung, 2019). 

Wavelet-based models such as the Wavelet Extreme Learning Machine (W-

ELM) have proven effective in capturing the temporal characteristics of droughts. 

These models provided accurate drought forecasts in Eastern Australia, 

demonstrating their suitability for regions with complex climatic patterns. The 

hybrid wavelet-ANN model also showed high efficiency in forecasting long-term 

droughts (Deo, 2017; Gorgij et al., 2016). 

The results of the conducted experiments showed that machine learning models 

such as Decision Tree (CART) and Random Forest can effectively classify drought 

intensity based on various meteorological parameters. On the entire dataset, the 

Decision Tree and Random Forest models achieved accuracies of 92.2% and 93.4%, 

respectively, confirming their high performance in complex factor analysis. In the 

first experiment, which analyzed temperature and humidity indicators, the Decision 

Tree and Random Forest models showed improved results with accuracies of 93.2% 

and 94.4%, respectively. This indicates the significance of temperature and humidity 

parameters in predicting drought intensity. In the second experiment, which used 

wind speed indicators, the models demonstrated accuracies of 91.3% for Decision 

Tree and 93.0% for Random Forest, also confirming the importance of wind 

conditions in the context of drought. 

However, despite the high accuracy rates, the models faced certain limitations, 

especially in classifying the rarer classes 4 and 5. The small amount of data for these 

classes makes it difficult to accurately predict drought intensity, highlighting the 

need for additional data collection to improve the models. These results emphasize 

the importance of data diversity and volume in enhancing the accuracy and reliability 

of forecasts, which is a critical factor for effective water resource management and 

infrastructure planning in the context of climate change. 

Our models were divided based on the aim and hypotheses of the research. The 

primary goal was to develop models for classifying drought intensity using various 

groups of meteorological parameters, including temperature and humidity indicators, 

as well as wind speed metrics. In the introduction of the article, the research 

hypotheses are described, according to which models built on different groups of 

parameters should provide high accuracy in drought classification. This division 

allowed us to study the influence of each group of parameters on classification 

accuracy in detail and identify the most significant factors. 

Details of each stage are presented in Table 2. 

Table 2. Accuracy of Decision Tree (CART) and Random Forest models for 

different experiments. 

Experiment Decision Tree (CART) Random Forest 

Entire dataset 92.2% 93.4% 

First experiment 93.2% 94.4% 

Second experiment 91.3% 93.0% 
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In summary, our results are consistent with previous studies showing that the 

integration of several meteorological indicators can significantly improve the 

accuracy of the model. Moreover, our results highlight the effectiveness of hybrid 

approaches in improving forecasting efficiency, as has been shown in other studies 

using hybrid ARIMA-ANN and wavelet models. Thus, our study complements the 

body of evidence supporting the use of advanced machine learning techniques for 

drought forecasting, offering new insights into the integration of various 

meteorological data to more accurately classify drought. 

5. Conclusion 

In this study, machine learning methods such as Decision Tree (CART) and 

Random Forest were applied to classify drought intensity levels based on various 

meteorological data. The main objective of the study was to assess the effectiveness 

of these methods in classification tasks and their applicability for water resource 

management and agriculture. 

The study showed that the Decision Tree (CART) model on the entire dataset 

demonstrated an accuracy of 92.2%, while Random Forest achieved 93.4%. In the 

first experiment, which used temperature and humidity indicators, the accuracies 

were 93.2% for Decision Tree and 94.4% for Random Forest. In the second 

experiment, which considered wind speed indicators, the accuracies were 91.3% and 

93.0% respectively. These results confirm the high effectiveness of machine learning 

models in drought classification tasks. 

The feature importance visualized during the analysis showed that key 

meteorological parameters such as atmospheric pressure, temperature at 2 m, and 

wind speed play a significant role in classifying drought intensity. This underscores 

the necessity of including these parameters in future models to improve their 

accuracy. However, the study also revealed a limitation related to the insufficient 

amount of data for high drought levels (classes 4 and 5), making it difficult to 

accurately predict these classes. This indicates the need for additional data collection 

to improve the models and enhance their reliability. 

For future research, it is recommended to expand the dataset to increase the 

accuracy of the models and their ability to predict rare events such as extreme 

droughts. Including additional meteorological and climatic parameters, such as soil 

moisture data, solar radiation, and evaporation, can also contribute to improving 

model accuracy. Developing combined models that integrate machine learning 

methods with physical drought models can provide more accurate and reliable 

forecasts. 

Supporting research and development in machine learning and climatology is 

important for creating more accurate drought classification and forecasting models. 

Developing and implementing drought adaptation strategies based on forecast data 

may include improving water resource management, developing sustainable 

agricultural practices, and increasing preparedness for dry periods. 

Thus, the use of machine learning methods such as Decision Tree and Random 

Forest has demonstrated high effectiveness in classifying drought intensity. To 

achieve more accurate and reliable forecasts, it is necessary to continue research and 
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expand the dataset, which will improve water resource and agricultural management 

under climate change conditions. 

To conclude our study, we present an illustration demonstrating how the 

Random Forest machine learning model helps in classifying drought intensity. 

Figure 17 shows the data analysis process, where the model processes the input 

meteorological data (temperature, humidity, wind speed and atmospheric pressure) 

and outputs a map with a classification of drought levels from D0 (no drought) to D4 

(extreme drought). 

 

Figure 17. An illustration that shows how the machine learning model helps in 

drought classification. 

This visualization clearly shows how the use of modern machine learning 

algorithms can significantly improve the accuracy of drought forecasts, which is an 

important step in water resource management and agricultural planning in the face of 

climate change. 
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